Using Implicit Measures in Attitude and Personality Research

Wilhelm Hofmann
University of Chicago
Booth School of Business

SPSP 2012 GSC and Training Committee Innovative Methods pre-conference

Overview

I. What are implicit measures useful for?
II. Conceptual approaches to the use of implicit measures
III. The Implicit Measurement Zoo: Which procedure to pick?
IV. Resources
1) What are implicit measures useful for?

Aspects of attitudes and traits that are difficult to assess via self-report due to

- Introspective limits
- Self-presentational concerns

The Idea behind Implicit Measurement

e.g., implicit stereotypes, Implicit prejudice Implicit self-esteem ...

Mental Associations

Thinking, Feeling, Behavior
Implicit Measurement

De Houwer & Moors, 2010

Link to Dual-System Theories

System 1
Associative Processing

System 2
Propositional Reasoning

- Slow, deliberate, rule-based
- Judgments, decisions, intentions
- Reasoned, planned behavior

- Fast, intuitive, habitual response generation
- Schemas and scripts
- Basic affective and motivational orientations

Example: Implicit Gender Stereotypes

• Are hiring decisions and salary offers influenced by implicit gender stereotypes?

• Procedure: Implicit Association Test (IAT) (Greenwald, McGhee, & Schwartz, 1998, *JPSP*)

• Demonstration (not included in this slideshow): Clear the desk in front of you and prepare to tap on your desk

The Traditional IAT
(Greenwald et al., 1998)

<table>
<thead>
<tr>
<th>Block</th>
<th>N trials</th>
<th>Task</th>
<th>Left key assignment</th>
<th>Right key assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>Target discrimination</td>
<td>FEMALE</td>
<td>MALE</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>Attribute discrimination</td>
<td>Career</td>
<td>Family</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>Initial combined block (p)</td>
<td>FEMALE, Career</td>
<td>MALE, family</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>Initial combined block (t)</td>
<td>FEMALE, Career</td>
<td>MALE, family</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>Reversed target discrimination</td>
<td>MALE</td>
<td>FEMALE</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>Reversed combined block (p)</td>
<td>MALE, Career</td>
<td>FEMALE, family</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>Reversed combined block (t)</td>
<td>MALE, Career</td>
<td>FEMALE, family</td>
</tr>
</tbody>
</table>

Note. p = originally denoted “practice” block; t = “test” block
FEMALE MALE
Career Family Left Right
„Incompatible“ Block

MALE FEMALE
Career Family Left Right
„Compatible“ Block

Difficult & slow

easy & fast

Difference → IAT Effect

IAT Effect

For a more sophisticated scoring algorithm (D-Score), see Greenwald et al., 2003, *JPSP*
Some Variations of Implicit Constructs (as measured with the IAT procedure)

Social Attitudes, Group Research

<table>
<thead>
<tr>
<th>YOUNG</th>
<th>ELDERLY</th>
<th>MALE</th>
<th>FEMALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>bad</td>
<td>Career</td>
<td>Family</td>
</tr>
<tr>
<td>Implicit Prejudice</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consumer, Health, Self-Regulation, Political etc.

<table>
<thead>
<tr>
<th>COKE</th>
<th>PEPSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>bad</td>
</tr>
<tr>
<td>Brand Attitudes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Al Gore</th>
<th>Bush</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>bad</td>
</tr>
<tr>
<td>Political Attitudes</td>
<td></td>
</tr>
</tbody>
</table>

Self-Esteem, Personality Self-Concept

<table>
<thead>
<tr>
<th>ME</th>
<th>OTHERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>bad</td>
</tr>
<tr>
<td>Implicit Self-Esteem</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ME</th>
<th>OTHERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>angry</td>
<td>calm</td>
</tr>
<tr>
<td>Implicit Self-Concept</td>
<td></td>
</tr>
</tbody>
</table>

II. Conceptual Approaches

- **Implicit Measure as Outcome (DV)**
 - Universal attitudes
 - Known groups approach
 - Experimental manipulations
 - Method-specific effects

