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PREFACE 

The first edition of Essentials of Behavioral Research was published by McGraw-Hill 
in 1984 and the second edition in 1991. When we were asked about a third edition, 
our answer was generally, "We're thinking about it." We were working on other 
related projects, and our conceptual thinking about research methods and data analy­
sis had been continually evolving. Some of that work we had published in journal 
articles and invited chapters, and for several years we had been writing another book: 
Contrasts and Effect Sizes in Behavioral Research: A Correlational Approach (Rosenthal, 
Rosnow, & Rubin, 2000). As we had also written an undergraduate text, Beginning 
Behavioral Research: A Conceptual Primer, we thought that the next edition of Essentials 
should be clearly addressed to graduate students, researchers, and occasional advanced 
undergraduates for whom Beginning Behavioral Research was a journey begun rather 
than a journey completed. We have had occasion for over 30 years to teach methods and 
data analysis not only to students in clinical, cognitive, developmental, experimental, 
organizational, personality, and social psychology, but also to some in biology, education, 
communication research, school psychology, business, statistics, and marketing. Thus, 
we wanted the third edition of Essentials to be useful to a wide variety of graduate 
students and researchers. 

As a consequence, there is a great deal that is new to this edition of Essentials, 
including new and deeper discussions of methodological and philosophical issues, 
and of data analytic issues that were of only passing interest to behavioral research­
ers in 1991. Nonetheless, we continue to review elementary topics and basic concepts 
as a brushup for students who have been away from these areas or have had limited 
exposure to them. These reviews are conceptually integrated with recent developments. 
As in the previous editions, our approach to data analysis continues to be intuitive, 
concrete, and arithmetical rather than rigorously mathematical. When we have a 
mathematically sophisticated student, we encourage her or him to take additional 
course work in a department of mathematical statistics. We still advise such a student 
to read this book, as our approach will prove complementary, not redundant or con­
tradictory. As a pedagogical aid, the statistical examples that we use are in most cases 

xix 



xx PREFACE 

hypothetical, constructed specifically to illustrate the logical bases of computational 
procedures. The numbers were chosen to be clear and instructive, and therefore they 
are neater than those found in most actual data sets. Readers who are familiar with 
the primary literature of the behavioral sciences know that most real-world examples 
involve more observations than are found in our hypothetical cases, and all readers 
should keep this fact in mind. 

The material on data analysis in this edition of Essentials reflects much of the 
spirit, and much of the substance, of the report of the Task Force on Statistical Infer­
ence of the Board of Scientific Affairs of the American Psychological Association 
(Wilkinson & Task Force on Statistical Inference, 1999). There is, for example, a 
new emphasis on the reporting and interpretation of confidence intervals. Although 
previous editions of Essentials emphasized effect size estimates, we have added 
greater differentiation among effect sizes, for example, among the different types of 
correlational effect sizes such as ralerting, rcontrast. reffect size, and 1"BESD. For still another 
example, we continue to illustrate computations by simple calculators in order to 
facilitate a deeper understanding of the statistical procedures that in readers' research 
will typically be computer-based. Such deeper understanding permits the researcher 
to check very roughly the accuracy of computer output by intelligent "guesstimates" 
and, if discrepancies are detected, to check the results against those provided by 
another program. As a final example, our newly added material on the complex issue 
of dra~ing causal inference includes not only its conceptual basis, but also a simple 
illustration of the use of Donald Rubin's propensity scores to draw causal inference 
when random assignment is not possible. These are only some examples of how this 
new edition of Essentials and its authors have benefited from the work of the APA 
Task Force. That benefit was increased by the opportunity of the first author to 
serve as co-chair of the Task Force (along with the late Robert Abelson and the late 
Jacob Cohen). 

In addition to the examples listed above, there are many further changes and 
additions in this new edition of Essentials. Examples include new material on test validity, 
the reliability of items and judgments, the construction of composite variables, strategies 
for dealing with missing data, the use of bootstrapping and jackknifing, the design and 
analysis of hierarchically nested designs, and a recently developed effect size estimate 
for multiple-choice-type data. There is also a new discussion of epistemological issues 
in human subjects research, focusing on three current perspectives and their limitations. 
The discussion of ethical guidelines emphasizes the delicate balancing act involved in 
dealing with moral and methodological imperatives. We also discuss ideas and methods 
that, although frequently cited or used by behavioral researchers, are limited in ways 
that appear to be unfamiliar to many users. We hope the tone and writing style of these 
critical discussions will be perceived as respectful, clear, and explanatory, and that readers 
will find this edition of Essentials a more integrated synthesis of research methods and 
data analysis than the previous two editions. 

The American Psychological Association's (2001) publication manual is generally 
acknowledged to be the arbiter of style for many journals in our field, so we assume 
that researchers will usually consult the most recent edition of the APA manual. For 
students who are not writing for publication but are writing a research proposal or 
report for a course assignment or creating a poster or a brief summary of research 
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findings to serve as a handout, there are guidelines and tips in Rosnow and Rosnow's 
Writing Papers in Psychology: A Student Guide to Research Reports, Literature 
Reviews, Proposals, Posters, and Handouts. 

Certain tables (noted in the text) have by permission been reproduced in part 
or in their entirety, for which we thank the authors, representatives, and publishers 
cited as sources in footnotes. 

The authors thank Margaret Ritchie for her outstanding copy editing and we 
thank Mike Sugarman, our McGraw-Hill Sponsoring Editor, Katherine Russillo, our 
Editorial Coordinator, and Jean Starr, our Project Manager, for making it easier to 
tackle a project of this size. 

We also thank William G. Cochran, Jacob Cohen, Paul W. Holland, Frederick 
Mosteller, and Donald B. Rubin, who were influential in developing our philosophy 
of research in general and data analysis in particular. 

We are grateful to the following reviewers whose insights and suggestions were 
so helpful in preparing this edition of Essentials: Nicholas Difonzo, Rochester Institute 
of Technology; Morton Heller, Eastern Illinois University; Scott King, Loyola University 
at Chicago; Donna Lavoie, St. Louis University; Pascale Michelon, Washington University 
at St. Louis; Robert Pavur, University of North Texas; Daniel Read, University of 
Durham, UK; and Linda Tickle-Degnen, Tufts University. 

Thanks to MaryLu Rosenthal for indexing and many other special contributions 
that made the completion of the project a reality. And finally, we thank MaryLu 
Rosenthal and Mimi Rosnow for constructive feedback and counseling in ways too 
numerous to mention. 

This is our 16th book together, and we have had terrific fun throughout the 
course of this 40-year-Iong collaboration! 

Robert Rosenthal 

Ralph L Rosnow 
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SCIENCE AND THE SEARCH 
FOR KNOWLEDGE • 

CHAPTER 

1 
THE 

SPIRIT OF 
BEHAVIORAL 

RESEARCH 

An amiable centipede, out for a stroll, was interrupted by a curious grasshopper. 
"Don't take offense please, but may I ask you something personal?" the grasshopper 
inquired. "Sure, go ahead," the centipede replied. "I've been watching you all morn­
ing, but for the life of me I can't figure out how you are able to walk without getting 
constantly tangled up in your hundred legs," said the grasshopper. The centipede 
paused, because he had never before bothered to think about how he did what he did. 
To his dismay, the more he thought about it, the less able he was to walk without 
stumbling. Biologist Peter B. Medawar (1969), a Nobel Prize laureate, noted how 
many experienced scientists seem to hesitate when asked to describe their thought 
processes as they use the scientific method. What you will see, Medawar wrote, is 
"an expression that is at once solemn and shifty-eyed: solemn, because [the scientist] 
feels he ought to declare an opinion; shifty-eyed, because he is wondering how to 
conceal the fact that he has no opinion to declare" (p. 11). As Medawar further 
explained, working scientists may be too preoccupied with doing research to contem­
plate how they do it so well. (Would thinking about it too much interfere with the 
doing of it?) 

Another idea altogether is implicit in philosopher Paul Feyerabend's radical 
conception of science. Variously characterized by others as the "anything goes argu­
ment" and "epistemological anarchy," Feyerabend (1988) believed that the very term 
scientific method was misleading, as it implied that every scientific finding could be 
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4 CONCEPTUAL AND ETHICAL FOUNDATIONS 

accounted for by the same formulaic strategy. Quite to the contrary, he contended, 
"successful research . . . relies now on one trick, now on another; the moves that 
advance it and the standards that define what counts as an advance are not always 
known to the movers" (p. I). Consistent with that position, sociologists who have 
observed and interviewed scientists at work have reported that the scientists' conduct 
seldom conformed to traditional norms and canons that have been defined as "scien­
tific" (Knorr-Cetina, 1981; Mitroff, 1974). Larry Laudan (1982), another prominent 
philosopher of science, put it this way: 

From time to time, scientists have ignored the evidence, tolerated inconsistencies, and 
pursued counter-inductive strategies. More to the point, many of the most noteworthy 
instances of scientific progress seem to have involved scientists who rode roughshod 
over conventional methodological sensibilities. (p. 263) 

Certainly no one would disagree that researchers in different disciplines do 
indeed rely on a wide variety of methods, or as one writer said, it would take a 
"mixed metaphor" to embrace the diversity of tools and methods that are commonly 
used (Koch, 1959). Hence, it is taken as a given that the scientific method is not 
merely a single, fixed, empirical strategy. Instead it is sometimes described as an 
"outlook" that is distinctly characterized by the use of logic and empirically-based 
content. We call that process empirical reasoning, though it should not be confused 
with logical positivism (as explained in this and the following chapter). Karl Popper, 
who was in the forefront of modern antipositivist philosophers, referred disparag­
ingly to logical positivism as the "bucket theory of the mind." In particular, Popper 
(1959, 1972) disputed the positivists' claim that "truth" is revealed and conclusively 
warranted merely by the amassing of factual observations-a claim known as the 
verifiability principle (noted again in the next chapter). The human mind is not 
simply a "bucket," Popper argued, in which factual observations accumulate like 
grapes that, when pressed, produce the pure wine of true knowledge or indisputably 
prove that this knowledge is correct. 

We will have more to say in the next chapter about positivism, Popper's beliefs 
regarding the nature of scientific progress, and some other relevant philosophical 
ideas. But to anticipate a little, we can note here that Popper's theory was that scien­
tific knowledge evolves by a cyclical process involving the testing and retesting of 
plausible suppositions that are stated as falsifiable hypotheses. Describing his own 
view as the "searchlight theory," he explained that the resolution of whether a par­
ticular theory or hypothesis is justified is an intensely active process in which the 
outcome is based on the empirical results of critical experiments, or what Isaac Newton 
called an Experimentum Crucis. Popper also believed that such experiments must 
always be guided by risky conjectures, which are like searchlights piercing the 
darkness and illuminating the course in which critical observations must proceed. If 
there is an empirical disconfirmation of a specific logical consequence of a theory or 
hypothesis, it should be spotted. Popper (1959) cautioned, however, that "the game 
of science is, in principle, without end" as "once a hypothesis has been proposed and 
tested, and has proved its mettle, it may not be allowed to drop out without 'good 
reason'" (pp. 53-54). 
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The requirement that scientific explanations, inferences, and generalizations be 
subject to empirical jeopardy distinguishes true science from pseudoscience. Nonetheless, 
some philosophers argue that, inasmuch as human understanding is relative and 
incomplete, it is impossible to fathom the depths of our experiential or material 
world fully or with absolute confidence no matter how big the bucket or how 
bright the searchlight. Historians of science further point out that science seldom 
advances as a result of merely adjudicating and replacing risky conjectures in the 
cyclical fashion that Popper envisioned. Instead, scientific advance seems to involve 
a kind of intellectual tinkering process, in which extra-empirical factors also 
playa vital role. Moreover, there are no consensus definitions of truth or knowledge 
in the philosophy of science. Philosopher Bertrand Russell (1992) maintained that 
knowledge is "a term incapable of precision," inasmuch as "all knowledge is in 
some degree doubtful, and we cannot say what degree of doubtfulness makes it 
cease to be knowledge, any more than we can say how much loss of hair makes a 
man bald" (p. 516). 

What's more, the popular impression of a smooth, upward trajectory in the 
triumphs of science and the advance of fundamental knowledge has for decades been 
mired in controversy (e.g., Laudan, 1977). Thomas S. Kuhn (1962, 1977), a physicist 
turned scientific historian, said that science moves in fits and starts and that advances 
occur erratically. The history of science is punctuated by "paradigm shifts" coupled 
with revolutionary insights that have essentially altered the way the world is per­
ceived, he argued. For example, in the 15th century, after the pope asked Nicolaus 
Copernicus to help with calendar reform, he advised the pope that the sun, not the 
earth, was the center of the universe. That idea, being at odds with ecclesiastical 
doctrine, was rejected by the church. By the 16tl! and 17th centuries, as a result of 
Galileo's and Newton"s revolutionary empirical and theoretical contributions, there 
was finally a successful intellectual uprising against the strictures of ecclesiastical 
authority outside the church, producing a paradigm shift in science and other areas. 
In contrast to Kuhn's notion of how science advances, Popper (1962, 1972) preferred 
an evolutionary metaphor, equating progress in science with Darwin's inspiration of 
a "survival" mechanism, on the assumption that there is a kind of "natural selection" 
of risky conjectures. We return to this idea shortly, but one point on which all phi­
losophers of science agree is that knowledge and truth (however one chooses to define 
these terms) are relative and provisional. 

In the same way that scientists in other fields use empirical reasoning to try to 
separate truth from fantasy, behavioral and social researchers do so as well. Behavioral 
science originally came out of philosophy, but the philosophical idealization of science 
that was current at the time, and its application to behavioral research, has been 
repeatedly challenged over the years. During the 1970s, for example, revolutionary 
empirical and theoretical insights into the "social psychology of the experiment" were 
used to question traditional assumptions about the objectivity and moral neutrality 
of research with human participants; the result was what came to be called crises 
of confidence in some areas of psychology (Rosnow, 1981). As a consequence, psy­
chologists who study human behavior have a deeper understanding of the subtleties 
and complexities of studying a conscious human being in a controlled research setting 
(Rosnow & Rosenthal, 1997). Beginning in chapter 3, and again in later chapters, we 
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will discuss these insights and how they are reflected in the values and methods of 
behavioral and social research. 

WHAT DO BEHAVIORAL RESEARCHERS 
REALLY KNOW? 

Generally speaking, philosophers of science distinguish between two kinds of questions 
that investigators attempt to address: why-questions and how-questions (Bunzl, 1993). 
The first are questions about "why" things work the way they do. For example, why 
do people behave one way rather than another, or why do people perceive or believe 
one thing and not something else, or why do children say or do the things they do? 
Why-questions are said to call for explanations that take the form of causal inferences 
or purposive inferences about the reasons (i.e., motives or intentions) for the particular 
behavior. How-questions can be thought of as "what-is-happening" questions (i.e., about 
how things work), or what we call a descriptive research orientation. Three points of 
view have recently dominated discussion in psychology about what behavioral and 
social researchers purport to know of the whys and hows of behavior and human 
knowledge. There is some overlap in these positions, but they are distinctly different 
in both their focus and some of the central assumptions they make. 

One vi~wpoint, called social constructionism, might be described as panpsychis­
tic, in that it resembles in some ways Oriental spiritualism by arguing that the social 
world is a construction of the human mind, which is itself a linguistic construction. 
The panpsychistic idea is more extreme, as it views everything we call "reality" as the 
sum total of the human mind, whereas the social constructionists view the natural world 
that is the subject of scientific scrutiny and replication in physics and biology as an 
exception that exists independent of human experience. Hence, social constructionists 
might be described as metaphysical realists in regard to natural and biological science, 
but as antirealists in regard to social and behavioral "truths" generated in our relations 
with each other. They dispute the value of experimentation in social science, arguing 
instead that the only useful way of understanding each person's social world is from 
the stories and narratives that people tell one another, or from discourse generally. 

The second viewpoint, variously referred to as contextualism and perspectivism, 
typically dismisses metaphysical realism as a pointless debate. Contextualists and 
perspectivists accept the idea of limits on knowledge representations, perceiving them 
as grounded in a particular context or perspective. Empirical research is essential, they 
insist, but not just for the purpose of deciding whether a theory is true or false. As 
all theories are cryptic in some ways, it follows that different theoretical perspectives 
are a necessity. In physics, for example, Werner Heisenberg (1974) spoke of how 
major theories in that field could best be understood as "closed off' in ways that are 
not exactly specifiable but nevertheless form a constituency of dependable explana­
tions in their own conceptual domains. A similar idea has been used to describe the 
"closed theories" of psychology, which contain no perfectly certain statements because 
their conceptual limits can never be exactly known (Rosnow, 1981). 

The third viewpoint, known as evolutionary epistemology (also called organic 
evolution by the social psychologist Donald Campbell) takes its inspiration from 
Charles Darwin's theory of evolution through natural selection and adaptation. There 
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are a number of variants, but in general the idea is an analogy between biological 
progression and adaptation and the advancement of knowledge. It is, however, a loose 
analogy at best, because hypotheses and theories can hardly be viewed as random 
events. Like contextualists and perspectivists, evolutionary epistemologists pay lip 
service to a pluralistic viewpoint in regard to empirical methods, but evolutionists 
have a definite affinity for the notion that, fundamentally, human nature is biologically 
determined and selection pressures have shaped behavior and the brain. The enthusi­
asm with which this position has been received suggested to one leading researcher 
"that 50 years from now every psychology department will have Darwin's bearded 
portrait on the wall" (de Waal, 2002, p. 190). 

Together, these three viewpoints give us not only a glimpse into what some 
psychologists view as the metatheoretical underpinnings of knowledge representations 
in behavioral and social science, but also a glimpse into the controversial and abstract 
world of epistemology and some of its applications. We now provide a further flavor 
of each of these three approaches. 

SOCIAL CONSTRUCTIONISM 

The most controversial of these three views in psychology is that now described as 
social constructionism by its proponents (Gergen, 1985), although its roots are in 
classical subjective idealism and another modem philosophical position called 
constructivism. As noted above, one major difference between social constructionism 
and the other two approaches discussed here is that constructionists in psychology 
generally dismiss certain traditional scientific methods (such as the experiment) and 
the hypothetico-deductive model of science as irrelevant to studying the reasons for 
purposive behavior. Soci1}l constructionism's method of choice is narrative analysis 
based on an "interpretive" model. Recently, others have argued that the deductivist 
model does perfectly well in science (Bunzl, 1993, p. 99), and later in this chapter we 
describe a very slight modification of that traditional model for scientific explanations 
that take the form of what we call probabilistic assertions. 

Among those psychologists in the forefront of the social constructionist move­
ment has been Kenneth Gergen, a social psychologist, who in a series of provocative 
essays initially laid siege to the empirical basis of reliable knowledge in experimen­
tal social psychology (Gergen, 1977, 1978, 1982). Although encouraging a traditional 
positivistic view of natural science, Gergen (1973b) rejected a similar view of behav­
ioral and social research, arguing that science is identified by precise laws referring 
to observable events that can be exactly duplicated, whereas human behavior is 
subject to free will, and purposive behavior can change abruptly and without notice. 
His view was that what social psychologists believe to be empirically based gener­
alizations are snapshots of ephemeral events that pass into history, or vaporize like 
a puff of smoke, the moment a picture is taken. Rather than waste our time conduct­
ing experiments that can provide only superficial snapshots of passing events and 
averaged behavior, it would be more productive and illuminating if psychologists 
explored the drama of individual lives. To do so, we can simply ask people to tell 
liS their own personal experiences and feelings in narrative terms, using ordinary 
language (Gergen, 1995; Graumann & Gergen, 1996; Sarbin, 1985). 



8 CONCEPTUAL AND ETHICAL FOUNDATIONS 

Although subscribing to traditional materialistic assumptions of realism when 
alluding to what they perceive is the nature of "true" science, social constructionists 
nevertheless challenge the assumption that there is a "real" social world out there that 
some psychological theories reflect or match more correctly than others. "Knowledge" 
and "truth" in the field of social psychology and related areas (such as developmental 
psychology) are socially constructed realities, developed out of the active contributions 
of communities of shared intelligibility, social constructionists assert. John Shotter (1984, 
1986), another influential social theorist in this movement, argued that there is no social 
reality apart from our experience of it, that the very idea of objective foundations of 
psychological truths is a "conceit" rather than an epistemological necessity. Many 
critics of that position dismiss it as nihilistic. It would imply, they argue, that any 
interpretation of social behavior is as good as any other; therefore, there is no room 
for sweeping statements or "ultimate truths" in social psychology. The philosophical 
constructivists' finessing of a similar criticism was to redefine truth in a pragmatic way. 
Truth, they countered, is anything that stands up to experience, enables us to make 
accurate predictions (however vague), or brings about or prevents certain outcomes 
(Watzlawick, 1984). 

Gergen's and Shotter's arguments moved social psychologists and others to con­
template the epistemological limits of their methods and generalizations and led to a 
flood of criticisms. For one, Gergen's idea of what constituted "real science" was said 
to be nfrrrow and exclusionary. It would, for instance, rule out geology as a science, 
because not every geological event can be re-created at will. Gergen's argument that 
unrepeatability implies unlawfulness has been called an oversimplification of how sci­
entific reasoning works. Suppose we throw a large number of coins in the air. We would 
never expect to reproduce the identical pattern of heads and tails the next time we threw 
the coins. Nevertheless, we can state a valid, scientific "law" (e.g., in the form of a 
probability table) for the relationship or probability distribution (see Rosnow, 1981). 