- **Implicit Measure as Predictor (IV)**
 - Relation between Implicit and Explicit Cognition
 - Behavior Prediction
Conceptual Approaches

Implicit Measure as DV
- Universal attitudes
- Known groups approach
- Experimental manipulations
- Method-specific effects

Research Example
- Greenwald et al., 1998, JPSP

Research Example
- Snowden et al., 2003, Archives of Sexual Behavior
Conceptual Approaches

Implicit Measure as DV
- Universal attitudes
- Known groups approach
- **Experimental manipulations/Interventions**
- Method-specific effects

Research Examples
- Olson & Fazio, 2001, *Psych Science*
- Hollands et al., 2001, *Health Psych*
- Wittenbrink et al., 2001, *JPSP*

![Graph showing Implicit Attitude](image)

Conceptual Approaches

Implicit Measure as DV
- Universal attitudes
- Known groups approach
- **Experimental manipulations/Interventions**
- Method-specific effects

Research Examples
- Mierke & Klauer, 2003, *JPSP*
- Rothermund & Wentura, 2004, *JEP:G*
- Bluemke & Friese, 2006, *JESP*

![Diagram showing Cognitive abilities](image)

Variance Decomposition
- method-specific variance
- construct-related variance
- error variance

Cognitive abilities
- Stimulus Salience
- Stimulus Selection
- Strategies (e.g., faking)

Measurement Process
Conceptual Approaches

Implicit Measure as “IV”
- Relation between Implicit and Explicit Cognition
- Behavior Prediction

Research Examples
- Brown & Ryan, 2003, *JPSP*
- Ranganath et al., 2005, *JESP*
- Hofmann et al., 2005, *PSPB*
- Gawronski et al., 2007, *JESP*
- Koole et al., 2001, *JPSP*

![Diagram of Implicit-Explicit Correlation]

<table>
<thead>
<tr>
<th>Explicit Self-Esteem</th>
</tr>
</thead>
<tbody>
<tr>
<td>No time pressure</td>
</tr>
<tr>
<td>Time pressure</td>
</tr>
<tr>
<td>Low implicit self-esteem</td>
</tr>
<tr>
<td>High implicit self-esteem</td>
</tr>
</tbody>
</table>

Koole et al., 2001

Conceptual Approaches

Implicit Measure as “IV”
- Relation between Implicit and Explicit Cognition
- Behavior Prediction

Research Examples
- Dunton & Fazio, 1997, *PSPB*
- Nier, 2005, *GPIR*
- Payne et al., 2005, *JPSP*
- ...

![Diagram of Implicit-Explicit Correlation]

<table>
<thead>
<tr>
<th>Explicit Attitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>High concern with acting prejudiced</td>
</tr>
<tr>
<td>Low concern with acting prejudiced</td>
</tr>
<tr>
<td>Low AMP score</td>
</tr>
<tr>
<td>High AMP score</td>
</tr>
</tbody>
</table>

Payne et al., 2005
Conceptual Approaches

More complex cases of
Implicit & Explicit Attitude Change

→ APE-Model

- **Implicit Measure as IV**
 - Relation between Implicit and Explicit Cognition
 - **Behavior Prediction**

Incremental Validity Approach

- **Research Examples**
 - Egloff & Schmukle, 2002, *JPSP*
 - Payne et al., 2008, *Cog. & Emo.*
 - Back et al., 2009, *JPSP*
 - Greenwald et al., 2009, *JPSP* (meta-analysis)
Conceptual Approaches

Implicit Measure as IV
- Relation between Implicit and Explicit Cognition
- Behavior Prediction

Research Examples
- Egloff & Schmukle, 2002, *JPSP*
- Payne et al., 2008, *Cog. & Emo.*
- Back et al., 2009, *JPSP*
- Greenwald et al., 2009, *JPSP* (meta-analysis)

Incremental Validity

![Graph showing incremental validity](image)

Conceptual Approaches

Implicit Measure as IV
- Relation between Implicit and Explicit Cognition
- Behavior Prediction

Research Examples
- Dovidio et al., 1997, *JPSP*
- Asendorpf et al., 2001, *JPSP*

Double-Dissociation Model

![Diagram of double-dissociation model](image)

Asendorpf et al., 2005
Conceptual Approaches

Implicit Measure as IV
- Relation between Implicit and Explicit Cognition
- Behavior Prediction

Moderated Predictive Validity

Research Examples
- Hofmann et al., 2007, JESP
- Conner et al., 2007, PSPB
- Friese et al., 2008, ERSP (review)

Conceptual Approaches

Implicit Measure as IV
- Relation between Implicit and Explicit Cognition
- Behavior Prediction

Moderated Predictive Validity

Research Examples
- Hofmann et al., 2007, JESP
- Conner et al., 2007, PSPB
- Friese et al., 2008, ERSP (review)
Conceptual Approaches

More complex case: **Implicit-Explicit Consistency as IV**

Research Examples

Attitudes:
- Brinol et al., 2006, *JPSP*

Self-esteem:
- Jordan et al., 2003, *JPSP*
- Zeigler-Hill, 2006, *JPSP*

Intelligence self-concept:
- Dislich et al., 2012, *EJP*

Hot and under-researched avenues

- **Correspondence between different implicit procedures** (e.g., Bosson et al., 2000, *JPSP*; Gawronski & Bodenhausen, 2005, *JPSP*)
- **Development and long-term change of implicit constructs** (e.g., Dunham, Baron, & Banaji, 2008, *TiCS*)
- **Neural and physiological correlates** (e.g., Cunningham et al., 2003, *JPSP*)
- **Process-dissociation approaches** (Conrey et al., 2005, *JPSP*)
- **Extensions to new applied areas** such as law, politics, clinical & health, etc. → Era of Application
III. The Implicit Measurement Zoo

- **Priming and related measures**
 - Sequential Conceptual Priming (LDT)
 - Sequential Evaluative Priming (EP)
 - Affect Misattribution Procedure (AMP)
- **IAT and variants**
 - Implicit Association Test (IAT)
 - Single-Category IAT (SC-IAT)
 - Brief Implicit Association Test (BIAT)
 - Recoding Free IAT (IAT-RF)
 - Single-Block IAT (SB-IAT)
 - Go/No-Go Association Task (GNAT)
- **Extrinsic Affective Simon Task (EAST)**
- **Approach-Avoidance Measures**
 - Approach-Avoidance Task (AAT)
 - Implicit Association Procedure (IAP)
 - Evaluative Movement Assessment (EMA)
 - Stimulus Response Compatibility Task (SRCT); “Manikin-Task”
- **Paper and Pencil Measures**
 - Name-Letter Task (NLT)
 - Linguistic Intergroup Bias (LIB)
 - Breadth-based Adjective Rating Task (BART)
 - Stereotypic Explanatory Bias (SEB)
 - Paper & Pencil IAT

The Implicit Measurement Zoo: Which procedure to pick?

- Depends a lot on what you want to measure & on your constraints
 - Does it make theoretical sense to include an implicit measure in your research?
 - Is focus on experimental manipulations/mean differences (“I as DV”) or on correlational/predictive research (“I as IV”)?
 - issue of reliability
 - Does the procedure allow you to appropriately represent the construct you are interested in?
 - e.g., absolute vs. relative comparison
 - Computer-based or paper & pencil?
 - Time constraints?
 - are briefer options available?
Selected Procedures: Pros and Cons

• Priming
 – Concept Priming and Evaluative Priming
 – Affect Misattribution Procedure (AMP)

• Traditional Implicit Association Test
 – Some problems with the traditional IAT and their suggested solutions
 • Single-Category IAT
 • Personalized IAT
 • Single-Block IAT

Sequential Concept Priming
(e.g., Banaji & Hardin, 1996; Wittenbrink et al., 1997)
Sequential Concept Priming