Another charged discussion centered on Gergen's contention that social psychology 
is not a science because social behavior (the primary unit of analysis) is active, volatile, 
and, frequently, unpredictable. It is not like a machine with a button we punch, expecting 
to observe the same response every time, because humans are sentient, active organisms 
who can reflect on and then alter their behavior. Critics responded that volatility and 
change not only are characteristic of social behavior but are also qualities of virtually 
everything under the sun. Over 2,500 years ago, Heraclitis declared that everything is in 
a state of perpetual flux, a doctrine that is still influential today. In the science of epide­
miology, for example, powerful drugs used to combat virulent diseases often lead to 
hardier strains of the diseases through spontaneous mutations that become immune to 
the drugs. Clearly no one would claim that viruses are sentient, reflective organisms, but 
the point here is that change and volatility are not limited just to human activity. Except 
for axiomatic assumptions that are presumed to be self-evident (this sentence being an 
example), the fact is that all things are subject to change. 

Another source of spirited debate revolved around Gergen's idea that narrative 
accounts and interpretive analysis be substituted for experimental methods and the 
deductivist model. As an example of the potential of narrative accounts, William and 
Claire McGuire (1981, 1982) used that procedure to explore the salience of charac­
teristics and attributes in children's self-concepts, simply by asking schoolchildren of 
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different ages to "tell us about yourself." Asking participants what they think is a 
time-honored method in the field of social psychology (later on in this book, we will 
describe techniques designed to help researchers use it most efficiently). Narrative 
self-report methods should be thought of not as replacements for experimental meth­
ods, but as supplements, the critics argued. Like any method of science, the narrative 
method is also limited in certain ways. In a classic gem, Polanyi (1966) discussed 
what he called "tacit knowledge" (unvoiceable wisdom), that is, the idea that we 
"know" more than we can say. Thus, relying only on narrative self-reports would 
exclude other valuable information. The doctor asks you how you feel or where it 
hurts but doesn't rely on your answer alone to figure out what ails you. 

Ironically, despite Gergen's skepticism about social psychology as a science, social 
psychologists have produced scientific evidence of how people construct their own 
social reality (e.g., Johnson, 1945; Mausner & Gezon, 1967; Rosnow & Fine, 1976). In 
a classic study, Muzafer Sherif (1936) investigated the effects of groups on individual 
perceptions. The participants observed a point of light in a pitch-dark room. Although 
the light was stationary, it appeared to move under these conditions, a phenomenon 
Sherif called the "autokinetic effect." He had the subjects report the distance the light 
moved while they were alone and also when they were in groups. After making initial 
individual judgments, and then being placed in a group, a subject's judgments of distance 
were influenced by the responses of the others in the group. Judgments of group members 
tended to become more and more alike with each successive trial. Those who made 
their first judgments in groups reported the same distance of light movement as that 
reported by the group. Thus, the group had been able to modify the judgments of its 
individual members. This study shows not only that social construction can be 
demonstrated empirically, but that it can be manipulated experimentally . 

• 

CONTEXTUALISMIPERSPECTIVISM 

The second position, called contextualism by many psychologists, and perspectivism 
by McGuire (2004), started as a reaction against a mechanistic model of behavior and 
cognition but now embraces the idea that more than one model or conception is needed 
to comprehend human nature. The term contextualism was taken from Stephen C. 
Pepper's book World Hypotheses (1942), in which he postulated four basic root 
metaphors of knowledge representations, including the mechanistic view and the 
contextualist view (the others being formism and organicism). For contextualism, the 
root metaphor was that it bears the mark of an "event alive in its present ... in its 
actuality" (p. 232). That is, knowledge does not exist in a vacuum but is situated in 
a sociohistorical and cultural context of meanings and relationships. Subsequently, in 
another book, entitled Concept and Quality, Pepper (1966) proposed a fifth world 
hypothesis, purposivism, that was' inspired in part by psychologist E. C. Tolman's 
(1932) classic work on purposive behavior. 

Although a number of research psychologists have described themselves as 
contextualists (or perspectivists), there is as yet no agreement on what that term 
actually means in psychology. Some make claims that are counter to others' claims, 
but all seem to agree that knowledge representations are necessarily grounded in a 
perspective and a dynamic context (Bhaskar, 1983; Georgoudi & Rosnow, 1985a, 
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1985b; Hahn, 1942; Hoffman & Nead, 1983; Jaeger & Rosnow, 1988; Jenkins, 1974; 
Lerner, Hultsch, & Dixon, 1983; Lewis, 1997; McGuire, 1983; Mishler, 1979; Payne, 
1996; Rosnow & Georgoudi, 1986; Sarbin, 1977). McGuire (1986) gave as a simple 
example the dictum that "2 + 2 = 4," explaining that even this seemingly uncom­
plicated proposition depends on one's perspective. If we were mixing two cups of salt 
and two cups of water, the result would be less than four cups of salty water. It is 
not that 2 + 2 = 4 is false (or true), but that the answer always depends upon the 
particular vantage point and context. 

The purpose of research, McGuire (2004) argued, is to discover "which are 
the crucial perspectives," not whether one hypothesis or theory is true or false, as 
"all hypotheses and theories are true, as all are false, depending on the perspective 
from which they are viewed" (p. 173). A case in point might be research on the 
process by which the human mind consolidates related ideas into categories. For 
some time there was considerable controversy surrounding the validity of two 
alternative conceptions, called the adding and averaging models. According to the 
adding model, related cognitions combine in a manner corresponding to a mathe­
matical summing formula. The averaging model, on the other hand, asserted that 
related cognitions combine in a manner that is similar to an averaging formula. As 
an example, suppose we know that two persons, A and B, each make $200 a day, 
and that a third person, C, makes $100 a day. Which should we perceive as higher 
in econamic status, a social club consisting of A and B, or a club consisting of all 
three? People generally adopt the averaging solution in this case, perceiving that 
A and B make up a wealthier group than A, B, and C (as "social club members" 
don't usually pool their incomes). Now imagine that A, B, and C are members of 
the same communal family. In this case, people generally adopt an adding solution, 
perceiving that A, B, and C together are the wealthier group (i.e., "communal 
families" do usually pool money). As the context changes, the cognitive clustering 
process conforms to whichever perspective the mind invokes (Rosnow, 1972; 
Rosnow & Arms, 1968; Rosnow, Wainer, & Arms, 1970). 

As a further illustration of the context of knowledge, consider how the grand 
theories of the social world seem to depend on the idiosyncratic perspective of the 
observer. As in the film classic by Akira Kurosawa, Rashomon, in which four narrators 
describe the rape of a woman and the murder of a man from quite different perspectives, 
social philosophers and sociologists also regard the dynamic nature of societal change in 
quite different ways. For example, some writers insist that only an evolutionary model 
can embrace what they see as a constant struggle, in which successful adaptations survive 
in a series of stages, from simplicity to increasing complexity and interrelatedness (a view 
represented in the work of Auguste Comte, Herbert Spencer, Wilhelm Wundt, V. Gordon 
Childe, C. Lloyd Morgan, and Emile Durkheim). Others contend that a cyclical model 
is appropriate; they perceive a revolving process of genesis and decay, with societies 
waxing and waning as a result of conflicts and crises (Vico, 1970, 1988, 1990). Still 
others favor a dialectical model of societal change; they perceive a continuous process 
of the canceling out or annulling of opposing forces in the direction of a higher synthe­
sis (reflected in the writings of G. W. F. Hegel, Karl Marx, and the Frankfurt School of 
philosophy). Which is correct? A contextualist would say they are all presumably viable 
within particular conceptual and ideological contexts. 
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Given the assumption of a dynamic context, it follows that change must be 
intrinsic and, therefore, that no single method or theory can ever be expected to 
encompass the full complexity of human nature. We call this doctrine methodological 
pluralism and theoretical ecumenism, but it is simply a shorthand way of saying 
that researchers must, by necessity, avail themselves of different methodological oper­
ations (different units of analysis and diverse scientific strategies, for example) as well 
as theoretical explanations representing different levels of analysis. We return to this 
point in later chapters, but it should be noted that pluralism has its roots not in 
philosophical contextualism, but in the insights of Garner, Hake, and Erikson (1956) 
and D. T. Campbell and Fiske (1959), who asserted that all methods are limited in 
some ways. Therefore, researchers need to employ different operations (called "mul­
tiple operationalism" by Campbell and Fiske) in order to converge (or "triangulate") 
on the phenomena of interest to them. Theoretical ecumenism echoes Campbell and 
Stanley's (1963) insight that there is usually more than just one right way of viewing 
and comprehending a given event: "When one finds, for example, that competent 
observers advocate strongly divergent points of view, it seems likely on a priori 
grounds that both have observed something valid about the natural situation, and that 
both represent a part of the truth" (p. 173). Of course, even complete agreement is 
no certain proof of "truth" because, as Campbell and Stanley added, the selective, 
cutting edge of truth is often very imprecise. 

A criticism leveled against contextualism is that, like constructionism, its idea of 
change as "intrinsic" flirts with nihilism. Contextualism's response is that, although 
behavior certainly is subject to sociocultural and historical forces that are in a state of 
perpetual flux, this change is "constrained by nature" in varying ways and varying 
degrees-or fettered by human nature, in the case 9f behavior (Hayes, Hayes, Reese, & 
Sarbin, 1993; Kazdin: 1998; Rosnow & Georgoudi, 1986). Thus, change is not simply 
dismissed as "error," or as a "shimmering paradox" concealing an immutable reality, or 
as a "temporary instability" within the fixed order of things, or as an "aberration" from 
a normal course of events in a basically stable, static, structured world. To underscore 
the assumption that behavior is in flux, some contextualists suggest using gerunds 
(the English -ing forms of verbs, e.g., loving, thinking, seeing, believing) to imply that 
it is active and processlike (Hineline, 1980). 

The old philosophical puzzle concerning an external reality that exists indepen­
dent of our perceptions of it-a bugaboo for the social constructionists-is dismissed 
by contextualizing behavioral and social researchers (and others) as not worth agoniz­
ing over. As Richard Rorty (1979) stated in another context, it is pointless to argue 
over whether knowledge representations put us in touch with reality or the "truth 
about things," because we would have to see reality "as it really is" to know when 
some "real truth" has been revealed. In other words, we would have to already know 
what we are trying to find out, but there is no way "to get out there" and see reality 
directly without the biases of our own idiosyncratic and social baggage (Kaplan, 
1%4). As another writer put it, the reason most scientists do not worry about the 
philosophical conundrum of an a priori reality is that "we're all wearing rose-colored 
I-lillsses, meaning that our previous experience, our culture, language, preconceived 
world views, and so on, all these things get in the way of our seeing the world as it 
is in itself' (Regis, 1987, p. 212). Thus, instead of exhausting ourselves by arguing 
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for or against "real truth," contextualists set the debate aside as pointless and settle 
for a less exalted idea of "truth" as dependable explanation. 

EVOLUTIONARY EPISTEMOLOGY 

The core idea of the third position, evolutionary epistemology, is that successful 
theories and knowledge in science evolve in a competition for survival, similar to the 
way that evolution and adaptation drive the transformation of organisms. For example, 
Popper (1958, 1962, 1972) perceived a parallel with Darwinian survival when arguing 
that scientists ultimately choose the theory "which, by natural selection, proves itself 
the fittest to survive" (1958, p. 108). Donald Campbell (1959, 1988a, 1988b) also 
viewed the Darwinian analogy as a potentially unifying philosophy of knowledge in 
psychology (Brewer & Collins, 1981; Campbell, 1988b; Houts, Cook, & Shadish, 
1986). Campbell believed all valid knowledge to be what he described as the "social 
product" of a "self-perpetuating social vehicle," by which he simply meant science 
(quoted in Brewer & Collins, p. 15). However, whereas Darwinian evolutionary muta­
tions are the result of chance, for Popper (1958) the choice of one theory over another 
was "an act, a practical matter" (p. 109). Contextualists believe that theories survive 
because they still make sense within the current milieu, whereas evolutionary episte­
mologists argue that theories survive because of their usefulness (e.g., in predicting 
some ¥eal outcome) in a game of empirical jeopardy. 

Campbell had an enviable knack for making lists of things, and in a later chapter 
we will examine work in which he and others have developed comprehensive lists of 
potential threats to the validity of standard research designs. Campbell also envisioned 
a nested hierarchy of what he perceived as "mechanisms" that people use to make sense 
of the real world, including procedures, rules, and social and personal factors that 
govern the use of the scientific method. As Campbell described that process, there is a 
constant sifting and winnowing of hypotheses and theories, as a consequence of 
which some false explanations drop out and the leftovers become the scientists' "best 
guesses" at that moment, which later selection may eliminate in tum. Evolutionists, like 
contextualists, assume that knowledge is in constant flux as scientists use their "best 
guesses" as points of departure to promote new "guesses" (hypotheses and theories) to 
advance knowledge. Ultimately there is an a priori reality waiting to be discovered and 
described by a process of elimination, evolutionary epistemologists assume. As mentioned 
previously, a problem with the Darwinian analogy is that, as Ruse (1995) noted, the 
raw variants of biology are random, but the raw ingredients of science (new hypotheses) 
are seldom random. 

Beyond the philosophical domain, the evolutionary idea has taken on a life of 
its own in behavioral and social science as a basis of fascinating hypotheses regarding 
the evolutionary aim of behavior (e.g., Buss, Haselton, Shackelford, Bleske, & 
Wakefield, 1998; Conway & Schaller, 2002; Kenrick & Keefe, 1992; Martindale, 
1978). Some critics, however, have questioned what they see as a "loose application 
of adaptationist thinking" (de Waal, 2002, p. 187). Nevertheless, they also regard the 
evolutionary approach as having "the potential to introduce a conceptual framework 
that will accommodate or replace the current proliferation of disconnected theories in 
the study of human behavior" (p. 190). However, as de Waal (2002) cautioned, not 
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everything can be understood as necessarily purposeful in a survivalist way, such as 
diseases that have a genetic basis, but those genes must be only part of the story since 
"no one would argue that they contribute to fitness" (p. 188). 

Philosopher Jason Scott Robert (2004) cautioned that, at least in developmental 
biology, researchers typically design their studies in ways that preclude the possibility 
of observing the role of environmental factors and then conclude that such factors 
do not play a role in the processes they are studying. Conceding that point, biologist 
Glinter P. Wagner (2004) added: 

The real difficulty we face in understanding organisms is that they are not simply formed 
by a combination of well-defined factors and effects-unlike a cannonball's trajectory, 
which can be understood as resulting from the combined effects of gravity, air friction, 
propUlsive forces, and inertia. The only proper word we have for what is going on in 
biology is interaction. Interaction means that the effect of a factor depends on many other 
so-called factors, and this dependency on context ensures that the explanatory currency 
drawn from measuring the effects of causal factors is very limited. (p. 1404) 

That epiphany of insights notwithstanding, in every generation there is some expla­
nation or analogy that strikes a resonant chord but, in retrospect, seems deceivingly 
simple in addressing questions of profound complexity. For example, Einstein and Infeld 
(1938) mentioned how, in an industrial civilization wedded to the machine, the mechan­
ical model of physics was applied to all manner of things, including "problems apparently 
different and non-mechanical in character" (pp. 57-58). As a case in point, the most 
complex current machine has frequently served as a metaphor for cognitive functioning, 
from a simple engine in the 18th century, to the telephone switchboard and then the 
digital computer in the 20th century. Scientists are inquisitive, restless, and intellectually 
competitive, forever creating and discovering things, but also refurbishing old ideas with 
a new veneer. As de Waal (2002) counseled psychological scientists, "My hope is that 
this generation will turn evolutionary psychology into a serious and rigorous science by 
being critical of its premises without abandoning the core idea that important aspects of 
human behavior have been naturally selected" (p. 187). 

PEIRCE'S FOUR WAYS OF KNOWING 

We began by characterizing "the scientific method" as an eclectic, pragmatic intellectual 
outlook (or orientation), but there are, of course, other orientations used to make sense 
of the experiential world. Charles Sanders Peirce, a leading American philosopher, who 
established the doctrine of pragmatism (an emphasis on practical consequences and 
values as the standards used to evaluate the caliber of "truth"), spoke about the scientific 
method and also described three other traditional foundations of knowledge: the method 
of tenacity, the method of authority, and the a priori method. He asserted that it was by 
Ihe use of one or more of these "methods" that people's beliefs about what they feel 
Ihey really know tend to become fixed in their minds as convictions-a process he 
l'alled the "fixation of belief' (Reilly, 1970; Thayer, 1982; Wiener, 1966). 

Peirce thought the method of tenacity to be the most primitive orientation of 
nil: People cling to certain assumptions and beliefs mainly for the reason that they 
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have been around for some time. A classic case was the ecclesiastical insistence for 
centuries that the earth was fixed, immobile, and at the center of the universe. That 
conviction may have provided peace of mind to those who accepted it, but like an 
ostrich with its head in the sand, they refused to see anything disturbing that might 
upset the status quo. A more contemporary variation is the finding in several areas of 
psychology that being subjected to the same message over and over (e.g., hearing 
malicious gossip or a scurrilous rumor again and again, or seeing the same grating 
TV commercial day after day) will make it seem more palatable and credible 
(cf. F. H. Allport & Lepkin, 1945; Fine & Turner, 2001; Hasher, Goldstein, & 
Toppino, 1977; Zajonc, 1968). Another factor that might account for the tenacious­
ness of beliefs is the false consensus phenomenon, which takes its name from the 
observation that people often overestimate the extent to which others hold the same 
beliefs; this feeling of "consensus" seems to bring closure to the mind (Ross, Green, & 
House, 1977). Tenacious beliefs are hard to shake loose by reason or demonstration, 
Peirce concluded. 

Peirce thought the method of authority somewhat better than the method of 
tenacity, but also limited in some ways. The defining characteristic of this way of 
knowing is that people often consult an expert to tell them what to believe. On the 
positive side, cutting back on fatty foods because the doctor told you to do so is a 
beneficial effect resulting from the method of authority. On the negative side, however, 
are unscrupulous "authorities" who claim oracular wisdom but merely use fakery and 
showy schemes to prey on human weaknesses, such as medical quacks, food faddists, 
faith healers, TV psychics, cult leaders, and eccentric sexual theorists (M. Gardner, 
1957; Shermer, 1997). As another classic example, Peirce noted the false accusations 
of witchcraft that at one time resulted in atrocities of the most horrible kind, as some 
people obeyed the word of authority to carry out their cruelties. Unless we live like 
hermits, all of us are subject to the ubiquitous influence of authority simply because 
we choose to live in a society requiring that we abide not only by institutionalized 
rules of various kinds but also by a "social contract" that takes different forms. An 
example, to be discussed in chapter 3, is certain ethical guidelines, rules, and regula­
tions defining and circumscribing the conduct of behavioral and social researchers, as 
well as other scientists who work with human or animal subjects. 

In a third way of knowing, the a priori method, we use our individual powers 
of reason and logic to think for ourselves in a way that is ostensibly unimpeded by 
any external authority. Reasoning that 12 X 100 = 120 X 10 = 1 X 1,200 is an 
example of the use of the a priori method. Interestingly, Bertrand Russell (1945) 
mentioned that mathematical reasoning may be the chief source of the belief in "exact 
truth," that is, the idea of truth as "static, final, perfect, and eternal" (pp. 37, 820). 
Thus, Russell added, "the perfect model of truth is the multiplication table, which is 
precise and certain and free from all temporal dross" (p. 820). Some traditional aca­
demic fields in which the a priori method is used are art history, literary criticism, 
philosophy, and theology, although the traditional notion of "truth" in many fields 
regards predilection as temporal rather than static and final. Reason can also be a 
defense against hucksters who prey on human gullibility. By approaching their dubi­
ous claims with questioning minds, we are using the a priori method to resist becoming 
overly impressed and victimized (Gilovich, 1991). 
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However, Peirce recognized that the a priori method is not infallible, because 
it is subject to one's own biases and tastes. If I conclude one thing is true and you 
conclude the opposite, how can we hope to resolve our disagreement? Peirce argued 
that dilemmas of this kind are a reason why people need a fourth way of knowing, 
one by which they can base their beliefs on something reliable and tangible. This, he 
said, was the role of the "scientific method" -but he conceded that scientists are 
generally cautious and tentative. Nonetheless, if we slavishly follow the method of 
tenacity, we ask no questions. Alternatively, the method of authority requires that we 
look to others for the answers to our questions. The a priori method, because it is 
based on pure reason and logic, also seems to rule out turning to an external world 
for tangible substantiation. The scientific method, Peirce believed, surpasses those 
other three because it encourages us to investigate the world as well as to use reason 
and logic. For example, if we conclude that the earth is round because we have circled 
the globe by foot, boat, and vehicle and not fallen off, we are using empirical reasoning 
as our grounds for belief, thus the scientific way of knowing. 