Supposed mechanism: spreading activation in associative semantic network

Stereotyping index

\[
\text{Stereotyping index} = \frac{(RT(\text{male} | \text{family}) - RT(\text{male} | \text{career}) + RT(\text{female} | \text{career}) - RT(\text{female} | \text{family}))}{2}
\]

(For further details on different scoring indices, see Wittenbrink, 2007)
Evaluative Priming
(e.g., Fazio et al., 1986; 1995)

Main difference between concept and evaluative priming:
Affective decision instead of lexical decision (→ response competition)

(For further details on priming measures, see Wentura & Degner, 2010; Wittenbrink, 2007)

Sequential Priming: Pros and Cons

Pros
• very unobtrusive
• optional subliminal prime presentation
• allows both absolute and relative comparisons

Cons
• time-intensive
• complicated (especially with regard to indices)
• relatively small effects
• very low reliability → not very suitable for correlational research (implicit as IV)

→ Good alternative to evaluative priming: AMP
Affect Misattribution Procedure (AMP) (Payne, Cheng, Govorun, Stewart, 2005, *JPS*P)

Affect Misattribution Procedure

[Diagram of experiment setup]
Affect Misattribution Procedure

Supposed Mechanism: misattribution of activated affect to judgment of ambivalent target

DV = percentage positive responses to target stimuli when preceded by prime of interest

AMP: Pros and Cons

Pros
- easy to implement
- allows both absolute and relative comparisons
- good reliability. Suitable for correlational research (“implicit as IV”)
- promising findings regarding incremental validity

Cons
- mechanism not well understood yet
- sometimes very large overlap with explicit measures (possibly more “explicit” than other implicit measures)
The Traditional IAT
(Greenwald et al., 1998)

<table>
<thead>
<tr>
<th>Block</th>
<th>N trials</th>
<th>Task</th>
<th>Left key assignment</th>
<th>Right key assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>Target discrimination</td>
<td>FEMALE</td>
<td>MALE</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>Attribute discrimination</td>
<td>Career</td>
<td>Family</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>Initial combined block (p)</td>
<td>FEMALE, Career</td>
<td>MALE, family</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>Initial combined block (t)</td>
<td>FEMALE, Career</td>
<td>MALE, family</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>Reversed target discrimination</td>
<td>MALE</td>
<td>FEMALE</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>Reversed combined block (p)</td>
<td>MALE, Career</td>
<td>FEMALE, family</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>Reversed combined block (t)</td>
<td>MALE, Career</td>
<td>FEMALE, family</td>
</tr>
</tbody>
</table>

Note. p = originally denoted “practice” block; t = “test” block

The traditional IAT: Pros and Cons

Pros
- high reliability (both internal consistency and retest)
- ease of administration
- very well-researched
- clear indication of incremental validity

Cons
- relative comparison measure
- various sources of unwanted method-specific variance identified
Some IAT Problems and Suggested Remedies

<table>
<thead>
<tr>
<th>Problem</th>
<th>D-Score Algorithm</th>
<th>Single Category IAT</th>
<th>Personalized IAT</th>
<th>Single Block IAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Skill Confounds</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Order Effects</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Relative Comparison</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra-personal Associations</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Recoding Strategies</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

D-Score Algorithm

(Greenwald et al., 2003, JPSP)

Substantially reduces:
- Cognitive ability confounds (e.g., task-switching; Klauer & Mierke, 2003)
- Compatibility order effects (compatible block first produces larger IAT scores than vice versa)