RHETORIC, PERCEPTIBILITY, 
AND AESTHETICS 

Earlier, we alluded to the idea that scientists' convictions are also predicated on a 
number of extraempirical factors, such as rhetoric, perceptibility, and aesthetics. Each 
of these factors, as is also true of empirical content, is limited and imperfect in some 
ways. As a metaphor, we might think of a chair. Conviction is the seat. Supporting 
the seat are the four legs of empirical content, rhetoric, perceptibility, and aesthetics. 
Because each factor is imperfect in some way, we need all four factors in science to 
form a structure for con~iction that will, even tentatively, bear weight. 

The Rhetoric of Justification 

By rhetoric, we mean the persuasive language that people use-technically referred 
to as the rhetoric of justification because it implies the use of prose to warrant, 
defend, or excuse certain beliefs (Gross, 1996; Pera & Shea, 1991). Communications 
in science are intended not only to describe what the researchers found, but to inform 
and persuade in a compelling way (Ziman, 1978). As in learning a new language, the 
neophyte researcher must absorb the linguistic rules and grammatical conventions in 
the chosen field in order to encode information in acceptable ways. Without this flu­
ency, it would be impossible to make one's way through the thicket of difficult con­
cepts and assumptions, to communicate ideas, or to persuade skeptics and, ultimately, 
to gain acceptance as an authority in one's own right. As a consequence, students 
learn to mimic the speech patterns and written forms of authorities, with the result 
that scientists in the same field frequently seem to sound alike-in the same way that 
luwyers sound like lawyers, philosophers like philosophers, ministers like ministers, 
doctors like doctors, police like police, and so on. 

One conventional medium for communicating information in science takes the 
form of written reports. But although each of the sciences has a privileged rhetoric 
IIf its own, we live in a world in which scientists think and communicate in the 



16 CONCEPTUAL AND ETHICAL FOUNDATIONS 

vernacular as well. Possibly because they represent our earliest ways of thinking and 
communicating, the vernacular may come closer to the intuitions and hunches, the 
rational and emotional ideas, that each of us uses in the formative stage of thinking 
about and trying to explain things. The pressure to conform to the style of the science, 
however, produces tensions to communicate efficiently rather than in a way that 
reveals the full underlying pattern of reasoning. With this notion in mind, we once 
described the pattern of reasoning and argument in modem science as "think Yiddish, 
write British." The focused, yet intuitive ways in which scientists think and reason 
often seem to resemble the creative arguments of a wise Talmudic scholar, but the 
tightly logical outcome of this "thinking Yiddish" is written up in the traditions of 
British empirical philosophy (Rosnow & Rosenthal, 1989). 

Further, according to the classical Whorfian hypothesis, the language that each 
of us uses is our window into the world; it also expresses how we experience the 
world (e.g., Gumperz & Levinson, 1996). For example, people use different languages 
to communicate a word by a hand sign, but no language has a sign for every spoken 
word. In written and spoken English, we make a distinction between rumor and gos­
sip, but in American Sign Language the same sign is used to denote both terms: Both 
hands are held before the face, the index fingers and thumbs are extended, and the 
fingers are opened and closed rapidly several times; sometimes the hands also move 
back and forth (M. L. A. Sternberg, 1981). In the same way that signing and speaking 
English appear to divide up our experiential world differently, the vocabulary of each 
researcher's discipline divides up the experiential world in ways that can influence 
nonlinguistic aspects of beliefs. To figure out whether the hand sign refers to rumor 
or gossip, we would have to get the meaning from the context. If we have no appro­
priate context, or if concepts are foreign to our experience, we may end up not only 
talking past one another but perceiving matters of material substance quite differently, 
thus reaching different conclusions and believing different things to be true. 

Visualizations and Perceptibility 

The philosopher W. V. Quine (1987) called rhetoric the "literary technology of persua­
sion" (p. 183). Often, however, we also need a pithy image in order to shake the 
stubborn preconceptions that people harbor. Thus, another way in which humans carve 
up the world is by means of imagery, or what some philosophers refer to as "visualiza­
tions" and we refer to more broadly as perceptibility. The use of images seems to 
have a hand in virtually all reasoning and thinking (e.g., Bauer & Johnson-Laird, 1993; 
Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991; Taylor, Pham, Rivkin, & Armor, 
1998). The more pungent the image, the more it seems to reverberate in the mind's 
eye as a justification for some relevant conclusion or belief. Images are also like maps 
(another image!), because maps provide a direction for our activity. Newton presum­
ably had an image in mind when he created his laws of motion, just as Michelangelo had 
an image that he said he "released" when sculpting figures out of stone. Presumably, 
behavioral and social scientists also begin with perceptible images as they carve out 
their middle-range theories and hypotheses and then figure out ways to test them 
(R. Nisbet, 1976). As Einstein (1934) observed, "It seems that the human mind has 
first to construct forms independently before we can find them in things" (p. 27). 
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Images are not limited only to science, of course. Our social world contains a 
remarkable assortment of analogical images in the form of metaphors and proverbs 
that create pictures in our minds, enabling us to perceive novel situations and problems 
in terms offarniliar ones (Gentner, Holyoak, & Kokinov, 2001; Honeck, 1997; Lakoff & 
Johnson, 1980; Miller, 1986, 1996; Oppenheimer, 1956; Randhawa & Coffman, 1978). 
Some images, for example, encapsulate the idea of a biological function, such as 
explaining that the cat's running after the ball is like "chasing a mouse" or the baby's 
sucking its thumb is like "nursing at the mother's breast" (Gombrich, 1963). As Peirce 
explained, some pithy metaphors ultimately become "habits of mind" that can govern 
our actions as well as our beliefs (H. Margolis, 1993). Lakoff and Johnson (1980) 
called them "metaphors we live by" and described how communicating or reasoning 
by the use of analogies may playa central role in cognitive systems (see also Honeck, 
1997). For example, the image of "time as money" is reflected in phrases such as 
"You're wasting my time" or "How do you spend your time?" or "I lost a lot of time 
when I was sick" (Lakoff & Johnson, 1980, pp. 7-8). Other examples are ontological 
metaphors (i.e., ideas that are simply taken for granted); they enable us to treat 
experiences as entities or substances, such as thinking of the mind as a "machine": 
"My mind just isn't operating today" or "Boy, the wheels are turning today!" or 
"We've been working on this problem all day and now we're running out of steam" 
(p. 27). Lakoff and Johnson argued that linguistic regularities, beliefs, and communi­
cation strategies that cannot be easily explained in formal terms can often be explained 
(and sustained) in a conceptual framework of perceptible representations. 

Aesthetics 

In science, as in daily life, the reaction to failures in perceptibility is often "I just don't 
see it!" But sometimes this is a response not to misperceiving the idea, but to rejecting 
it on aesthetic grounds. That is, perceptible images are evaluated on their "beauty" or 
aesthetics, a faculty that is presumably a basic psychological component of every human 
being (Averill, Stanat, & More, 1998; Dissanayake, 1995) and, we would argue, every 
conviction. A notable scientific dispute involved Albert Einstein and the leading quantum 
Iheorists, who found it hard to convince Einstein and other physical determinists that, 
given a very great many atoms, all capable of certain definite changes, it is possible to 
predict the overall pattern but not possible to tell what particular change any given atom 
will undergo. God "does not play dice with the world" was Einstein's famous riposte 
(Jammer, 1966, p. 358). It was not that he was unable to "see" the implications of the 
idea that, at the level of simple atomic processes, activity is ruled by blind chance 
(Clark, 1971; Jammer, 1966), but that he found it viscerally objectionable. 

Philosophers and scientists have written extensively about the similarity of the 
l'I'calive act in the arts and poetry'to that in the sciences (Chandrasekhar, 1987; Garfield, 
191Na, I 989b; R. Nisbet, 1976; Wechler, 1978), using words like beautiful and elegant 
III cxpress the precision and accuracy of great scientific insights (scientific laws, equa­
lillns, theories, and so on). Indeed, there may be no greater praise of a colleague's work 
Ihan 10 say of it that it is 'just beautiful." A classic scientific example was Mendeleyev's 
1~I'i()dic table in the field of chemistry. The beauty of Mendeleyev's insight was not 
only Ihat he saw a way to organize all the chemical elements, but that he "was bold 
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enough to leave gaps where no known elements fit into the pattern and to suggest that 
the atomic weights of some elements had been calculated incorrectly" (Uppenbrink, 
2000, p. 1696). The chemist Primo Levi (1984) told how, as a young student, he was 
struck by the beauty of Mendeleyev's periodic table, which he experienced as "poetry, 
loftier and more solemn than all the poetry we had swallowed" (p. 1). 

LIMITATIONS OF THE FOUR SUPPORTS 
OF CONVICTION 

Previously, we said that the factors of perceptibility, rhetoric, aesthetics, and empirical 
content are imperfect supports of convictions. For example, thinking in terms of visual 
images (perceptibility) is limited by each person's experience and imagination, and 
by whatever visual metaphors are salient at that moment in historical time. The rhet­
oric of justification is limited by the human capacity to express experiences in prose. 
To borrow an analogy suggested by Robert E. Lana (1991), we can bend our arms 
forward at the elbow, but not backward, because nature has imposed a limit on how 
far the human forearm can be bent. Similarly, language enables us to bend our expe­
riences in prose, but nature has imposed a limit on our cognitive capacity to process 
the world's richness of information. As regards aesthetics, what people perceive as 
"beautiful" is conditioned in part by culture and training. Thus, although it is true that 
beauty can be fashioned and twisted, it is biased because it is ultimately in the eye 
(and sensibility) of the beholder, or as the great film director Josef von Sternberg 
(1965) wrote, "Though beauty can be created, it cannot be put to a test or arbitrated; 
it consists only of its appeal to the senses" (p. 319). 

Scientists do not simply rely on armchair theorizing, political persuasiveness, or 
personal position to settle opinions; they use empirical methods that are made available 
to other competent scientists. Traditionally, the way this process works was compared 
by one scientist to someone who is trying to unlock a door with a set of previously 
untried keys (Conant, 1957). The person says, "If this key fits the lock, then the lock 
will open when I turn the key." Similarly, the scientist has a choice of methods, decides 
on one, and then says in essence, "Let's try it and see if it works" (Conant, 1957, p. xii). 
This analogy is another idealization and oversimplification, however, because there are 
powerful generalizations that cannot be restricted to the available empirical facts alone. 
For example, Newton's first law of motion asserts that a body not acted on by any force 
will continue in a state of rest or uniform motion in a straight line forever. Of course, 
no scientist has ever seen a body not acted on by any force (e.g., friction or gravity), 
much less observed or measured any physical entity traveling in a straight line forever. 
Recognizing limitations like these is important so that we do not credit empiricism with 
properties it does not have (M. R. Cohen, 193111978). 

BEHAVIORAL RESEARCH DEFINED 

The expression behavioral research in the title of this book is another huge umbrella 
term, as it covers a vast area. The "behavior" of early primitive humans, humans as 
political animals, economic animals, social animals, talking animals, humans as 
logicians-these are of interest to behavioral and social scientists in fields as diverse 
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TABLE 1.1 

llIustrative fields and explanatory focus on behavior 

Field Focus Explanatory emphasis 

Neuroscience Most micro Biological and biochemical factors 

Cognition More micro Thinking and reasoning 

Social psychology More macro Interpersonal and group factors 

Sociology Most macro Societal systems 

as psychology (clinical, cognitive, counseling, developmental, educational, experimental, 
industrial and organizational, social, etc.), sociology, economics, education and 
communication research, psycholinguistics, neuroscience, behavioral biology, and many 
other disciplines. For most purposes it probably makes little difference whether we can 
distinguish among those disciplines. There are differences nonetheless. Table 1.1 implies 
two basic differences, which are that the explanatory emphasis as well as the units 
of analysis used are often quite dissimilar in different disciplines, as well as in different 
areas of the same discipline. Imagine a continuum anchored on one end by the smallest 
and most concrete, or most diminutive (i.e., most micro) units of analysis and at the 
other end, by the largest and most abstract (most macro) units. If we open any basic 
text in psychology, we will see that explanations of behavior range from the nervous 
system (most micro) to society and culture (most macro), with the factors of personality, 
cognition, and development somewhere in between. 

Staying with 1)1is idea, suppose we were, walking along a beach and a small 
object on the sand aroused our curiosity because it suddenly moved or made a noise. 
We might stop to look at it more closely. If we happened to notice certain regularities 
in its behavior, we might try to get it to respond by poking it or pushing it to see 
how it will react. Neuroscientists who are interested in the biology or biochemistry 
of behavior might want to look inside the object to see what makes it tick. Determin­
ing how it is constructed, they might be able to predict its responses. This is the "most 
micro" level of explanation, because the units of analysis are so small. The neurosci­
entists interested in behavior might experiment with how a motivational state can be 
controlled by the stimulation of a portion of the brain, or how brain waves in a par­
ticular area are correlated with a particular emotional sensation, or how testosterone 
is related to sexual activity or aggressiveness, or how low levels of progesterone are 
related to premenstrual tension. 

Illustrative of a "relatively micro" focus (where the units of analysis are not as 
diminutive as in neuroscience) would be some areas of cognitive and personality 
psychology. A cognitive researcher interested in intelligence, for example, might give 
(he research participants letters with blank spaces between some of them and ask them 
10 fill in the blanks to make words. Using that procedure the researcher attempts to 
delve into a certain cognitive dimension of intelligence. A personality researcher might 
approach the topic quite differently, creating a test to pick out people who are high 
lind low in "social intelligence." Such a test might, for example, consist of a series 
IIf scenarios visually depicting or verbally describing certain interpersonal roles that 
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people play. The subject's task is to identify the actor's actions and intentions in each 
particular scenario. The personality researcher examined the traits of people who are 
good (or bad) at reading other's actions and intentions, whereas the cognitive researcher 
was interested in the reasoning process used by intelligent people to form words. The 
similarity between those two approaches is that they are not as micro as the explana­
tory focus of interest to the neuroscientist, but somewhat more micro than in some 
other areas of behavioral research, such as social psychology. 

At the next level, experimental social psychologists who investigate how social 
behavior is influenced by interpersonal and group factors are interested in "more 
macro" explanations than are neuroscientists or cognitive psychologists. Studies of 
how judgments and perceptions might be influenced by subtle group processes are an 
illustration. In a classic study by Solomon Asch (1951), a subject arrived at the 
research laboratory along with several others who, unbeknownst to the subject, were 
really confederates of the investigator. All participants, once they were seated together 
at the same table, were told by the experimenter that they would be asked to make 
judgments about the length of several lines. Each participant was to judge which of 
three lines was closest in length to a standard line. The confederates always stated 
their judgments first, after which the real subject gave his opinion. The confederates, 
acting in collusion with the experimenter, sometimes gave obviously incorrect judg­
ments. To Asch's surprise, one third of the real subjects gave the same opinion as the 
confederates in the experiment; only 29% of the real subjects remained completely 
independent. Interviews with the real subjects revealed that they were deeply disturbed 
by the discrepancy between what they saw and what they believed others saw. Asch 
interpreted this result as evidence that our sense of reality is partly social (Gleitman, 
Rozin, & Sabini, 1997). 

At the "most macro" level, other social psychologists, anthropologists, and 
sociologists study how behavior is acted out in particular societal systems, that is, 
the "roles" people play, which are theorized to be related to the person's "position" 
in the societal system (e.g., Alexander & Knight, 1971; Biddle & Thomas, 1966; 
J. A. Jackson, 1972; Rosnow & Aiken, 1973; Sarbin & Allen, 1968). For example, 
someone who is in the position of "professor" is expected to be scholarly and 
inquisitive, and to have primarily intellectual interests. Of course, a person can 
occupy a number of different positions, playing a number of different roles at the 
same time-that of student, wife or husband, daughter or son, part-time waiter, 
filmmaker, and so on. It has been observed that each of us enacts many different 
roles with varying degrees of intensity. There is disagreement, however, about 
whether multiple role taking produces distress or implies that we are better prepared 
to face the complexities of modern life (cf. Barnett & Rivers, 1996; Hochschild, 
1989). One researcher, who took the latter position, compared the multiple role taker 
with the skilled motorist who can withstand unusual stress and long-term strain on 
the highway (Cameron, 1950). 

Realizing the importance of studying things from different perspectives, research­
ers often borrow methodological strategies from one another in order to explore more 
than one dimension of a phenomenon. An analogy proposed by the existentialist 
philosopher Jean-Paul Sartre (1956) is relevant. Sartre described how, when we look 
at someone who is looking back at us, it is hard to see the "watcher" behind the 
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"look" at the same time that we focus on the person's appearance. The more we 
concentrate on one dimension, the less we notice other things about the individual. 
Other dimensions of the person are neutralized, put out of play. To try to catch a 
glimpse of the whole person, we need to shift our concentration back and forth, 
attending first to one thing and then to another. In behavioral research, mUltiple meth­
ods and theories allow us to expand our grasp and understanding, one reason why 
interdisciplinary fields are constantly being created-so we can share methods and 
ideas and ultimately to benefit from the insights that can come from shifting our 
concentration back and forth. Researchers in the new boundary-melting disciplines 
hope that they will show the same vigor and potential for breakthrough that has been 
evident when other sciences have combined to form a new discipline. 

THREE BROAD RESEARCH ORIENTATIONS 

Although the methods used by behavioral researchers are often diverse, the objective 
in psychological science is the same: to describe and explain how and why people 
behave the way they do, including how and why they feel and think about things as 
they do. William James, who founded the first psychology laboratory in the 
United States, called psychology the science of mental life, by which he meant that 
it examines how people feel, think, and behave. The job of the behavioral researcher 
in psychology is, as James said, to describe and explain consciousness in the context 
of behavior and processes in the body. Other questions of equal importance in psy­
chology deal with the nature of language, planning, problem solving, and imagination 
in the context of reasoning, thinking, intentions, and mental representations (Kim­
ble, 1989). The scientific methods used to address these aspects of behavior include 
a variety of laboratory and nonlaboratory procedures. To simplify this picture, we 
lump together the various methods and orientations of researchers into three broad 
types: descriptive, relational, and experimental. 

By descriptive research orientation, we mean an observational focus whose 
goal is carefully mapping out a situation to describe what is happening behaviorally 
(or what philosophers call how-questions). This focus does not, by definition, directly 
concern itself with causal explanations (i.e., why-questions), except perhaps specula­
tively. For example, the educational psychologist who is interested in the study of 
children's failure in school may spend a good deal of time observing the classroom 
behavior of children who are doing poorly. The researcher can then describe as care­
fully as possible what was observed. Careful observation of failing pupils might lead 
to some revision of the concepts of classroom failure, to factors that may have con­
tributed to the development of failure, and even perhaps to speculative ideas for 
reversing failure. \ 

That type of orientation is frequently considered a necessary first step in the 
development of a research program, but it is rarely regarded as sufficient, because 
the study cannot tell us why something happens or how what happens is related to 
other events. If our interest is in children's failure, we are not likely to be satisfied 
for very long with even the most careful description of that behavior. We still want 
to know the antecedents of failure and the outcomes of various procedures designed 
to reduce classroom failure. Even if we were not motivated directly by the practical 
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implications of the causes and cures of failure, we would believe our understanding 
of failure to be considerably improved if we knew the conditions that increase and 
decrease its likelihood. 

For us to learn about the increase or decrease of failure, or any other behavior, 
our observations must focus on at least two variables at the same time, that is, two 
or more sets of observations that can be related to one another in what is called a 
relational research orientation, whose focus is the description of how what happens 
changes when some other set of events changes. Research is relational when two or 
more variables or conditions are measured and related to one another. Continuing with 
the classroom example, let us suppose the researcher notes that many of the scholas­
tically failing students are rarely looked at or addressed by their teachers and are 
seldom exposed to new academically relevant information. At that stage the researcher 
may have only an impression about the relation between learning failure and teaching 
behavior. Such impressions are a frequent, and often valuable, by-product of descrip­
tive research. But if they are to be taken seriously as a relational principle, they 
cannot be left at the impressionistic level for very long. 

To examine those impressions, one might arrange a series of coordinated obser­
vations on a sample of pupils in classrooms that adequately represents the population 
of pupils about whom some conclusion is to be drawn. For each pupil it could be 
noted (a) whether the student is learning anything or the degree to which the student 
had been learning and (b) the degree to which the teacher has been exposing the 
student to material to be learned. From the coordinated observations it should then 
be possible to make a quantitative statement concerning the degree of correlation 
between the amount of pupils' exposure to the material to be learned and the amount 
of material they did in fact learn. The scientist would indicate not just (a) whether "X 
and Yare significantly related" (i.e., whether, over the long run, this nonzero relation­
ship is likely to emerge consistently when the research is repeated) but also (b) the 
form of the relationship (e.g., linear or nonlinear, positive or negative) and (c) the 
strength of the relationship, or effect size (a concept defined in the next chapter). 

To carry the illustration one step further, suppose that the pupils exposed to less 
information were also those who tended to learn less. On discovering that relationship, 
there might be a temptation to conclude that children learn less because they are taught 
less. Such an ad hoc hypothesis (i.e., one developed "for this" special result), although 
plausible, would not be warranted by the relationship reported. It might be that teach­
ers teach less to those they know to be less able to learn. Differences in teaching 
behavior might be as much a result of the pupils' learning as a determinant of that 
learning. To pursue that working hypothesis (i.e., the supposition we are using, or 
working with), we could make further observations that would allow us to infer 
whether differences in information presented to pupils, apart from any individual dif­
ferences among them, affected the pupils' learning. Such questions are best answered 
by manipUlation of the conditions believed to be responsible for the effect. That is, 
we might introduce some change into the situation, or we might interrupt or terminate 
it in order to identify certain causes. 

What has just been described is an experimental research orientation, whose 
focus is the identification of causes (i.e., what leads to what). Relational research 
can only rarely provide such insights, and then only under very special conditions 
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(discussed later in this book). The difference between the degree of focus on causal 
explanation of relational and experimental research can be expressed in the difference 
between the two statements "X is related to Y' (relational research) and "X is respon­
sible for Y' (experimental research). In our example, teaching is X and learning is Y. 
Our experiment is designed to reveal the effects of teaching on pupil learning. We 
might select a sample of youngsters and, by tossing a coin or by means of some other 
random method of selection, divide them into two equivalent groups. One of these 
groups (the experimental group) would have more information given them by their 
teachers than would the other group (the control group). We could then assess whether 
the experimental group surpasses the control group in learning achievement. If we 
find this result, we could say that giving the experimental group more information 
was responsible for this outcome. 

There might still be a question of what it was about the better procedure that 
led to the improvement. In the case of increased teaching, we might wonder whether 
the improvement was due to (a) the amount and nature of the additional material; 
(b) the increased attention from the teacher while presenting the additional material; 
(c) any increases in eye contact, smiles, or warmth; or (d) other possible correlates 
of increased teaching behavior. In fact, those various hypotheses have already been 
investigated by behavioral and social researchers. The results indicate that the amount 
of new material that teachers present to their pupils is sometimes predicated not so 
much on the children's learning ability, as on the teachers' beliefs or expectations 
about their pupils' learning ability. The teachers' expectations about their pupils' 
abilities become a self-fulfilling prophecy, in which the expectations are essentially 
responsible for the outcome in behavior (Babad, 1993; Raudenbush, 1984; Rosenthal, 
1966, 1976, 1985; Rosenthal & Jacobson, 1968; ~osenthal & Rubin, 1978). 

We have described a series of hypothetical studies, and we now turn to a series 
of actual studies that are considered classics in psychological science. These examples 
illustrate the way in which sound research is programmatic; that is, it follows a plan of 
attack involving more than a single study or a single set of observations. The first 
project illustrates a program of research used to develop innovative assessment tech­
niques in a famous applied setting during World War II. The second program of research 
was designed to develop a tool to measure social desirability bias in virtually any mea­
surement setting. Whereas the subjects in the first two programs of research were human 
participants, those in the final set of studies were animal subjects in experimental stud­
ies in the area of comparative psychology. These three cases (a) flesh out the descriptive, 
relational, and experimental orientations; (b) introduce additional key concepts (to which 
we return in later chapters); (c) underscore how vast the territory covered by behavioral 
and social research is in psychology; and (d) allow us to follow the step-by-step think­
ing of researchers as they proceeded toward a specific objective. 

THE DESCRIPTIVE RESEARCH 
ORIENTATION 

Our first illustration involves the development of assessment techniques by psycholo­
gists during World War II, under the auspices of the Office of Strategic Services 
()SS)-this nation's first organized nonmilitary espionage and sabotage agency, which 
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came into being in 1942 under the directorship of William J. "Wild Bill" Donovan. 
The ass was charged with tasks such as intelligence gathering, sabotage behind enemy 
lines, the mobilization of guerilla groups to resist the Nazi occupation of Europe, and 
the preparation and dissemination of propaganda (aSS Assessment Staff, 1948). The 
ass was "disestablished" in October 1945 by a directive issued by President Harry S 
Truman, who in another Presidential Directive then "established" something called the 
Central Intelligence Group and the National Intelligence Authority, a forerunner of the 
Central Intelligence Agency, which was created by Congress in 1947 (Griffin, 2002). 
The program of assessment studies conducted by the ass investigators illustrates what 
we characterized as the descriptive research orientation. 

Thousands of men, drawn from both military and civilian life, were recruited 
to carry out the often hazardous missions of the ass. Initially, it was not known what 
type of personnel to select for each of the various missions, and a group of psychologists 
and psychiatrists was assembled to aid in the assessment of the special agents. The 
chief contribution of these researchers was to set up a series of situations that would 
permit more useful and relevant descriptions of the personalities of the candidates, 
although the original intent of the assessment staff had been more ambitious. It had 
been hoped that in the long run it would be possible to increase the likelihood of 
assignment of agents to those missions they could best perform. Unfortunately, several 
factors made impossible the development of a screening and placement system that 
could 15e fairly and properly evaluated. Chief among these factors were the assessment 
staff's not knowing what particular mission would finally be assigned to a recruit and, 
most important, several weaknesses in the final appraisal of how good a job an agent 
had actually done. 

From December 1943 to August 1945, more than 5,000 recruits were studied 
by the assessment staff. The primary station was located about an hour's ride from 
Washington, DC, in a rustic setting of rolling meadows and stately trees. It was there 
that the recruits were sent for a 3- to 5-day period, during which they were given 
identical clothes to wear and assigned pseudonyms so that colonels and privates and 
college professors would be indistinguishable to the assessment researchers. Besides 
a false name, each recruit had to invent a cover story giving himself a new occupation, 
a new residence, a new place of birth, and a new educational background. Candidates 
were warned that the assessment researchers would try to trick them into breaking 
cover and giving away their true identities. 

Virtually everything that a recruit did from the moment he arrived at the station 
was observed and assessed: how he got off the truck that brought his group of recruits, 
how he asked questions of the staff members who explained procedures to the can­
didates, what he said during the first dinner, and what he chose to do after dinner 
when he was free to read or talk or withdraw. The first evening, the candidates filled 
out a great many paper-and-pencil tests of personality and ability and also answered 
questions concerning their personal background. The next days were filled with many 
situational tests, in which the staff had the opportunity to evaluate each man's level 
of initiative, leadership, functioning intelligence, social relationships, and physical 
ability. For example, a group of four to seven men had to move a log and a rock 
across an 8-foot-wide brook. The situation was rigged so that either a bridge or an 
overhead cable system could be constructed to solve the problem. The achievement 
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of a solution was not the main purpose of the exercise, however. Instead, it was to 
give the researchers an opportunity to observe the different roles the men assumed in 
the team effort required to solve the problem. 

One of the most trying, and probably most revealing, situations was a task in 
which the candidates were to direct the efforts of two helpers in building a 5-foot 
cube out of a giant Tinkertoy set. To the candidates the task seemed to be another 
assessment of their leadership abilities, but it was actually a test of stress tolerance. 
"Kippy" and "Buster," the two helpers, were really two members of the research staff. 
Kippy was a passive sort who did nothing unless ordered to, except occasionally to 
get in the way. Buster offered useless suggestions, griped repeatedly, and harped 
on the candidates' weaknesses. Kippy and Buster were sufficiently obstructive that, 
in the whole history of the OSS assessment program, no recruit was ever able to 
complete the task in the allotted lO minutes. 

Some of the candidates perceived immediately that the two "helpers" were 
confederates of the researchers. That insight sometimes, but not always, helped the 
candidates to contain their tempers and persist in trying to get the job done. Other 
candidates wondered why the OSS could not afford better farmhands around the 
estate and admitted that the obstreperousness and insolence of the helpers tempted 
them more than once to lay an uncharitable hand upon one or the other of them. On 
more than one occasion a fight did erupt. Some candidates learned enough about 
themselves from that experience that they asked to be excused from the program, 
realizing that the kind of stress involved would be too much for them. 

As this project unfolded, its primary objective was descriptive, but it should 
be noted again that description had not been the only goal of the research staff. 
They had hoped to correlate the assessments made of the men with their performance 
in the field, thus using a relational strategy as well as a descriptive one. Such 
correlations would define the adequacy of the selection procedures. If those correla­
tions were high, they would tell the researchers that the assessment (the predictor 
variable) had done its job of predicting actual task performance (the criterion 
variable, or outcome). Because the researchers had only vague (and probably many 
erroneous) ideas about the nature of the jobs for which the candidates were being 
selected, there was no satisfactory evaluation of just how good a job had been done 
hy agents in the field. It would be impractical to think that one could select people 
for the performance of unspecified functions. However, it seems unlikely that, either 
hefore or since, have so many people been observed and described so carefully by 
so many behavioral researchers. 

THE RELATIONAL RESEARCH 
ORIENTATION 

The OSS assessment researchers were in a position to make many detailed observa­
tions relevant to many of the candidates' motives. However, there was no organized 
nllempt to relate the scores or ratings on anyone of these variables to the scores 
or rutings on some subsequently measured variable that, on the basis of theory, 
!lhould show a strong correlation with the predictor variable. In this next illustration, 
we examine how relational research was used in another classic set of studies to 
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develop a personality construct and then to validate a psychological scale to measure 
this construct, called the need for social approval. This series of studies also 
illustrates the value of replications that vary slightly from one another (varied 
replications), which can help to pinpoint the relationships of interest. (We will have 
more to say about this issue in chapter 4 when we discuss the relationship between 
reliability and replication.) 

The term construct refers to an abstract idea that is used as an explanatory 
concept (we will also have more to say about this later). The construct need for 
social approval (also called social desirability) was investigated by Douglas P. 
Crowne and David Marlowe, who performed this research at Ohio State University 
in the late 1950s. Social desirability refers to the idea that people differ in their 
need for approval and affection from respected others. Crowne and Marlowe were 
interested in developing a scale to measure the degree to which people vary on 
this personality dimension. They wanted their scale to measure the respondent's 
social desirability independent of his or her level of psychopathology and began 
by considering hundreds of personality test items that could be answered in a true­
false format. To be included, an item had to be one that would reflect socially 
approved behavior and yet be almost certain to be untrue (i.e., behavior too good 
to be true). In addition, answers to the items could not have any implications of 
psychological abnormality or psychopathology. By having a group of psychology 
graduate siudents and faculty judge the social desirability of each item, the research­
ers developed a set of items reflecting behavior too virtuous to be probable but not 
primarily reflecting personal maladjustment. 

The final form of the Marlowe-Crowne Social Desirability (MCSD) scale 
contained 33 items (Crowne, 1979; Crowne & Marlowe, 1964). In approximately half 
the items a "true" answer reflected the socially desirable (i.e., the higher need for 
approval) response, and in the remainder a "false" answer reflected this type of 
response. An example of the former type of item is "I have never intensely disliked 
anyone," whereas the latter is exemplified by "I sometimes feel resentful when I don't 
get my way." Interested readers will find the MCSD scale and some related social 
desirability (SD) scales that are used to measure "good impression" responding in 
Robinson, Shaver, and Wrightsman's Measures of Personality and Social Psycho­
logical Attitudes (1991), which includes a discussion of the background of this topic 
(Paulhus, 1991). For a brief overview of the ideas and research that ultimately led to 
the creation of the MCSD scale, described by one of the authors of this test, see 
Crowne (2000). 

The MCSD scale showed high correlations with those measures with which 
it was expected to show high correlations. For example, it correlated well with 
itself, which is to sayan impressive statistical relation was obtained between the 
two testings of a group of subjects who were tested in a reliable (i.e., consistent) 
manner. In addition, although the MCSD scale did show moderate correlations with 
measures of psychopathology, there were fewer of these and they were smaller in 
magnitude than was the case for an earlier developed SD scale (Edwards, 1957a). 
Those were promising beginnings for the MCSD scale, but it remained to be shown 
that the concept of need for social approval (and the test developed to measure it) 
was useful beyond predicting responses to other paper-and-pencil measures. As part 



THE SPIRIT OF BEHAVIORAL RESEARCH 27 

of their program of further validating their new scale and the construct that was 
its basis, Crowne and Marlowe undertook an ingenious series of varied replications 
relating scores on their scale to subjects' behavior in a number of non-paper-and­
pencil test situations. 

In the first of those studies the subjects began by completing various tests, 
including the MCSD scale and were then asked to get down to the serious business 
of the experiment. That "serious business" required them to pack a dozen spools of 
thread into a small box, unpack the box, repack it, reunpack it, and so on for 25 
minutes while the experimenter appeared to be timing the performance and making 
notes about them. After these dull 25 minutes had elapsed, the subjects were asked 
to rate how "interesting" the task had been, how "instructive," and how "important 
to science," and they were also asked how much they wished to participate in similar 
experiments in the future. The results showed quite clearly that those subjects who 
scored on the MSCD scale above the mean on desire for social approval said that 
they found the task more interesting, more instructive, and more important to science, 
and that they were more eager to participate again in similar studies than those subjects 
who had scored below the mean. In other words, just as we would have predicted, 
subjects scoring higher in the need for social approval were more ingratiating and 
said nicer things to the experimenter about the task. 

Next, Crowne and Marlowe conducted a series of studies using the method of 
verbal conditioning. In one variant of that method, the subject is asked to make up 
sentences and state them aloud. In the positive reinforcement condition, every time 
the subject utters a plural noun the experimenter responds affirmatively by saying 
"mm-hmm." In the negative reinforcement condition, every time the subject utters a 
plural noun the experimenter responds negatively by ~aying "uh-uh." Researchers who 
use this procedure define the magnitude of verbal conditioning by the amount of 
change in the production of plural nouns from before the reinforcement to some 
subsequent time block after the subject has received the positive or negative reinforce­
ment. Magnitude of verbal conditioning is theorized to be a good indicator of suscep­
tibility to social influence. Subjects who are more susceptible to the experimenter's 
reinforcements are hypothesized to be more susceptible to other forms of elementary 
social influence. 

In the first of their verbal conditioning studies, the investigators found that 
subjects higher in the need for social approval responded with far more plural nouns 
when "rewarded" with positive reinforcement than did subjects lower in this need. 
Subjects higher in the need for social approval also responded with fewer plural nouns 
when "punished" with negative reinforcement than did subjects lower in this person­
ality characteristic. Those subjects who saw the connection between their utterances 
and the experimenter's reinforcement were dropped from the analysis of the results. 
In this way the relation obtained was between subjects' need for social approval as 
measured by the MCSD scale and their responsivity to the approval of their experi­
menter, but only when they were not explicitly aware (or said they were unaware) of 
the role of the experimenter's reinforcements. 

In the second of their verbal conditioning studies, the investigators wanted 
to use a task that would be more lifelike and engaging than producing random 
words. They asked subjects to describe their own personality, and every positive 
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self-reference was positively reinforced by the experimenter's saying "mm-hmm" 
in a flat monotone. A positive self-reference was defined operationally (i.e., defined 
in an empirical way) as any statement that reflected favorably on the subject, and 
two judges working independently showed a very high degree of consistency in 
identifying positive self-references. Results of that study indicated that subjects 
above the mean in need for social approval made significantly more positive self­
references when reinforced for doing so than did subjects scoring lower in the need 
for social approval. Regardless of whether the subjects' responses were as trivial 
as the production of random words or as meaningful as talking about themselves, 
that behavior could be increased much more by subtle social reinforcement in 
people who were higher rather than lower in their measured need for social 
approval. 

In their third verbal conditioning study, the investigators used a vicarious 
(substitute) reward method. The subject was not rewarded for a given type of response 
but instead watched someone else receive a reward. The real subjects of the study 
observed a pseudosubject (i.e., a confederate of the experimenter) make up a series 
of sentences using one of six pronouns (I, you, we, he, she, they) and a verb given 
by the experimenter. When the pseudosubject began a sentence with the pronoun / or 
we, the experimenter responded with the word good. Before and after the observation 
intervat the subjects themselves made up sentences using one of the same six 
pronouns. The results were that subjects higher in the need for social approval showed 
a greater increase in their use of the reinforced pronouns (/, we) from their preobser­
vational to their postobservational sentence-construction session than did subjects 
lower in the need for social approval. Once again, Crowne and Marlowe had demon­
strated that subjects, on the average, can be successfully predicted to be more respon­
sive to the approving behavior of an experimenter when they have scored higher on 
the MCSD scale. 

Another set of studies used a derivative of Asch's conformity procedure in 
which each judgment is stated aloud, because the purpose of Asch's procedure is 
to permit an assessment of the effects of earlier subjects' judgments on the judg­
ments of subsequent subjects. In order to control the judgments made earlier, 
accomplices of the experimenters serve as pseudosubjects. All the pseudosubjects 
make the same uniform judgment, one that is quite clearly in error. Conformity is 
defined as the real subject's "going along with" (conforming to) the majority in 
his or her own judgment rather than giving the objectively correct response. In one 
of Crowne and Marlowe's variations on that procedure, the subjects heard a tape 
recording of knocks on a table and then reported their judgment of the number of 
knocks they had heard. Each subject was led to believe that he or she was the 
fourth participant and heard the tape-recorded responses of the "three prior subjects" 
to each series of knocks that was to be judged. The earlier three subjects were the 
pseudosubjects, and they all agreed with one another by consistently giving an 
incorrect response on 12 of 18 trials. Therefore, the researchers could count the 
number of times out of 12 that each subject yielded to the wrong but unanimous 
majority. The subjects who had scored higher in the need for social approval 
conformed more to the majority judgment than did the subjects who had scored 
lower in the need for social approval. 
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In these studies, the real subjects heard the taped response of the "majority." In 
follow-up studies, the researchers investigated whether the same effect would result 
if the accomplices were actually present. This time the task was a discrimination 
problem in which the subjects had to judge which of two clusters of dots was larger. 
Pseudosubjects were again used to give responses that were clearly wrong but 
unanimous, and as before, the subjects who had scored above the mean on social 
desirability yielded more often to the unanimous but erring majority than did the 
subjects who had scored below the mean. 

We have described here a number of studies that supported the validity of the 
MCSD scale and the construct of the need for social approval. As with almost any 
other well-researched problem in behavioral and social science, many additional, 
relevant studies (not described here) support or do not support the findings. An 
exhaustive literature search would turn up these additional results, but our purpose 
here is not to be exhaustive but to illustrate the use of a series of varied replications 
in relational research. Other measures of social desirability have also been developed, 
and the factor analysis of these scales has revealed that they can be described by 
two factors: self-deception and impression management (Paulhus, 1991). Later in 
this book we turn to techniques that are often used to minimize or eliminate the 
influence of social desirability bias in personality and attitude measurement. As 
Crowne (2000) noted, although we know a great deal about social desirability and 
its measurement, dimensions, and correlations with other measures, there is still 
much that we do not know about when people are motivated to respond in a biased 
way in evaluative situations. 

THE EXPERIMENTAL RESEARCH 
ORIENTATION 

Our final illustration is a series of experimental studies characterized by the 
controlled arrangement and manipulation of one or more conditions calculated to 
identify the causes of resulting variations in one or more outcome variables or 
mcasures. In the research by Crowne and Marlowe there were instances in which 
some condition was controlled and manipulated by the investigators. Even though 
we used the terms experiment and experimenter to describe some aspects of this 
rcsearch, we still do not regard it as "experimental research" ill its broad purpose. 
It was not experimental because its goal was not to identify the causes of the need 
for social approval, nor was need for approval a manipulated variable in these 
studies. Instead, the purpose of that research was to measure the variable and then 
I"l'late it to other behavior in order to decide whether the MCSD scale measured 
thc construct the researchers hadin mind when creating it. We now turn to a highly 
puhlicized series of studies in the annals of comparative psychology to illustrate 
the nature of varied replications in the work of Harry and Margaret Harlow dealing 
with affection in primates. 

There are few personality theories that do not consider early life experiences 
,'specially important in the development of personality. Among the early life experi­
l'lIl'CS often given special attention are those involving mother-child relationships. A 
J/"lIcrully posed proposition might be "loving mother-child relationships are more 
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likely to lead to healthy adult personalities than hostile, rejecting .mother-child 
relationships." A simple way to investigate that hypothesis experimentally would be 
to assign half a sample of young children to loving mothers and half to rejecting 
mothers, and then to follow the development of each child's adult personality. Such 
an experimental plan is an ethical absurdity in our culture's value matrix, although 
there are no special problems of experimental logic involved. Does this mean that 
behavioral researchers can never do experimental work on important questions of 
human development and human personality? Another approach to the problem has 
capitalized on the biological continuities between nonhuman organisms and human 
beings. Primates especially have been shown to share some attributes with humans 
sufficiently to make primates valuable, if far from exact or even very accurate, models 
for human behavior. We cannot, for the sake of furthering our knowledge of personal­
ity development, separate a human baby from its mother, but the important lessons we 
might learn from separation make it seem rational, if not easily (or readily) justifiable, 
to separate a nonhuman primate from its mother. (In chapter 3 we discuss ethical issues 
of research that have implications for nonhuman as well as human subjects.) 

In their extensive research program at the University of Wisconsin at Madison, 
the Harlows and their coworkers used arrays of procedures and approaches of both 
the psychologist and the biologist, a typical technique in the field of comparative 
psychology. Much of the Harlows' research on the affectional system of monkeys was 
of the descriptive type (e.g., young monkeys become attached to other young monkeys) 
and of the relational type (e.g., male monkeys become more forceful with age, and 
female monkeys become more passive). However, our interest here is on their 
experimental research, although we will be able to describe only a fraction of it in 
this limited space. 