<table>
<thead>
<tr>
<th>TABLE 3.3. Summary of IAT Scoring Procedures Recommended by Greenwald et al. (2003)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Delete trials greater than 10,000 msec</td>
</tr>
<tr>
<td>2. Delete subjects for whom more than 10% of trials have latency less than 300 msec</td>
</tr>
<tr>
<td>3. Compute the “inclusive” standard deviation for all trials in Stages 3 and 6 and like-wise for all trials in Stages 4 and 7</td>
</tr>
<tr>
<td>4. Compute the mean latency for responses for each of Stages 3, 4, 6, and 7</td>
</tr>
<tr>
<td>5. Compute the two mean differences (Mean_{Stage 6} − Mean_{Stage 3} and (Mean_{Stage 7} − Mean_{Stage 4})</td>
</tr>
<tr>
<td>6. Divide each difference score by its associated “inclusive” standard deviation</td>
</tr>
<tr>
<td>7. $D = \text{the equal-weight average of the two resulting ratios}$</td>
</tr>
</tbody>
</table>

SPSS and SAS scripts available at: http://faculty.washington.edu/agg/iat_materials.htm
Single-Category IAT
(Karpinski & Steinman, 2006, *JPSP*)

Addressed Problem: relative nature of IAT
- Hard to know what specific association drives an IAT effect
- Sometimes a suitable comparison part is lacking

Solution: only one Target Category, balancing of number of trials

<table>
<thead>
<tr>
<th>SPIDER</th>
<th>SPIDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative</td>
<td>positive</td>
</tr>
</tbody>
</table>

“compatible” block

<table>
<thead>
<tr>
<th>SPIDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative</td>
</tr>
</tbody>
</table>

“incompatible” block

Personalized IAT
(Olson & Fazio, 2004, *JPSP*)

Addressed Problem: is IAT influenced by extra-personal associations?

Solution (Olson & Fazio, 2004):
- exchange “positive” and “negative” attribute category labels with more personalized ones (“I like”; “I dislike”)

<table>
<thead>
<tr>
<th>Candy-bars</th>
<th>Apples</th>
</tr>
</thead>
<tbody>
<tr>
<td>“I like”</td>
<td>“I dislike”</td>
</tr>
</tbody>
</table>

“compatible” block

<table>
<thead>
<tr>
<th>Apples</th>
<th>Candy-bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>“I like”</td>
<td>“I dislike”</td>
</tr>
</tbody>
</table>

“incompatible” block

For further discussions, see Nosek & Hansen, 2008, *EJPA*; Gawronski et al., 2008, *SPPC*
Single-Block IAT
(Teige-Mocigemba et al., 2008, EJPA)

Eliminates block structure of the IAT:
• thus, no compatibility order effects
• reduces cognitive skill confounds
• disables participant recoding strategies

Outlook:
Process Dissociation Approaches

• No implicit measure is process-pure
• Process Dissociation (PD) approaches separate multiple processes that determine responses (e.g., error rates in the IAT)
 automatic and controlled process
 – QUAD model (Conrey et al., 2005; Sherman et al., 2008) - 4 parameters:
 Automatic Activation, Stimulus Discrimination, Overriding Bias, Guessing

• For more information, see

Tutorial etc.: http://psychology.ucdavis.edu/labs/sherman/site/research.html
IV. Resources

• Hardware
• Programming Software
 – Inquisit
 – DirectRT
 – Eprime
• Project Implicit®
• Recommended Books and Hands-On Chapters

Hardware and Software

• Hardware:
 any modern computer will do

• Software
 – Inquisit (Millisecond): http://www.millisecond.com
 – DirectRT (Empirisoft): http://www.empirisoft.com
 – Eprime (Psychology Software Tools, Inc.):
 http://www.pstnet.com/eprime
 – FreeIAT:
 http://www4.ncsu.edu/~awmeade/FreeIAT/FreeIAT.htm
Project Implicit®
(www.https://implicit.harvard.edu)

- IAT demonstrations
- Background information

Resources: Books on Implicit Measures

Handbook of implicit social cognition: Measurement, theory, and applications
Bertram Gawronski, & Keith Payne (Eds.)

Implicit Measures of Attitudes
Bernd Wittenbrink & Norbert Schwarz (Eds.)

Attitudes: Insights from the new implicit measures
Richard Petty, Russell Fazio, & Pablo Briñol (Eds.)
Practical Hands-On Chapters

IAT (and its variants)

Priming and AMP

Paper and Pencil