As part of the research program, infant monkeys were separated from their 
mothers just a few hours after birth and were then raised by bottle with great success. 
The Harlows had been advised by another researcher, Gertrude van Wagenen, to have 
available for their infant monkeys some soft pliant surfaces, and folded gauze diapers 
were consequently made available to all the baby monkeys. The babies became very 
much attached to these diapers, so much so that the diapers could be removed for 
laundering only with great difficulty. These observations led to an experiment designed 
to show more systematically the shorter and longer term effects of access to a soft 
material. Also the research was planned to shed light on the relative importance to 
the development of the infant's attachment to its mother of being fed by her as 
opposed to being in close and cuddly contact with her (Harlow, 1959; Harlow & 
Harlow, 1966). 

Accordingly, two "pseudomothers" were built: one, a bare welded-wire cylindrical 
form with a crude wooden head and face attached, and the other, a similar apparatus 
covered with soft terry cloth. Eight newborn monkeys were given equal access to the 
wire and the cloth mother figures, but four were fed at the breast of the wire mother and 
four were fed at the breast of the cloth mother. When the measures were of the amount 
of milk consumed or the amount of weight gained, the two pseudomothers made no 
difference. The monkeys fed by both drank about the same amount of milk and gained 
about the same amount of weight. But regardless of which mother had fed them, the 
baby monkeys spent much more time climbing on the cloth mother and clinging to her 
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than they did the wire mother. That finding demonstrated the importance of what the 
researchers called "contact comfort"; it also appeared to imply that an earlier formulation 
of love for mother was really much too simple. That earlier theory held that mothers 
become prized because they are associated with the reduction of hunger and thirst. The 
Harlow results showed quite clearly that being the source of food is not nearly so good 
a predictor of a baby's subsequent preference as is being a soft and cuddly mother. When 
the monkeys were about 100 days old, they spent an average of approximately 15 hours 
a day on the cloth mother but only about 1.5 hours on the wire mother, regardless of 
whether it had been the cloth or the wire mother that had fed them. 

Later experiments showed that when the infant monkey was placed into a fear­
arousing situation, it sought out the cloth mother for comfort and reassurance. A 
frightened monkey, confronted by a mechanical bear that advanced while beating a 
drum, would flee to the cloth mother, secure a dose of reassurance, and then gradually 
explore the frightening object and turn it into a toy. When the cloth mother was not 
in the room, the infant monkeys hurled themselves to the floor, clutched their heads 
and bodies, and screamed in distress. The wire mother provided the infants no greater 
security or reassurance than no mother at all. 

Robert A. Butler, a coworker of the Harlows, had discovered that monkeys 
enclosed in a dimly lit box would spend hour after hour pressing a lever that opened 
a window in the box and gave them a chance to see something outside. Monkeys 
barely able to walk pressed the lever for a brief peek at the world outside. One of the 
variables that determined how hard the monkey would work to look out the window 
was what there was to be seen. When the monkey infants we have been discussing 
were tested in the "Butler box," it turned out that they worked as hard to see their 
cloth mothers as to see another real monkey. However, they worked no harder to see 
the wire mother than to see nothing at all outside the box. Not only in that experi­
ment, but to a surprising degree in general, a wire mother is not much better than no 
mother at all, but a cloth mother comes close to being as good as the real thing. 

A number of the female monkeys became mothers themselves, although they 
had not had any monkey mothers of their own and no physical contact with agemates 
during the first year of their life (Harlow & Harlow, 1965). Compared to normal 
monkey mothers, those unmothered mothers were usually brutal to their firstborn 
otfspring, hitting, kicking, and crushing them. Motherless mothers who were not 
brutal were indifferent. The most cheerful result of this experiment was that those 
motherless monkeys who went on to become mothers for a second time treated their 
second babies normally or even overprotectively. 

A series of studies called for infant monkeys to be raised in social isolation (Har­
low & Harlow, 1970). When the isolation was total, the young monkey was exposed to 
no other living human or nonhuman animal. All the monkey's physical needs were met 
in automated fashion. A major influencing factor was the length of isolation from birth: 
n, 3, 6, or 12 months. All the monkeys raised in isolation were physically healthy, but 
when placed in a new environment, they appeared to crouch in terror. Those monkeys 
Ihat had been isolated only 3 months recovered from their neurotic fear within a month 
or so. Those monkeys that had been isolated for 6 months never did quite recover. Their 
play behavior, even after 6 months, was minimal and isolated. Their social identity, when 
il did occur, was directed only toward other monkeys that had been raised in isolation. 
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Those monkeys that had been isolated for 12 months showed the most severe retardation 
of play and of the development of aggression. Apathetic and terrified, these monkeys 
were defenseless against the attacks of the healthy control group monkeys. 

Longer term effects of early social isolation were also uncovered. Several years 
later, the monkeys that had been isolated for 6 months showed a dramatic change in 
their orientation to other monkeys. Whereas earlier they had been attacked by other 
monkeys and had not defended themselves, they had by now developed into patho­
logical aggressors, attacking other monkeys large and small, acts virtually never 
occurring among normal monkeys of their age. Another long-term effect of early 
social isolation could be seen in the inadequacy of the sexual behavior of these mon­
keys. Even females who had been only partially isolated in infancy avoided contact 
with breeding males; did not groom themselves; engaged in threats, in aggression, in 
clutching themselves and biting themselves; and often failed to support the male when 
mounting did occur. Normal females rarely engaged in any of these behaviors. Male 
monkeys who had been isolated showed even more serious sexual inadequacy than 
did the isolated females. When contrasted with normal males, they groomed less, 
threatened more, were more aggressive, initiated little sexual contact, engaged in 
unusual sex behavior, and almost never achieved intromission. 

r 

EMPIRICAL PRINCIPLES AS 
PROBABILISTIC ASSERTIONS 

From the results of the investigations we have described (and follow-up studies that 
were conducted), have emerged a number of empirically-based generalizations, or 
what we term empirical principles. We call them empirical because they are based 
on controlled empirical investigations, and we call them principles because we think 
of them not as universal laws, but rather as generally accepted scientific truths about 
how behavior is likely to manifest itself in the situations specified. Table 1.2 lists 
several other empirically based statements at the descriptive, relational, and experimental 
levels in three different areas of research. Notice that descriptive and relational 
statements are answers to how-questions, either "how things are" (descriptive) or "how 
things are in relation to other things" (relational). Experimental statements provide 
answers to why-questions, that is, "why things are the way they are." Each of these 
statements is presumed to have a reasonable likelihood of being applicable, valid, or 
true in a given set of circumstances. The term we will use for this likelihood, coined 
by philosopher Hans Reichenbach (1938), is an "implicit probability value," where 
implicit connotes that the probability value is usually unstated but is understood as 
implying that the statement is likely to be applicable, or valid, or true. Thus, we think 
of the empirical principles of the behavioral sciences as probabilistic assertions, on 
the assumption that, based on empirical evidence or probable reasons, each is 
reasonably likely to be applicable in the circumstances specified. 

To take these ideas a step further, we borrow another distinction defined by 
Carl Hempel, which is called the Hempel model or the Hempel-Oppenheim model 
(Hempel & Oppenheim, 1965) or the covering law model. Hempel's view was that 
scientific principles can be cast as deductive arguments that contain at least one prem­
ise that is universally true. The traditional form of an argument affirming that a 
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TABLE 1.2 

Further examples of descriptive, relational, and experimental statements 

Research area 

Primate behavior 

Behavioral study 
of obedience 

Speech behavior 

Descriptive 

Baboon groups vary 
in size from 9 to 185 
(DeVore & Hall, 1965) 

A majority of research 
subjects were willing to 
administer an allegedly 
dangerous level of 
electric shock to 
another person when 
requested to do so by 
a person in authority 
(Milgram, 1963) 

When people are being 
interviewed for civil 
service positions, the 
length of their utterances 
tends to be short in 
duration, with only a 
few lasting as long as 
a full minute (Matarazzo, 
Wiens, & Saslow, 1965) 

Relational 

Baboon groups found 
at higher elevations tend 
to have fewer members 
(DeVore & Hall, 1965) 

Research subjects who are 
more willing to administer 
electric shocks to other 
persons report themselves 
as somewhat more tense 
during their research 
participation than do 
subjects who are less 
willing to apply shocks 
to others (Milgram, 1965) 

In interviews with both 
normal subjects and 
mental patients, it was 
found that average speech 
duration was longer with 
normals and shortest with 
the most disturbed patients 
(Matarazzo et al., 1965) 

Experimental 

Monkeys separated 
from their mothers 
prefer cloth-covered 
mother surrogates to 
wire-mesh-type 
surrogates 
(Harlow, 1959) 

Research subjects are 
less obedient to orders 
to administer electric 
shocks to other 
persons when they are 
in close rather than 
remote contact with 
these persons 
(Milgram, 1965) 

In interviews with 
applicants for civil 
service positions, the 
length of the 
applicants' utterances 
could be 
approximately 
doubled simply by 
the interviewers' 
approximately 
doubling the length 
of their utterances 
(Matarazzo et aI., 
1965) 

particular conclusion is true if its premises are true can be represented by the follow­
ing syllogism: "All A is B; all B is C; therefore all A is C." A case in which both 
premises (i.e., a and b) are universally true would be (a) only mammals feed their 
young with milk from the female mammary glands; (b) whales feed their young from 
Ihe female mammary glands; (c) therefore whales must be mammals. Since (a) and 
(h) are true, then (c) must be true; and given that (a) and (b) are universally true, 
(c) must be universally true as well. In other words, the conclusion is unequivocal. 
Thai form of reasoning has been termed deductive-statistical explanation; the word 
.~/(/Iistical, as used here, means that the deduced conclusion has an implicit likelihood 
ussociated with it. In this instance the implicit likelihood of being true is 100%. 

Here is another example, but instead of stating the premises and conclusion as 
dclinitive assertions, we will express the premises more tentatively and the final state­
menl in the form of a question: "If it is true that (a) all the coins in William's piggy 
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bank are pennies and also true that (b) William draws a coin from his piggy bank, then 
(c) what is the likelihood that the coin is a penny?" The answer, of course, is 100%. 
Simply by restating one of the two premises (not both) as a percentage, we can also 
raise a question that implies a probabilistic conclusion: "If it is true that (a) 95% of the 
coins in Jane's piggy bank are pennies and also true that (b) Jane draws a coin from 
her piggy bank, then (c) what is the likelihood that the coin is a penny?" The answer 
is 95% and implies a probabilistic conclusion (i.e., "the coin is probably a penny"). The 
name of that kind of syllogistic argument, in which the conclusion is probabilistic, is 
inductive-statistical explanation. A hypothetical example in survey research might be 
(a) 80% of Maine residents are Republicans; (b) John Smith is a resident of Maine; 
(c) John Smith is probably a Republican (cf. Capaldi, 1969; Kourany, 1987). Although 
these are simplified examples, you can see how deductive-statistical explanation and 
inductive-statistical explanation might be used to justify an assertion that is either 
absolutely true (i.e., a "universal truth") or probably true (a probabilistic assertion). 

Inductive-statistical reasoning, in tum, implies two fundamental ideas about 
probabilistic assertions: (a) They deal with relative uncertainty, and (b) they are not 
absolute, or what is called a universal (Landesman, 1971). Statements about behavior 
(such as the how and why-question statements in Table 1.2) are thus qualified and 
probabilistic. But even universals may be qualified statements, like Newton's previ­
ously dfscussed first law of motion. Another example in physics is the principle 
explaining changes that individual atoms undergo from one energy level to another. 
Given a very great many atoms, all capable of certain definite changes, physicists can 
predict what proportion will undergo each change but cannot predict with certainty 
what changes any given atom will undergo. As Einstein said, the changes are like 
"throwing dice." There are several reasons why empirical principles in the behavioral 
and social sciences are not able to specify exactly how an individual or a group will 
act at a given moment. Human behavior can be affected, for example, by (a) personal 
values and the individual's state of mind, (b) the nature ofthe situation at that historical 
moment, and (c) sociocultural conditions (which may not be very predictable). Social 
and idiosyncratic factors like these can, in turn, introduce variability and relative 
uncertainty (into premises) and are why we think of empirical principles in behavioral 
and social research not as universal truths, but as probabilistic assertions. 

ORIENTING HABITS OF GOOD 
SCIENTIFIC PRACTICE 

Social psychologist Judith Hall (1984a) observed that many methods texts are filled 
with guidelines for what results in good research, but not what results in a good 
researcher. She listed the following nine traits: 

1. Enthusiasm. For Hall, enthusiasm meant a passion for the topic of inquiry as well 
as the actual activity of research. Another wise researcher, Edward C. Tolman 
(1959), once stated, "In the end, the only sure criterion is to have fun" (p. 152). 
He did not mean that good research is merely fun and games, but that the activ­
ity of research should be as engrossing as any game requiring skill that fills a 
person with enthusiasm. We would add that, like any game requiring skill, good 
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research also requires concentration. The good researcher enjoys the opportunity 
to concentrate on the research and to approach the written reporting of results 
with eagerness. 

2. Open-mindedness. The good researcher sees the world with a keen, attentive, 
inquisitive, and open mind, because sometimes a great discovery is made by sheer 
luck (i.e., serendipity). The Harlows began to study the influence of different 
pseudomothers only after discovering that their baby monkeys became very much 
attached to some soft diapers. Open-mindedness allows us not only to learn from 
our mistakes, but to listen carefully to others' insights and criticisms. 

3. Common sense. As Hall (1984a) noted, "All the book learning in the world cannot 
replace good sense in the planning and conduct of research" (p. v). The good 
researcher asks not only whether a plan is technically sound, but also whether it 
makes sense to look at a problem that particular way. There is an old axiom of 
science called the principle of the drunkard's search: A drunkard lost his house 
key and began searching for it under a street lamp even though he had dropped 
the key some distance away. Asked why he wasn't looking where he had dropped 
it, he replied, "There's more light here!" Much effort is lost or vitiated when the 
researcher fails to use good sense and frames a problem in a convenient way 
rather than in a way that is likely to lead to the right answers. 

4. Role-taking ability. The good researcher thinks of herself or himself as the user 
ofthe research, not just as the person who has generated it. As Hall (1984a) noted, 
role-taking ability implies asking oneself questions like "Are my demand char­
acteristics obvious?" "Are my questionnaire items ambiguous?" "Is the study so 
boring that my resfarch subjects will stop functioning in a normal or intelligent 
way?" Role-taking ability also means being able to cast oneself in the role of 
critic in order to anticipate and address people who are determined to find fault 
with one's research. 

5. Inventiveness. The good researcher is not only clever but also practices principled 
inventiveness, which means developing sound hypotheses and technical designs 
that are also ethically sound. Being inventive also means finding solutions to 
problems of financial resources, laboratory space, equipment, and the recruitment 
and scheduling of research participants. The good researcher responds to emer­
gencies during the conduct of research, finds new ways to analyze data if called 
for, and comes up with honest, convincing interpretations of the results. 

6. Confidence in one's own judgment. Tolman (1959) also said that great insights 
come when the scientist "has been shaken out of his up-until-then approved sci­
entific rules" (p. 93), and that, given the intrinsic relative uncertainty of behavioral 
research, "the best that any individual scientist, especially any psychologist, can 
do seems to be to follow his own gleam and his own bent, however inadequate 
they may be" (p. 152). As another author said, "You have to believe that by the 
simple application of your own mind to the facts of experience, you can discover 
the truth-a little part of it anyway" (Regis, 1987, p. 209). 

7. Consistency and care about details. The good researcher takes pride in his or her 
work, which implies a constructive attitude toward the relentless detail work 
involved in doing good research. The good researcher understands and accepts 
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that there is no substitute for accuracy and the hours of care needed to keep 
complete records, organize and analyze data accurately, state facts precisely, and 
proofread carefully. 

8. Ability to communicate. Somebody (a procrastinator, no doubt) once described 
writing as an "unnatural act," but it is a skill that is basic to the practice of good 
research. It has been stated, "The literature of science, a permanent record of the 
communication between scientists, is also the history of sCience: a record of truth, 
of observations and opinions, of hypotheses that have been ignored or have been 
found wanting or have withstood the test of further observation and experiment" 
(Barrass, 1978, p. 25). Thus, the good researcher understands that "scientists must 
write, therefore, so that their discoveries may be known to others" (p. 25). Science 
is not an appropriate career for someone who finds it hard to sit down and write, 
or for someone who is undisciplined. 

9. Honesty. Finally, the good researcher respects integrity and honest scholarship 
and abhors dishonesty and sloppiness. However, there is evidence that fraud in 
science is not uncommon and exists in many parts of the scientific community 
(e.g., rigged experiments, the presentation of faked results). Fraud is devastating 
to science because it undermines the basic respect for the literature on which the 
advancement of science depends (Koshland, 1988). The good researcher under­
staqrls that safeguarding against dishonesty is the responsibility of each and 
every scientist, and it is a duty that must be taken very seriously (e.g., American 
Association for the Advancement of Science, 1988; American Psychological 
Association, 1973, 1982, 1998; Bridgstock, 1982; Sales & Folkman, 2000). 

We will have more to say about ethical responsibility in chapter 3. Virtually all 
aspects of the research process are subject to ethical guidelines, and as a consequence, 
researchers are sometimes caught between conflicting scientific and societal demands. 
The Greek poet Archilochus once wrote, "The fox knows many things, but the hedge­
hog knows one big thing" (Berlin, 1953). Throughout the formative years of behav­
ioral research, successful researchers were like "hedgehogs," with a single, central 
vision of science as an "endless frontier" unencumbered by tough moral dilemmas 
(Holton, 1978). The situation now faced by researchers is far more complex because 
of the constantly evolving ethical rules to which all researchers are held. The develop­
ment of behavioral research took root in the imagination and hard work of scientific 
hedgehogs, but the future belongs to the "foxes," that is, researchers who know and 
can deal with many things. The good researcher must be able to work effectively on 
ethical, substantive, and methodological levels simultaneously (Rosnow, 1997). 
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The title of this chapter borrows from a traditional distinction made by the 20th-century 
German philosopher Hans Reichenbach (1938). Reichenbach used the term discovery 
to refer to the origin of ideas or the genesis of theories and hypotheses. As we will 
show, the circumstances conducive to stimulating new insights are as "nonspecific" as 
the energy used to excite a neuron. That is to say, a nerve impulse will occur whether 
your finger is hit with a hammer, slammed in a car door, or bitten by a dog. As long 
as the excitation is there, the result will be the same: ignition. In the same way, there 
is no single source of exciting ideas and hypotheses for research. Instead, many different 
circumstances can light the fuse of creative inspiration. We describe some of those 
circumstances in this chapter. 

Justification, as the term is used here, refers to the processes by which hypoth­
eses and theories are empirically adjudicated and logical conclusions are reached. 
Popper (1959, p. 109) recommended that decision be substituted for justification, on 
the grounds that a decision implies an active process in which a tentative conclusion 
is submitted to a "jury" for deliberation and a "verdict" on its acceptability. He added, 
however, that a jury of scientific peers' decision that a conclusion is justified does not 
mean that the decision cannot be overturned by some future argument. Verdicts tend 
to be reached in accordance with specific procedures, which, in tum, are governed by 
rules and conventions. Rules and conventions can change, particularly in the face of 
technological innovations, empirical observations, revolutionary theoretical insights, 
and historical events. 

37 
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Later chapters focus on other aspects of the context of justification. In this 
chapter we review the logic and the limitations of a traditional "dichotomous decision­
making paradigm" known as null hypothesis significance testing (NHST). This discus­
sion is intended to serve as an introduction to our more detailed discussion (later 
in this book) of statistical power, effect size indicators, and the relationship between 
these concepts and the p value. In recent years there has been a spirited discussion 
in psychology of the limitations of NHST and how our science can be improved by 
adopting an alternative strategy (e.g., Bakan, 1967; Cohen, 1990, 1994; Danziger, 
1985; Hagan, 1997; Harlow, Mulaik, & Steiger, 1997; Kirk, 1996; Loftus, 1996; 
Meehl, 1978; Morrison & Henkel, 1970; Nelson, Rosenthal, & Rosnow, 1986; Oakes, 
1986; Pollard & Richardson, 1987; Rosenthal, 1968; Rosenthal & Rubin, 1985; Ros­
now & Rosenthal, 1989; Rozeboom, 1960; Schmidt, 1996; Thompson, 1993, 1996; 
Zuckerman, Hodgins, Zuckerman, & Rosenthal, 1993). A task force sponsored by the 
American Psychological Association (Wilkinson & Task Force on Statistical Infer­
ence, 1999) proposed, among other things, that (a) the relationship between the inde­
pendent and dependent variables (i.e., the effect size) becomes the primary coin of the 
realm when researchers speak of "the results of a study," and (b) there be an indica­
tion of the accuracy or reliability of the estimated effect size (e.g., a confidence 
interval placed around the effect size estimate). 

r 

THEORIES AND HYPOTHESES 

Before proceeding, we want to distinguish between theories and hypotheses, and also 
to note that these terms are frequently used interchangeably. Hypotheses are some­
times referred to as theoretical statements or theoretical propositions, and theories are 
frequently described as conjectural (i.e., hypothetical formulations). Generally speak­
ing, theories can be understood as aggregates of hypotheses (and other things, of 
course, like assumptions and facts). Popper (1959) called theories in the sciences "nets 
cast to catch what we call 'the world': to rationalize, to explain, and to master it" 
(p. 59). In psychology, another writer called theories "blueprints" designed to provide 
investigators with an overall conceptual plan (Overton, 1998). A further distinction is 
made between theories that are far-reaching (macrolevel theories) and those (micro­
level) that focus on a specific phenomenon or activity (Kaplan, 1964). But whatever 
their particular level of abstraction or reach, theories are essentially explanatory shells 
for relationships, whereas hypotheses are conjectural instances that are typically 
derived from the theoretical assumptions of knowledge representations. 

Broadly speaking, thinking inductively is thinking "theoretically." One of us 
lives near a dog park. The remarkable thing about the park is that dogs of all shapes, 
sizes, and kinds amiably interact. If anyone of them should suddenly spot a squir­
rel or a cat that happens to wander in, virtually all the dogs seem to go berserk. 
They bark and chase the interloper until it climbs a tree or finds a hiding place. The 
dogs behave as if they recognize one another as a pack of "dogs" (even the tiniest 
ones that are no bigger than squirrels or cats) and have an inductive idea of what 
constitutes a "dog" and how dogs differ from squirrels and cats. Are dogs capable 
of theorizing in a way that might be analogous to humans' abstract concepts of 
classes of things, such as those entities we call "houses" (ranch, Cape Cod, bungalow, 
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townhouse, and so on)? Feyerabend (the "anything-goes" theorist) believed that all 
human observations are theory-laden to some degree, inasmuch as human percep­
tions are colored by linguistic and cultural experiences. Dogs don't have a universal 
language or a culture (we presume), but is it plausible to think their observations 
are "theory-laden"? It is hard to imagine a world without theory-laden observations. 
Without the benefit of abstract concepts, how would we ever generalize beyond our 
immediate experience? 

By tradition in science, theories and hypotheses are also presumed to be "test­
able." Testability in contemporary science means not that researchers simply try to 
"confirm" theories and hypotheses, but rather, according to Popper, that theories and 
hypotheses are stated in a way that should allow disconfirmation (falsification). We 
return to this idea shortly, but it further implies that theories and hypotheses give 
direction to researchers' observations. Popper illustrated this process by telling his 
students to "take pencil and paper; carefully observe, and write down what you have 
observed." They, in tum, invariably asked what it was he wanted them to observe, as 
observation needs a chosen object, a definite task, an interest, a point of view, and a 
problem (Popper, 1934, 1962). Popper answered, that the role of theories and hypoth­
eses is to chart a direction for our observations and measurements. Of course, a 
theory cannot be sustained from top to bottom by those observations and measure­
ments or (we might add) be decisively falsified by the results of a single experiment 
(though exceptions have been claimed in natural science). 

SOURCES OF INSPIRATION AND INSIGHT 

Discovery implies a bo41 new insight, or a creative'inspiration, or a dramatic finding 
or application, like those of the legendary explorers Columbus, Balboa, and Magellan, 
or brilliant scientists like Newton and Einstein, or inventive geniuses like Edison and 
Bell. In the case of scientists, it is hard to imagine how momentous accomplishments 
can be achieved without singular brilliance. However, philosopher Peter Caws argued 
that scientific discovery is inevitable, not just due to one particular genius's inspira­
tion. Caws (1969) recalled in Proustian detail the exact setting in which, as a school­
boy, he suddenly grasped the principle of linear simultaneous equations. He "saw, in 
a flash of intuition, why two equations were needed for two unknowns, and how the 
substitution from one equation in the other proceeded" (p. 1375). Many years later, 
he came to understand that the "Eureka feeling" he had experienced (as if he had 
invented simultaneous equations himself) was "a very poor index of success in the 
enterprise at hand" (p. 1375). The development of science, he argued, is "a stepwise 
process" that "starts from a large set of premises already demonstrated to be true" 
and that inevitably leads to a particular insight (pp. 1377, 1380). Presumably, that is 
also what Newton meant when he 'remarked about "standing on the shoulders of 
giants." According to Caws's argument, had Newton never lived, a similar theoretical 
insight would have emerged quite naturally once all the relevant evidence was in, 
hecause "scientific discovery is no less logical than deduction" (p. 1375). 

In fact, there are many mundane examples of researchers coming up with 
hypotheses and research questions simply from knowing the relevant evidence or 
heing familiar with a particular phenomenon. As Klahr and Simon (2001) noted, 
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quite often "the discovery of a phenomenon led to a hypothesis, rather than a 
hypothesis leading to an experimental phenomenon" (p. 77). Simply observing 
something surprising is frequently enough to get a scientist "to ascertain the scope 
and import of the surprising phenomenon and its mechanisms" (p. 77). Although it 
is also true that many research questions are handed to investigators-for example, 
by advisers or by funding institutes and companies that seek information regarding 
matters of particular concern to them-more often than not researchers get ideas 
from reading narrowly within the explosion of millions of scientific abstracts that 
are published annually (Adair & Vohra, 2003) and by attending paper presentations 
and poster sessions. They read or listen with an open mind that is seeking exciting 
opportunities for research. William McGuire (1973, 1997), whose work we men­
tioned in the previous chapter, has listed a multitude of situations and creative 
heuristics for generating promising research ideas and hypotheses, and we have 
selected a few of them to illustrate. 

Modifying a Classic Relationship 

One useful strategy used to stimulate the imagination is to reverse a common relationship 
and to think a150ut how to account for the reversal in a plausible way. As an illustration, 
Daryl Bern (1965, 1972) reversed the classic principle stating that attitudes shape behavior. 
Bern raised the possibility that behavior might also shape attitudes. A plausible example 
is a politician who takes a stand on an issue for the sake of expediency but, after 
defending it repeatedly, starts to think, "I really believe this stuff." Reflecting on your 
behavior may encourage you to shift your attitude, because you infer that your attitude 
resembles your behavior, Bern argued. Another example of the reversal strategy was 
described in detail by the sociologist Robert K. Merton (1968), who coined the term 
self-fulfilling prophecy to refer to his own variation on another classic principle called 
the suicidal prophecy by the logician John Venn. Venn's idea was that people's negative 
beliefs about certain outcomes can sometimes inhibit the occurrence of those outcomes, 
and Merton's twist on that theme was that beliefs can sometimes facilitate the occurrence 
of predicted events. 

Using a Case Study for Inspiration 

Another strategy that is used by behavioral and social scientists to come up with research­
able ideas is to exploit a qualitative case study as a point of reference. The term case 
study refers to an in-depth analysis of an individual (as in a clinical case study) or a 
group of people with shared characteristics. There are numerous examples of case studies 
in clinical and educational psychology, as well as in other applied fields (Allport, 1937; 
Davison & Lazarus, 1995; Lazarus & Davison, 1971; McGuire, 1973, 1976; Merriam, 
1988; Ragin & Becker, 1992). Davison (2000) mentioned how psychoanalytic case 
studies stressing developmental factors were exploited by psychoanalytically oriented 
authors to cast doubt on behaviorally oriented theories, whereas behaviorally oriented 
authors used their own case studies and reinforcement explanations to cast doubt on 
psychoanalytic interpretations. In one famous case study, psychologist Leo Kanner was 
engaged in clinical casework with disturbed children when he happened to notice certain 
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striking similarities. To describe those similarities, Kanner (1943) proposed a new 
syndrome that he called "early infantile autism." Characterized by "impaired develop­
ment in social interaction and communication and a markedly restricted repertoire of 
activity and interests," it is also referred to psychiatrically as Kanner's autism (American 
Psychiatric Association, 1994, p. 66). 

Making Sense of a Paradoxical Situation 

A situation that seems to cry out for new ideas can inspire clever researchers suddenly 
confronted with a paradoxical set of circumstances. An example in the field of social 
psychology involved Bibb Latane and John M. Darley (1970), who were confronted with 
a puzzling situation involving a lurid murder in the Queens section of New York City. 
A nurse named Kitty Genovese was coming home from work at 3 A.M. when she was 
set upon by a man who stabbed her repeatedly. More than three dozen of her neighbors 
came to their windows to see what was happening, but not one of them went to her aid 
or phoned for help when they heard her cries of terror (though it took the stalker over a 
half hour to murder her). Latane and Darley were struck by the paradox that, even though 
there were so many opportunities to assist Kitty Genovese, no one bothered to phone the 
police. The psychologists wondered whether the large number of onlookers might be the 
key to explaining the failures of intervention. The reason why so many people failed to 
intervene, Latane and Darley theorized, was that each onlooker believed that someone 
else would phone for help, and the result was a "diffusion of responsibility." 

Metaphorical Thinkipg 

Still another strategy is to use a metaphor or an analogy as a way to describe some­
thing (Holyoak & Thagard, 1995; Kolodner, 1993). McGuire (1964) employed a bio­
logical immunization analogy to come up with a strategy for "inoculating" people 
against the harmful effects of propaganda. He started with the idea that cultural tru­
isms (e.g., the saying that eating healthy makes you live longer, or the maxim that 
brushing your teeth after you eat prevents tooth decay) exist in something analogous 
to a "germ-free" environment, inasmuch as truisms are hardly ever subject to attack. 
Therefore, he reasoned, they should be vulnerable to reversals when people who 
believe them are unexpectedly inundated by a massive amount of counterpropaganda. 
The situation reminded him of the person brought up in a germ-free environment who 
appears to be vigorously healthy but is highly vulnerable to a massive viral attack if 
he or she has not been vaccinated. From that analogy, McGuire logically developed 
specific hypotheses regarding ways to "vaccinate" people with weakened doses of 
counterpropaganda to help them bui~d their defense against future massive attacks of 
the same counterpropaganda, without giving them the "disease." 

In situations like these, the creative scientist is using a metaphor not as an 
aesthetic tool, as it is used by poets, but as an explanatory tool for conceptual com­
prehension and insight (Pepper, 1973). Another example is Stanley Milgram's (1970) 
use of a systems analogy to explain how people living in overcrowded urban areas, 
such as Manhattan, cope with sensory overload. Systems are designed to deal with 
overload, for instance, by disregarding unimportant input; Milgram's example was 
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residing in a city that is so teeming with people that a person feels overloaded and 
ignores a sick drunk on the street. Another way that systems deal with overload is to 
allot less time to each stimulus; Milgram used the example of people who are con­
sumed with making upward strides in their careers and end up spending less and less 
time with family members. Sharing the overload with an alternative system is also a 
coping mechanism; the human analogy is shifting change making from the harried 
bus driver to the passengers by requiring them to have exact bus fare. Systems can 
also block off certain stimuli before they can gain entry, as in using an answering 
machine to screen calls, or having an unlisted telephone number, or, when out for a 
walk, projecting an unfriendly appearance (uncivil behavior) in order to prevent 
any new contacts. Milgram postulated that one result of sensory overload is what 
earlier researchers called "deindividuation" (Festinger, Pepitone, & Newcomb, 1952), 
meaning that overloaded people feel they are no longer respected as individuals. 

SERENDIPITY IN BEHAVIORAL RESEARCH 

The examples we have described barely tap the wide range and variety of circum­
stances in which promising ideas are stimulated in science (McGuire, 1973, 1976). 
What all these cases seemed to have in common is the important element of keeping 
one's eyes and ears open to the world, because one never knows when a chance 
encounttft will excite the creative mind. The term for lucky findings is serendipity, 
which was inspired by a 16th-century tale told of three princes of Serendip (now 
called Sri Lanka) who, through sagacity and luck, had fortuitous insights. The term 
serendipity was coined by Horace Walpole, an 18th-century English novelist. In cur­
rent usage, serendipity usually implies a combination of accident and sagacity (Dean, 
1977; Evans, 1993; Roberts, 1989). 

For example, James Watson (1993), who was a codiscoverer of the DNA double 
helix, observed, "To have success in science, you need some luck" (p. 1812); he went 
on to illustrate that, had it not been for serendipity, he might never have gotten inter­
ested in genetics in the first place: 

I was 17, almost 3 years into college, and after a summer in the North Woods, I came back 
to the University of Chicago and spotted the tiny book What Is Life by the theoretical 
physicist Erwin Schrodinger. In that little gem, SchrOdinger said the essence of life was the 
gene. Up until then, I was interested in birds. But then I thought, well, if the gene is the 
essence of life, I want to know more about it. And that was fateful because, otherwise, I 
would have spent my life studying birds and no one would have heard of me. (p. 1812) 

In fact, as Watson (1969) recounted in his lively autobiographical description of the 
adventure of discovering the structure of the DNA molecule, his encounters with 
serendipity were not limited to that single incident. 

The history of science is replete with examples of lucky encounters and great 
insights that were unanticipated (e.g., Dean, 1977; Roberts, 1989). A case in the area 
of behavioral psychology was recalled by Murray Sidman (1960), who described the 
behind-the-scenes details of a program of experiments by Joseph V. Brady in what 
came to be known as the ulcer project. Brady, who was then working at Walter Reed 
Army Hospital in Bethesda, Maryland, was conducting a series of experiments on 
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monkeys, using long-term conditioning, electric shocks, food reinforcements, and brain 
stimulation. There was an unusually high mortality rate among the monkeys, which 
Brady might have continued to treat simply as an unavoidable problem were it not for 
a remark made to him. A pathologist, R. W. Porter, who had heard about the large 
number of deaths, asked Brady for permission to do postmortems on the next five 
monkeys that died. During the following few months, Porter would occasionally appear 
in Brady's office holding a piece of freshly excised monkey gut. Somewhere in the 
tissue would invariably be a clear hole, which (Porter explained to Brady) was a per­
forated ulcer. One day, Porter remarked that, of several hundred monkeys he had 
examined before coming to Walter Reed, not one had shown any sign of an ulcer. 

Hearing Porter's remark changed the course of Brady's thinking and research. He 
thought to himself: Could ulcers have something to do with the "executive" role the 
monkeys had been forced to play in the stress situation? He designed a new series of 
experiments in which monkeys were subjected to training in the avoidance of electric 
shock and were paired with other monkeys who received the same shocks but without 
the opportunity to avoid them. When the monkeys were examined, those forced to make 
"executive" types of decisions in the stress situation showed stomach ulcers, but the 
"subordinate" monkeys exhibited no unusual pathology (Brady, 1958; Brady, Porter, 
Conrad, & Mason, 1958). Porter's remark had inspired Brady to design a program of 
research to pinpoint the role enactments leading to stomach ulcers. Interestingly, later 
work revealed that rats that lacked "executive" control over stressful events suffered 
weight lost and ulcers from not being made the "executive" animal (Weiss, 1968). 

This example shows not only that serendipity can sometimes start a researcher 
on a new path, but also that when a profound observation leads to further investiga­
tion, new observations may lead to dramatic new insights. "What marks the profound 

• observer from the casual one is the ability to see a pattern or implication that has 
gone unnoticed and, having exposed it, to find it in other social settings," Fine and 
Deegan (1996, p. 439) wrote. 

MOLDING IDEAS INTO WORKING 
HYPOTHESES 

Once the scientist has an idea for an investigation, the next step is to weigh its cred­
ihility and value and, assuming it passes muster, to mold the idea into a working 
hypothesis. Questions that researchers ask themselves at this juncture generally pertain 
10 (a) the novelty, utility, and consistency of the idea; (b) its testability and refutabil­
ity; and (c) the clarity and conciseness of the statement of the idea in the form of a 
Icstable (and empirically refutable) working hypothesis. 

Novelty, Utility, and Consistency 

()nc question is whether others are likely to perceive the idea as novel (not merely 
us a minor variation on an older idea). Research findings from an idea regarded as 
mcrely a trivial departure or a minor contribution would be difficult to publish in a 
,journal that other scientists were likely to read. Each month, there is a flood of journal 
urticles in psychology and related fields. Publishing a paper that few people are apt 
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to notice may add a line or two to one's resume but is unlikely to have any significant 
impact on the field. According to popular wisdom, the bimodal citation rate for journal 
articles is 0 and 1, which, if correct, implies that the vast majority of articles sink 
without a ripple. Since it generally seems to take the same effort and preparation to 
conduct research on a novel hypothesis and on an old hypothesis, why bother with 
the latter? One good answer is that, in a systematic program of research, it is often 
valuable to perform experiments that are relatively exact replications or that contain 
only minor variations on previous studies. It is by means of those and of less exact 
attempted replications that researchers clarify and expand the meaning and generaliz­
ability of reported relationships (McGuire, 1986; Sidman, 1960). 

By utility and consistency, we mean that researchers think about whether the 
idea seems useful in regard to some valued end (McGuire, 1986) and whether it seems 
consistent with what is generally known in their field. The question of utility does 
not have to pertain to a practical application, however, although many accomplished 
scientists certainly get their fulfillment from engaging in research with "purely utilitar­
ian purposes" (Einstein, 1934, p. 1). However, utility might refer just as well to a 
theoretical incentive as to a practical end. Indeed, as Kurt Lewin, the father of mod­
em experimental social psychology, asked: What is more useful than a good theory? 
Consistency with scientific truth implies that ideas that correspond closely with all 
the av~hable evidence are likely to have a higher payoff potential. Caws (1969) sug­
gested that there is then a "powerful Gestalt phenomenon," in which the researcher 
gets closure "by the addition of a premise which is the obviously missing one, the 
only one which fits in with the rest of the pattern" (p. 1377). That closure, he argued, 
is precisely what occurred in the case of evolutionary theory: "All the premises for 
the hypothesis of the origin of species through natural selection were present both for 
Darwin and for Wallace, and, once they had them all (including the indispensable 
contribution from Malthus), they both got the point at once" (p. 1377). 

To ensure that ideas are novel, useful, and consistent, scientists review the lit­
erature and solicit the opinions of respected colleagues with common interests and 
sound critical judgment. However, as Medawar (1969) cautioned, there is no foolproof 
way of guaranteeing that one will not spend weary and scientifically profitless years 
pursuing some pet idea that, although it may have seemed plausible and exciting at 
the time, later proves groundless. Another potential risk is that accepted wisdom is 
not infallible. A famous case involved a young physicist, Michael Polanyi (1963), 
who in 1914 had recently published a formulation of the adsorption (adhesion) of 
gases on solids and, within a few years, had gotten what he believed was convincing 
empirical evidence to support his theory. Albert Einstein happened to be present for 
a conference at which Polanyi was a featured speaker, and Einstein soundly criticized 
Polanyi's "total disregard" of what was then "known" about the structure of matter. 
As it turned out, Polanyi's insight was in fact correct, and he was later awarded the 
Nobel Prize for his work. The lesson? Resist being blinded by what passes for 
"accepted wisdom" if your empirical data truly suggest an alternative. Science is 
certainly not lacking in cases in which leading scientists were unreceptive to bold 
new insights that, while they eventually proved correct, were ignored at the time 
because they seemed counter to popular understanding (Barber, 1961; Beveridge, 
1957; Hurvich, 1969; Mahoney, 1976). 
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Testability and Refutability 

Once one has decided an idea is worth pursuing, traditionally the next question is 
whether it is "testable" and can be stated in a hypothesis that can be empirically 
refuted. The reason why scientific hypotheses must be falsifiable is that, in a complex 
world, it is possible for someone with a fertile imagination to find "support" (e.g., in 
the form of "examples" and testimonials) to prop up any claim, even the most absurd 
fads, fallacies, cults, and ridiculous panaceas (M. Gardner, 1957). Suppose we said 
humans are direct descendants of extraterrestrials who, thousands of years ago, arrived 
in flying saucers to colonize Earth. Though that argument is not refutable by any 
conceivable observation, it would not be impossible for an active intellect to "find" 
or manufacture support for a prior existence on this planet of intelligent creatures 
from outer space. For this reason, astrology has been called the "prophecy that never 
fails." Those people who believe in it interpret all astrological prophecies only in ways 
that support their biases and gratify their superstitions (Bunge, 1982; Shermer, 1997; 
Weimann, 1982). Popper's idea was that it is not verifiability, but falsifiability, that is 
the essential difference between science and nonscience (or pseudoscience). 

Although in physics, and perhaps some other areas, it might be possible to subject 
certain falsifiable consequences of theoretical conjectures to crucial experimental tests 
(and it is certainly true that Popper's idea of falsifiability is accepted by most scientists 
as essential), philosophers of science have often expressed skepticism about the idea of 
crucial experimental tests of theories or hypotheses. In a later chapter we describe Isaac 
Newton's famous Experimentum Crucis to prove that white light is a heterogeneous 
mixture. However, the idea of the "crucial instance" originated in English philosopher 
Francis Bacon's Novum Organum (instantia crucis, Bacon called it), originally published 
in 1620 (Bacon, 1994, p. 210). Modem phi1osopher~ have noted that the testing of theo­
retical conjectures or hypotheses in science often seems to take the form of looking for 
authentication. Some argue that it would be counter to human nature to expect scientists 
who have invested substantial intellectual and financial resources in their research to try 
to "prove that they are wrong." (It is not uncommon, of course, for scientists to attempt 
to show that some rival theory or hypothesis is wrong.) It is true that even when scientists 
find that their hypotheses or theories failed to stand up in some isolated test, they are 
usually loathe to concede the possibility that pet theoretical ideas could be wrong. Rather 
than abandon a favorite theory or hypothesis when faced with "crucial" unfriendly 
evidence, they think about what might have gone wrong in the testing process, or they 
think about how to adjust the theory or hypothesis so that it implies a higher order 
interaction, or they argue that the particular prediction did not accurately represent their 
theory, or that the results were analyzed incorrectly, or that some vital contextual bound­
aries were unexplored or left unspecified (McGuire, 1986). 

Clarity and Conciseness 

I.et us assume the ideas the scientist has can be expressed in the form of falsifiable 
hypotheses. It is important that the terms used are clearly understood; that is, they 
must be properly defined. Traditionally, scientific terms in behavioral research are 
defined empirically and theoretically. The technical name for an empirically based 
definition is operational definition; an example is the definition of "need for social 
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approval" by scores earned on the Marlowe-Crowne Social Desirability scale (chapter 1). 
In contrast to such operational definitions, theoretical definitions do not attempt to 
force our thinking into a rigidly empirical mold (Cronbach & Meehl, 1955; Cronbach & 
Quirk, 1971). In practice, the distinction between these two kinds of definitions is 
often blurred, however, and indeed, some philosophers and behavioral researchers 
have recommended abolishing the distinction as merely an outmoded remnant of 
positivism (e.g., Campbell & Fiske, 1959; Feyerabend, 1988). 

The term operational definition was first proposed by the physicist Percy W. 
Bridgman (1927), who contended that in science the "concept [the term requiring 
definition] is synonymous with the corresponding set of operations" (p. 5). Another 
name for this thesis is operationalism, that is, the idea that scientific concepts can be 
defined on empirical grounds by certain specifiable observational procedures. Subse­
quently, Bridgman (1945) modified his view, once he realized that it is not always 
possible (or even necessary) to define every theoretical concept in observational terms. 
For example, physicists speak meaningfully of the "weight of an object while it is 
falling," although the only instruments for observing its weight would require that its 
motion be stopped (Easley, 1971; Easley & Tatsuoka, 1968). Thus, it is said that 
operational definitions generally "underdetermine" (i.e., only partly define) perfectly 
valid concepts, and therefore it is necessary to measure a given concept by many dif­
ferent pperations-Campbell and Fiske's (1959) strategy of multiple operationalism. 

The difficulty in trying to define a theoretical concept by a single method is 
illustrated by the concept of aggression. Many world bodies-from the 1915 Congress 
of Vienna, and the Hague and Versailles peace conferences, to the United Nations­
have struggled with the definition of aggression. One French law expert who had been 
asked to define aggression concluded, after exhaustive review, that he was like the 
person asked to define an elephant: He did not know how to do it, but he knew it 
was something big (Shenker, 1971). Rosenzweig (1977) mentioned that the United 
Nations held more than 25 years of off-and-on discussions by various committees 
before anything like an adequate definition of aggression was accepted. Like any other 
aspect of behavior, aggression does not occur in a social vacuum but takes its mean­
ing from the total context in which it occurs, and simply varying the perspective 
context can alter perceptions of the "aggressiveness" of behavior (e.g, Crabb & 
Rosnow, 1988). Indeed, the very same behavior may be called aggressive or defensive 
depending on which side of the fence one is viewing it from. Nonetheless, there have 
been valiant attempts to develop unambiguous definitions of aggression. 

For example, one researcher (Rosenzweig, 1977, 1981) defined aggression in 
theoretical terms as "generic assertiveness which includes both constructive and 
destructive behaviors" of various kinds, and he operationalized it by using scores on 
a "picture-frustration test" he had developed. Table 2.1 lists additional definitions of 
aggression, which, like Rosenzweig's, also imply motive or intent as a necessary 
defining feature ("intended to inflict pain," "goal of harming or injuring," "drives 
toward change"). But how shall we objectively measure motive or intent empirically? 
We cannot intrude into people's "intentions" to perceive them directly. We might ask 
them to confess their motives and feelings, but there is never a guarantee they will 
be forthcoming, or that they will not fabricate an answer to trick or try to impress us. 
Some people define aggression in quite general terms, for example, "the delivery of 
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TABLE 2.1 

Some definitions of aggression 

"A response intended to inflict pain or discomfort" (Averill, 1982, p. 30) 

"Any form of behavior directed toward the goal of harming or injuring another living being who is 
motivated to avoid such treatment" (R. A. Baron, 1977, p. 7) 

"Drives toward change, even against the will of others" (Galtung, 1972, p. 85) 

"The fighting instinct in beast and man which is directed against members of the same species" (Lorenz, 
1971, p. ix) 

"The use or threat of force, in territory not clearly one's own, without clear evidence that a majority of 
the emotionally involved people in that territory want such intervention" (R. K. White, 1984, p. 14) 

"Any and every activity of an animal that is directed toward another animal and that inflicts partial or 
complete destruction upon that animal or that is associated with a high probability of so doing" 
(Zillman, 1979, p. 16) 

some measurable injury to another organism" (Baenninger, 1980)-but, it could be 
argued, this definition would include surgeons and dentists and leave out aggressive 
threat displays of the kind that some comparative psychologists study (e.g., threat 
displays in Siamese fighting fish). Another definition states that aggression is an 
"actual or threatened delivery of either physical or psychological intent to injure" 
(Baenninger, 1988). By that definition, an aggressor need not actually do anything 
physically, and the victim need not show any actual effect of the interaction (or even 
be aware of the implied aggression). 

Another alternat1v"e to trying to condense the definition of a psychological con­
cept into a single sentence (or into a single measuring operation) is to formulate a 
typology (i.e., a systematic classification of types). Table 2.2 illustrates this alternative 
approach by showing one researcher's typology of various kinds of aggression, which 

TABLE 2.2 

A typology of aggression showing all possible classes of aggressive behaviors 
in humans 

Physical aggression Verbal aggression 

Direct 

A~tive aggression Punching someone Insulting someone 

aggression Indirect Playing a practical joke on Maliciously gossiping about 
aggression someone someone 

Direct 

Passive aggression Blocking someone's passage Refusing to talk to someone 

1I!(!(ression Indirect Refusing to do some Refusing to give one's consent 
aggression necessary task 

11/,,(,.: Adapted from "Aggression Pays," by A. H. Buss. In J. L. Singer (Ed.), 1971, The Control of Aggression and 
\'iolt'/lCe, New York: Academic Press. Adapted by permission of the author and Academic Press. 



48 CONCEPTUAL AND ETHICAL FOUNDATIONS 

avoids the problem associated with boiling a quite complex concept down to a single 
measuring operation (Buss, 1971). That researcher's typology was developed intui­
tively, but it is possible to use a logical technique known as facet analysis to formulate 
a classification system based on assumed structural patterns; the facets are thought of 
as dimensions of the construct of interest (Foa, 1963, 1965, 1968, 1971). Another 
approach is to use descriptive quantitative procedures, such as factor analysis or a 
multidimensional scaling procedure, to identify the dimensions of interest and then 
the locations of classes of variables along the dimensions. Thus, the idea behind 
formulating a typology is to try to step beyond the assumption that it is possible to 
identify a concept with just a single measuring operation. 

Assuming the researcher has properly defined everything, the last question is 
whether the precise statement of the hypothesis "sticks together" logically (called 
coherence) and whether it is as simple as necessary (called parsimony). To that end, 
scientists are said to use an intellectual ruminative and winnowing process called 
Occam's razor to "cut away" what is superfluous. The use of this sculpting process 
takes its name from William of Ockham, a 14th-century English scholastic philoso­
pher and Franciscan, who was known to his fellow friars as doctor invincibilis. 
Occam's razor requires us to "cut away" what is unnecessary or unwieldy, because 
what can be explained on fewer principles or with fewer entities is explained need­
lessly by more. Occam's razor may not apply to nature, however, because nature can 
be quite complicated (Battig, 1962; Kazdin & Kagan, 1994; Luchins & Luchins, 1965). 
It is simply the principle that we ought to state our hypotheses as succinctly as we 
can, but not to go too far, or to cut off too much-{)r, as is sometimes said, not to 
cut off "chins" but only "beards." 

POSITIVISM, FALSIFICATIONISM, 
AND CONVENTIONALISM 

Before moving on, we will pick up a thread from this and the previous chapter, in 
which we alluded to the distinction between positivism and falsificationism. We will 
briefly describe the development of these two positions, still another position called 
conventionalism, and summarize what seems to be the currently accepted, hybrid 
position of most working scientists. 

Positivism 

The term positivism (or positivisme) was coined by the French philosopher and sociologist 
Auguste Comte in the 19th century. He envisioned that sociology (another term he coined) 
could, by embracing the "positive observational" approach that had served chemistry and 
physics so well, develop into a natural science, which he called "social physics" (Andreski, 
1974, p. 27). Those who rejected this visionary methodology he dismissed with the 
derogatory label of negativiste (i.e., the opposite of a positivist). Over time, Comte 
became so enthralled and hypnotized by his own ideas that he began to apply them to 
virtually everything, calling one of his books Positivist Catechism and suggesting that 
positivism was like a new religion; he formulated detailed prescriptions for daily worship 
that included a substitute for the sign of the cross (Andreski, 1974, p. 9). 
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Logical positivism, simply called positivism by many writers, evolved in the 
1920s and reigned supreme in philosophy for another two decades. In Austria, where 
the logical positivist movement first took hold, it was inspired both by seminal work 
in philosophy (w. M. Simon, 1972) and by observational scientific work. Led by 
Moritz Schlick, an eminent professor of philosophy at the University of Vienna, a group 
of celebrated intellectuals in philosophy, economics, mathematics, and social science 
(such as Rudolf Carnap, Gustav Bergmann, and Kurt GOdel) met for seminar dis­
cussions, calling themselves the Vienna Circle. The idea was proposed that, just as 
there was a sound verifiable basis of knowledge in natural science, there could be a 
similar objective foundation for philosophical propositions. Not all propositions, of 
course, are predicated on empirically based assumptions (e.g., ethical and metaphysical 
assertions), but the idea was that statements authenticated by sensory experience are 
more likely to be true. Logical positivism was said to provide a foundation for knowl­
edge similar in spirit to Cartesian skepticism (cogito ergo sum: "I think, therefore I 
am"-the philosophical principle of Rene Descartes), although with the stipulation that 
it is our ability to experience the material world (not just our ability to ruminate on 
sense experiences) that might serve as a positive basis of knowledge that "cannot be 
doubted." Among the guests from abroad who visited the Vienna Circle were the 
American philosopher W. V. Quine and the British philosopher A. J. Ayer. In 1936, 
Ayer expounded on logical positivism in a book, Language, Truth and Logic, that made 
him into an instant celebrity in academic circles (Edmonds & Eidinow, 2001). Until it 
was overturned by a series of developments, the positivist position ruled the academic 
roost in European and British philosophy in the mid-20th century. 

However, one crack in the positivist foundation had been anticipated by the 
18th-century Scottish philosopher David Hume, who wrestled with induction well 
hefore the idea of posit[vism was even a gleam in Comte's eye. In what was similar 
10 what we called probabilistic assertions in chapter 1, Hume argued that "all knowl­
edge resolves itself in probability" (Hume, 1978, p. 181), and thus it is impossible to 
prove beyond doubt that a generalization is incontrovertibly true. The possibility 
always remains that an exception is lurking in the shadows somewhere. Furthermore, 
il is human nature to explain away exceptions. A classic illustration is the generaliza­
lion that "all swans are white": If I say, "Look, there's a black swan," you might say, 
"Yes, I see it is black, but I wouldn't call it a swan." Popper recognized the slippery 
slope of this dilemma, but he perceived a way of phrasing conjectures that seemed 
10 avoid the problem. In chapter 1 we mentioned Popper's derogatory appellation of 
positivism as the "bucket theory of the mind" because it assumed that knowledge 
proceeds from observation to generalizable knowledge. His "searchlight" metaphor 
implied that risky conjectural propositions (i.e., those that are falsifiable) can be adju­
dicated by critical observations and debate. For some time, in fact, it was true that 
douht and skepticism had been growing even among members of the Vienna Circle, 
lind Popper's insights reinforced those misgivings. The final demoralizing blow 
occurred in June 1936, when Schlick, while on his way to deliver a lecture at the 
llniversity of Vienna, was shot to death by a crazed student. This was during a period 
of increasingly pro-Nazi sentiment in Austria, and passions and hatred had been 
inllamed against intellectuals, whose views were said to be a threat to the "new world 
oHler." These events conspired to lead to the demise of the Vienna Circle and also 
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signaled the beginning of the end of logical positivism. In an absorbing account of 
that period, Edmonds and Eidinow (2001) noted that Ayer, when later asked about the 
failings of logical positivism, replied, "Well I suppose that the most important of the 
defects was that nearly all of it was false" (p. 157). 

Falsificationism 

In 1934, Popper had published the German edition of his seminal book, Logik der 
Forschung (The Logic of Scientific Discovery). In 1936, he left Austria to accept a per­
manent lectureship at Canterbury University College in Christchurch, New Zealand. After 
World War II, he emigrated to England and spent the remainder of his academic career 
at the London School of Economics. As he later described his own thinking, it was quite 
early in his career that he began to harbor doubts about the verification principle that 
was the foundation of positivism. In 1919-1920, while he was still a student, he was led 
to what he later described as certain "inescapable conclusions," on the basis of which he 
formulated his own antipositivist view, falsificationism. As he recollected, he had origi­
nally dismissed his own ideas as "almost trivial" and did not recognize their full scientific 
importance or their philosophical significance until a fellow student suggested they be 
publishe(j. In the 1940s, Popper presented the lecture in which he first invoked the 
"bucket theory" metaphor to disparage the positivist strategy of verification. 

Like the logical positivists, Popper was not only an empiricist but also a scien­
tific realist (i.e., he believed in universal truths and assumed the existence of an 
objective reality quite apart from our perceptions or experience of it). Where he took 
issue with them, however, was in their faith in the verifiability principle. Popper's 
favorite examples of the absurdity of the positivist strategy were Marxist theory, 
Freudian psychoanalysis, and Alfred Adler's individual psychology: 

A Marxist could not open a newspaper without finding on every page confirming evidence 
for his interpretation of history; not only in the news, but also in its presentation-which 
revealed the class bias of the paper-and especially of course in what the paper did not 
say. The Freudian analysts emphasized that their theories were constantly verified by their 
"clinical observations." As for Adler, I was much impressed by a personal experience. 
Once, in 1919, I reported to him a case which to me did not seem particularly Adlerian, 
but which he found no difficulty in analyzing in terms of his theory of inferiority feelings, 
although he had not even seen the child. Slightly shocked, I asked him how he could be 
so sure. "Because of my thousandfold experience," he replied; whereupon I could not 
help saying, "And with this new case, I suppose your experience has become thousand­
and-one-fold." (Popper, 1963, p. 35) 

The falsifiability criterion has for some years been the standard in science to 
which other views of the justification of knowledge are compared (W. M. Simon, 
1972). In philosophy of science, however, it is only one of a number of views that 
have superseded the logical positivist position (Stockman, 1983). To be considered 
scientific, according to the "fallibilists" (Popper's name for people who embraced 
falsificationism), the proposition in question (a certain theoretical prediction, for 
example) must be stated in such a way that it can, if incorrect, be rejected by some 
finite set of observations. That viewpoint does not simply mean, however, that because 
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certain predictions fail a test, the theory is automatically wrong. But if one theory 
(call it T1) is more falsifiable than another theory (T2), and if TI has survived more 
severe empirical testing than T2, it is presumed that TI must be a better theory than 
T 2' Popper's quarrel with Marxism, Freudian psychoanalysis, and Adlerian psychology 
was that there "seemed to be an incessant stream of confirmations, of observations 
which 'verified' the theories in question; and this point was constantly emphasized by 
their adherents" (Popper, 1963, p. 35). 

In theory, that all sounds very reasonable, but in practice, there were several 
problems with Popper's conceptualization. First, unless a theory is restricted to a 
single statement, it is hard to imagine how the entire theory might be falsified by even 
the most reliable observation. Theories, at least in the behavioral and social sciences, 
are usually so amorphous and cryptic that substantial portions may extend beyond the 
range of empirical observations, or beyond a single set of observations. The elimina­
tion of part of a theory may be possible, but it would hardly constitute rejection as 
required by falsificationism. Second, social and behavioral scientists do not always 
agree on what constitutes an adequate test of a theory, or even on how to analyze and 
interpret the results in order to falsify the theory. Third, it could be argued that finding 
circumstances in which a theory does not hold may be tacit evidence of the circum­
scribed nature of all knowledge. In the previous chapter we mentioned Heisenberg's 
idea that grand theories in physics are "closed off' in ways that cannot be precisely 
specified. As humans are neither prescient nor omniscient, it is impossible to foresee 
the exact boundaries of any given theory (Heisenberg, 1971). Similarly, it has been 
argued that theories in psychology are constrained by boundaries that may forever 
wait to be discovered (Rosnow, 1981; Rosnow & Georgoudi, 1986). 

Conventionalism 

If scientific theories do not develop in the way that falsificationism described, then how 
do they grow and evolve? Still another view, called conventionalism, plays on the role 
of language. This position, known as the Duhem-Quine thesis, originating in the work 
of French physicist, philosopher, and historian of science Pierre Duhem (who has fre­
quently been identified with the positivist tradition), was later refined by American 
philosopher W. V. Quine (whose name was mentioned earlier in this discussion). One 
of its implications is that scientific theories can never be logically refuted by any body 
of evidence (Laudan, 1982; Nye, 1985). The reason generally offered is that theories 
evolve ostensibly on the basis of certain linguistic conventions (like "simplicity"), not 
merely on the basis of their ability to withstand empirical disconfirmation. Thus, if there 
are no such things as completely decisive falsifying tests, the possibility of a crucial 
experiment (experimentum crucis) must be a myth. What happens when a "refutation" 
occurs? According to Duhem (1954), it is usually taken as a signal that the theory needs 
tinkering or adjustment, not that it must be discarded. Thus, whereas Popper argued that 
new theories replace outmoded theories in a scientific game of empirical jeopardy, the 
Duhem-Quine thesis implies that scientific theories are fluid, and that new ideas or 
tindings may become appendages of older theories. Sometimes, however, the modifica­
tions are so fundamental that it is difficult to recognize the old theory, or impossible to 
lise the new theory to explain phenomena accounted for by the old theory. 
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A prominent example of such a metamorphosis is the evolution of cognitive 
dissonance theory (Festinger, 1957). Leon Festinger got his initial inspiration in the 
1950s, after reading an article by the noted Indian psychologist Jamuna Prasad 
(1950) that described the aftermath of terrible earthquakes in India. Festinger was 
puzzled by Prasad's report that villagers several miles away from one earthquake 
had been swamped in rumors of impending disasters. That finding did not seem to 
make sense, because the rumors predicting a further calamity were being spread by 
those who had not been harmed by the earthquake. Festinger cleverly reasoned that, 
having no concrete grounds for their anxiety, the earthquake survivors had uncon­
sciously manufactured a rationale that was consistent in their thinking and reduced 
their cognitive dissonance. This drive, dissonance reduction, then became the basis 
of one of the most influential theories in social psychology and, in the 1960s, 
stimulated an enormous amount of research to test various claims and assumptions 
of how dissonance arose, affected cognition and behavior, and could be reduced. 
According to Festinger's theory, the dissonance produced by discrepant cognitions 
functions in the same way as a biological drive: If we are hungry, we do something 
to reduce our feeling of hunger; if we experience cognitive dissonance, we do 
something to reduce our discomfort. Countless studies followed, resulting in a series 
of emendations of Festinger's theory. As a result of all the additions and modifica­
tions,l' cognitive dissonance theory now asserts that being responsible for one's own 
actions is essential for dissonance reduction to occur. But how could the earthquake 
survivors have possibly felt responsible for their own survival? The disaster must 
have come as a complete surprise to them, and their personal survival was beyond 
their own control (although some may have rationalized that it was the responsibil­
ity of a divine will). Ironically, the old theory of cognitive dissonance is no longer 
serviceable, and the new theory cannot explain the results that inspired Festinger in 
the first place (Greenwald & Ronis, 1978). 

An Amalgamation of Ideas 

The views of most pragmatic behavioral researchers about the requirements of 
scientific theories and hypotheses now seem a mixture of falsificationism, conven­
tionalism, and practicality. As is consistent with Popper's argument, most would 
agree (a) that a theory or hypothesis, to be considered scientific, must be stated in 
a form so that, if it is false, aspects can be disconfirmed by a finite set of observa­
tions (called "finite testability" by H. A. Simon, 1983, p. 355), and (b) that a 
scientific theory or hypothesis can only be falsified and can never be proved cor­
rect. Consistent with the Duhem-Quine thesis, most behavioral researchers would 
also probably agree (c) that (in actuality) scientific theories can evolve as additions 
to, as well as replacements of, outmoded models of behavior. However, they would 
perhaps add (d) that if a conjectural proposition does not receive support, the 
theoretical model on which it is based might not be right. But (e) if a formulation 
of behavior is repeatedly not supported, despite every attempt by scientists to 
produce rigorously designed tests, then it may be discarded or revised. However, 
(f) if a working hypothesis derived from a theory is supported, the model on which 
the hypothesis is based is not immediately proved to be correct, as it is impossible 
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to rule out the prospect that a theory still waiting to be created might better account 
for all the existing results. Nonetheless, (g) as no experiment is entirely free of all 
alternative explanations, those known and those waiting to be discovered, both 
findings consistent and findings inconsistent with a theory's predictions can have 
probative value (Brinberg, Lynch, & Sawyer, 1992). Of course, for all these criteria 
to be applicable, the theory must also be precisely articulated so there will be no 
confusion or disagreement about what is asserted or predicted (H. A. Simon, 1979; 
Simon & Groen, 1973). 

TYPE I AND TYPE II DECISION ERRORS 

We turn now to null hypothesis significance testing (NHST), the dichotomous decision­
making process in which a hypothesis to be nullified (called the null hypothesis, 
symbolized as Ho) is contrasted with a specific working hypothesis (called the alternative 
hypothesis, HI). In most cases in behavioral research, the Ho implies that no relation­
ship between two variables is present in the population from which the sample data 
were drawn, or that there is no difference in the responses of treated and untreated 
subjects to an experimental manipulation, whereas HI does imply a relationship or real 
difference. Table 2.3 is a traditional way of representing four possible outcomes of 
NHST. The mistake of rejecting Ho when it is true and should not have been rejected 
is called Type I error, and the mistake of not rejecting Ho when it is false and should 
have been rejected is called Type II error. The p value (or significance level) indicates 
Ihe probability of Type I error and is denoted as alpha (a) when p has been stipulated 
in advance (as a threshold or cutoff point). The probability of Type II error is symbolized 
as beta (Il). Confidenee, defined as 1 - ex, is the probability of not making a Type I 
error. The power of a test, or 1 - 13, indicates the probability of not making a Type II 
error (Le., the sensitivity of the significance test in providing an adequate opportunity 
10 reject Ho when it warrants rejection). As NHST is now construed, it is a hybrid 

TARI.E 2.3 

.·'our outcomes involving the decision to reject or not to reject the null 
hypothesis (Ho) 

Sdentist's decision 

Ikjcct null hypothesis 

110 lIot reject null 
hypothesis 

Actual state of affairs 

Null hypothesis is true 

Type I error refers to a 
decision to reject Ho when 
it is true and should not be 
rejected. Alpha (a) is the 
probability of Type I error. 

No error. The confidence 
level (1 - a) refers to the 
probability of not making a 
Type I error. 

Null hypothesis is false 

No error. Statistical power (1 - \3) 
refers to the probability of not 
making a Type II error. 

Type II error refers to a failure 
to reject Ho when it is false and 
should be rejected. Beta (\3) is 
the probability of Type II error. 
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endeavor that evolved out of the work (and arguments) of several different statisticians 
(for historical accounts, see Gigerenzer, Swijtink, Porter, Daston, Beatty, & KrUger, 1989; 
Stigler, 1986). 

It has been well documented that behavioral researchers (as well as many 
other scientists who use NHST) have gotten into the habit of worrying more about 
Type I errors than about Type II errors. Some philosophers have suggested that this 
greater concern over Type I errors reflects the "healthy skepticism" of the scientific 
method (Axinn, 1966; Kaplan, 1964), the idea being that Type I error is an error of 
"gullibility," and Type II error is an error of "blindness." An analogy of Wainer's 
(1972) helps illustrate what is implied by this use of the terms gullibility and blind­
ness. Suppose you were walking along the street and a shady character approached 
and said he had a quarter to sell you "for only five dollars." You might say to 
yourself, "He must think I'm stupid to ask me to hand over five dollars for an 
ordinary quarter." As if reading your mind, he says, "Don't think it's an ordinary 
quarter, pal, but one with special properties that make it worth five dollars. This 
quarter doesn't just come up heads and tails equally often; it is a biased coin. If 
you're as shrewd as you look, you're going to win fame and fortune by simply 
betting on which outcome is the more likely." 

In this illustration we will think of the alternative hypothesis (HI) as predict­
ing thl\1 the probability of heads is not equal to the probability of tails in the long 
run. And since the null (Ho) hypothesis and the alternative hypothesis are mutually 
exclusive, we think of Ho as predicting that the probability of heads is equal to 
the probability of tails in the long run. Thus, if Ho is true, HI cannot be true. In 
Table 2.4 we have recast this situation into the framework of Table 2.3. The impli­
cation of Table 2.4 is that "Type I error" is analogous to being "taken in" by a 
false claim that the coin is biased when it is merely an ordinary coin (i.e., an error 
of gullibility), whereas "Type II error" is analogous to failing to see that the coin 
is biased as claimed (i.e., an error of blindness). We could subject HI to an empir­
ical test by flipping the coin a large number of times and recording each time 
whether it landed heads or tails. We could state a particular probability (p value) 
as our alpha rejection criterion and be as stringent as we like in setting such a 
rejection criterion. However, we may eventually pay for this decision by failing to 
reject what we perhaps should reject. 

TABLE 2.4 

Example illustrating definitions of type I and type II errors 

Actual state of affairs 

Your decision 

The coin is not fair (i.e., it can win you fame 
and fortune, since it will not come up heads 
and tails equally). 

The coin is fair (i.e., it cannot win you fame 
and fortune, since it is just an ordinary coin). 

The coin is fair 

Error of "gullibility" 

No error 

The coin is not fair 

No error 

Error of "blindness" 
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STATISTICAL SIGNIFICANCE AND THE 
EFFECT SIZE 

Because a complete account of "the results of a study" requires that the researcher 
report not just the p value but also the effect size, it is important to understand the 
relationship between these two quantities. The general relationship, which we will 
refer to again in the second half of this book, is given by 

Significance test == Size of effect X Size of study. 

In other words, the larger the study in terms of the total number (N) of observations or 
sampling units, or the larger the effect size, the larger the value of the significance test 
(e.g., t, F, X2) and, therefore, the smaller (and usually more coveted) the p value. This 
is true unless the size of the effect is truly zero, in which case a larger study (i.e., a larger 
N) will not produce a result that is any more significant than a smaller study (although 
clTect sizes of exactly zero are rarely seen in behavioral research). A further implication 
of this general relationship is that if we are able to specify any two of these three factors, 
the third can be determined. Thus, if we know the level of risk of drawing a spuriously 
positive conclusion (i.e., the p value) and can estimate what the size of the effect will 
he, we can readily determine how large a total sample we will need to achieve a desired 
level of statistical power. (We show how in chapter 12.) 

In fact, any particular test of significance can be obtained by one or more 
definitions of the effect size multiplied by one or more definitions of the study size. 
For example, if we were interested in chi-square (discussed in detail in chapter 19), 
we could write 

yJl) == <1>2 X N, (2.1) 

where xtl) is a chi-square on 1 degree of freedom (e.g., from a 2 X 2 table of 
l"Ounts), <1>2 is the squared Pearson product-moment correlation between member­
ship in the row category (scored 1 or 0) and membership in the column category 
(scored 1 or 0), and N (the study size) is the total number of sampling units 
Il'.g., found in the cells of the 2 X 2 table). (We will see Equation 2.1 again later 
ill this book.) 

Were we interested in t as a test of significance (discussed in chapter 12), we 
would have a choice of many equations (Rosenthal, 1991a, 1994b), of which two are 

(2.2) 

II lid 

t == MJ - M2 X f(jf 
<1pooled 2' 

(2.3) 

whcre, in Equation 2.2, r is the point-biserial Pearson r between group membership 
('~·\lred 1 or 0) and obtained score. In Equation 2.3, the effect size indicator is 
H'llrCsented as Cohen's d (i.e., the difference between means, M J and M 2, divided by 
,hl' pooled standard deviation, 0"). In both equations, df is the degrees of freedom 
(IIMlally N - 2). (We will see Equations 2.2 and 2.3 later in this book as well.) 
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When the relationship between statistical significance and the effect size is 
understood, it is less likely that researchers who employ NHST will do significance 
testing with low power. In the 1960s and later, Jacob Cohen hammered this point 
home in articles and a handy reference text on the analysis of statistical power 
(e.g., Cohen, 1962, 1965, 1988). To illustrate, suppose Smith conducts an experi­
ment (with N = 80) to show the effects of leadership style on productivity and 
finds that Style A is better than Style B. Jones, however, is skeptical (because 
he invented Style B) and repeats Smith's study with N = 20. Although Jones's 
results are clearly in the same direction as Smith's, Jones nevertheless reports a 
"failure to replicate" because his t was only 1.06 (df = 18, p > .30), whereas 
Smith's twas 2.21 (df = 78, p < .05). Although it is certainly true that Jones 
has not replicated Smith's t test result or p value, the magnitude of the effect 
obtained by Jones (as measured by the Pearson correlation statistic) is r = .24, 
which is exactly the size of the effect in Smith's study! In other words, Jones 
has found exactly the same relationship that Smith found even though the obtained 
t and p values of the two studies are not very close. Because Jones's total sample 
size (N) was so much smaller than Smith's total sample size, Jones's power 
to reject at p = .05 is substantially less than Smith's power. In this case the 
power (i.e.~ 1 - 13) of Jones's t test is .18, whereas the power of Smith's t test 
is .57. 

TWO FAMILIES OF EFFECT SIZES 

Two of the most important families of effect sizes in behavioral and social science 
are the correlation family and the difference family, and we will discuss in more detail 
examples of each of these classes later in this book. There is also a third family, which 
we call the ratio family, and within these three families there are subtypes as well 
(Rosnow & Rosenthal, 2003). Three primary members of the difference family are 
Cohen's d (i.e., the effect size component of Equation 2.3), Hedges's g, and Glass's Ll. 
All three of these effect size indices employ the same numerator (the difference 
between the means of the two groups that are being compared), but each uses a 
slightly different denominator: 

MI-M2 Cohen's d = ---'-"-'---"'­
O"pooJed 

MI-M2 Hedges's g = ~--=­SpoOled 

Glass's Ll = ..:.:M~I_-_M=2 
Scontrol ' 

(2.4) 

(2.5) 

(2.6) 

with terms in Cohen's d as indicated previously (Equation 2.3). In Equation 2.5, Sis 
the square root of the pooled unbiased estimate of the popUlation variance. In 
Equation 2.6, the Scontrol is like the S in the denominator of Hedges's g, but it is com­
puted only for the control group. Computing S only from the control group is a use­
ful procedure when we know or suspect that the treatment may affect not only the 
mean but also the variance of the scores in the treatment condition. 
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The second important family of effect sizes is the correlation family. In 
Equation 2.1 we noted a popular incarnation of this family, the phi coefficient (<\», 
which is a special case of the Pearson product-moment r when both variables are 
dichotomous. In Equation 2.2 we noted another special case, the point-biserial correlation 
(rpb)' which is the Pearson product-moment correlation between a dichotomous variable 
and a continuous variable. Also included in the correlation family is zr (the Fisher 
transformation of r) and various squared indices of rand r-like quantities such as r2 

(called the coefficient of determination), 0 2 (omega squared), 8 2 (epsilon squared), and 
1]2 (eta squared). Because squared correlational indices lose their directionality (Is the 
treatment helping or hurting, is the correlation positive or negative?), they are of little 
use as effect size indices in scientific work in which information on directionality is 
essential. There are several other reasons that we prefer the product-moment r rather 
than squared indices, and we explain those reasons in chapters 11 and 12. To anticipate 
a little, another reason is that squared indices can be misleading in terms of the practical 
value of small effect sizes. 

To illustrate, at a specially called meeting held in December 1987, it was decided 
to end, prematurely, a randomized double-blind experiment on the effects of aspirin 
in reducing heart attacks (Steering Committee of the Physicians' Health Study Research 
Group, 1988). The reason for this unusual termination was that it had become abun­
dantly clear that aspirin prevented heart attacks (and deaths from heart attacks), and 
thus it would have been unethical to continue to give the control subjects a placebo. 
The subjects in that study were 22,071 male physicians, roughly half of whom (11,037) 
had been given an ordinary aspirin tablet (325 mg) every other day, and the remain­
der of whom (11,034) had been given a placebo. A portion of the results of the study 
are shown in Table 2.5. Part A shows the number of participants in each condition 
who did or did not suffe! a heart attack, and Part B shows the survival rates in the 
heart attack group. And what was the magnitude of the experimental effects that were 
so dramatic as to call for the termination of that research? To find the answer, we 
compute the phi coefficient on the raw data in this table. In Part A, we find the effect 
size r = .034, and thus the corresponding r2 = .00 or, to four decimal places, .0012. 

TABLE 2.5 

Aspirin's effect on heart attack 

A. Myocardial infarctions in aspirin and placebo conditions 

Condition 

Aspirin 

Placebo 

No heart attack 

10,933 

10,845 

B. Fatal and nonfatal myocardial infarctions 

Condition 

Aspirin 

Placebo 

Lived 

99 

171 

Heart attack 

Died 

5 

18 

104 

189 
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In Part B, the effect size r = .084, with a corresponding r- = .0071. Using a simple 
method described in more detail in chapter 11 (the binomial effect size display, or 
BESD), we would find that these r values imply a 3.4% greater success rate for aspirin 
than for placebo in preventing a heart attack and an 8.4% greater success rate for 
preventing death when a heart attack has occurred. The point is that, had we considered 
only the squared rs, we might have concluded there were no benefits of taking aspirin, 
a costly mistake to make in terms of human lives saved. 

It is sometimes necessary to decide how to convert effect size indices to one 
particular index (e.g., in meta-analytic work, discussed in chapter 21). In that situation, 
there are several reasons to view the family of correlational indices as a more generally 
useful group of effect size measures. Suppose the data came to us as rs. We would 
not ordinarily want to convert rs to ds, gs, or Lls, because the concept of a mean 
difference index makes little sense in describing a linear relationship over a great 
many values of the independent variable of interest. On the other hand, if we were 
working with effect sizes reported as ds, gs, or Lls, the r index (as we show in chapter 
11) makes perfectly good sense in its point-biserial form (two levels of the independent 
variable of interest). If the data were structured in a 2 X 2 table of counts, the phi 
form of the effect size index would be suitable. However, suppose the design involved 
more than two conditions. For example, suppose a hypothesis called for five levels 
of arousal, and the scientist predicted better performance on the outcome measure at 
the middle levels of arousal than at the more extreme levels, and the very best per­
formance in the midmost level of arousal. The magnitude of an effect associated with 
a curvilinear trend is quite naturally indexed by r (discussed in chapter 15), but not 
so naturally by d, g, or Ll. 

INTERVAL ESTIMATES AROUND 
EFFECT SIZES 

Earlier we also mentioned the importance of reporting interval estimates along with 
effect size estimates. For example, the confidence interval of the effect size is the 
margin of error that surrounds the obtained value of the effect size index. For exam­
ple, a 95% confidence interval around the obtained effect size r of .16 might range 
from a lower limit r of .10 to an upper limit r of .22. Our interpretation of this 95% 
confidence interval would be that there is a 95% chance the population value of the 
r that our obtained effect size r of .16 was trying to estimate falls between the lower 
and upper limits of .10 and .22. Of course, researchers need not restrict themselves 
to only 95% confidence intervals if they prefer working with more (or less) stringent 
levels of confidence. Decreasing the confidence level from 95% to 90% will shrink 
the interval, and vice versa. Increasing the size of the study (i.e., working with a larger 
total sample size) will also shrink the confidence interval. 

Another type of interval estimate (described in chapter 11) is called the null­
counternull interval (Rosenthal & Rubin, 1994). This interval estimate is based on 
the actual p value rather than on a previously specified alpha. The "null" anchoring 
one end of the interval is the effect size that is associated with the null hypothesis 
(and is typically zero); counternull refers to the non-null magnitude of the effect size 
that is larger than the obtained effect size and is supported by the same amount of 
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evidence as the null value of the effect size. This interval (null value to countemull 
value) can alert a researcher to whether a conclusion of "no effect" might be in error. 
In this way it provides some protection against mistaken interpretations of failure to 
reject the null hypothesis (Rosenthal & Rubin, 1994; Rosnow & Rosenthal, 1996a). 

SUMMING UP 

We will have more to say about all these topics later on. The vital point here is that, if 
the results of a study always include both an estimate of the effect size and an interval 
estimate, the researchers better protect themselves against Type I and Type II errors. In 
behavioral and social research, there is little doubt that Type II error is far more likely 
than Type I error (e.g., Brewer, 1972; Chase & Chase, 1976; Cohen, 1962, 1988; Haase, 
Waechter, & Solomon, 1982; Sedlmeier & Gigerenzer, 1989). The frequency of Type 
II error can be reduced drastically by our attention to the magnitude of the estimated 
effect size. If the estimate is large and the researcher finds a nonsignificant result, the 
researcher would do well to avoid concluding that variables X and Y are not related 
(i.e., that "nothing happened"). Only if the pooled results of a good many replications 
point to a very small effect (on the average), and to a combined test of significance that 
does not reach the researcher's preferred alpha level, would a researcher be justified in 
concluding that no nontrivial relationship exists between X and Y. 

Table 2.6 summarizes decision errors and possible consequences as a joint func­
tion of the results of significance testing and the population effect size (Rosenthal, 1983, 
1991a). Suppose a nonsignificant effect. What should it tell the researcher? Low power 
may have led to failure to detect the true effect, and this line of investigation should 
probably be continued wit;h. a larger sample size before the researcher concludes that 
"nothing happened." Had the medical researchers in the aspirin study worked with a 
much smaller total sample, they would not have gotten statistical significance: It would 

TABLE 2.6 

Population effect sizes and results of significance test­
ing as determinants of inferential errors 

Results of significance testing 

Population effect size Not significant Significant 

Zero No error Type I error 

Small Type II errora No errorb 

Large Type II error~ No error 

"Low power may lead to failure to detect the true effect; however, if the true effect 
is quite small, the costs of this error may not be very great. 

h Although this is not an inferential error, if the effect size is very small and N is 
very large, we may mistake a result that is merely very significant for one that is 
(lr practical importance. 

CLaw power may lead to failure to detect the true effect, and with a substantial 
true effect the costs may be very great. 
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have been like trying to read small print in a very dim light and finding it harder to make 
out the information. On the other hand, suppose a significant but small effect. What 
should it tell the researcher? The answer depends on what the researcher considers the 
practical importance of the small estimated population effect. In the aspirin study, even 
a "quite small" effect was considered important, because the criterion was "who lives 
and who dies." The lesson is that a test of significance without an effect size estimate 
fails to tell the whole story. Fortunately, as we shall see later, just from the basic 
information that many journals require scientists to report, effect sizes (and interval 
estimates) can usually be directly derived even from the barest of raw ingredients 
(e.g., Rosenthal & Rubin, 2003; Rosnow & Rosenthal, 1996a). 

Finally, we also want to mention a new statistic proposed by Peter Killeen 
(2005) that increases the utility of P values. This statistic, called Prep' gives the prob­
ability that a same size replication (e.g., of a treatment vs. control group study) will 
obtain an effect in the same direction as did the original study. 

Killeen's equation for estimating Prep is: 

1 
prep = --( ---=-p-)-C-2/-=-3 

1 + -1---p 

(2.7) 

J' 

where P is the obtained significance level. Table 2.7 shows for 15 P values the 
corresponding estimates of Prep. It should be noted that Prep is not an effect size 
index, nor is it intended to be. But it does give us far more useful information to 
learn that there is an 88%, 96%, or 99% chance of obtaining the same direction 
of result on replication (assuming the context and the experimental circumstances 
are relatively unchanged) than that our P values are .05, .01, or .001. In the end, 
of course, significance tests and their associated P values alone are not nearly as 
informative as estimates of effect sizes along with their corresponding interval 
estimates (e.g., 95% confidence intervals), but Prep is a useful advance as well. 

TABLE 2.7 

Probabilities of replicating the 
direction of treatment effects (Prep) 
from obtained p values 

P value Prep P value Prep 

.50 .500 .01 .955 

.40 .567 .005 .971 

.30 .638 .001 .990 

.20 .716 .0005 .994 

.15 .761 .0001 .998 

.10 .812 .00005 .999 

.05 .877 .00001 .9995 

.025 .920 
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As mentioned in chapter 2, shortly after World War II, Karl Popper settled in England 
and took a position at the London School of Economics. On October 25, 1946, he 
gave an invited talk at Cambridge University before the Moral Science Club. Chairing 
the club was a renowned professor of philosophy at Cambridge, Ludwig Wittgenstein, 
whose views dominated British philosophy at the time (Monk, 1990). Also present 
was another eminent Cambridge professor of philosophy, Bertrand Russell, whose 
seminal work had been an early inspiration for Wittgenstein and Popper (though 
Wittgenstein came to regard Russell as having lost his edge and regarded his work 
as antediluvian). Usually at these meetings a visiting lecturer would present prelimi­
nary remarks, and Wittgenstein would then dominate the discussion. Popper and 
Wittgenstein harbored a deep cynicism concerning each other's views, and Russell 
had taken on the role of a kind of umpire at this meeting. Central heating was still 
virtually unknown in Britain, and the'room was warmed by a coal hearth. Every so 
often, someone would poke the coals and clear out some of the ash in order to stir 
up a little more heat. 

What ensued that day became the stuff of legend in philosophy. In their book 
entitled Wittgenstein's Poker, Edmonds and Eidinow (2001) recounted the controver­
sial incident that occurred. Popper was expounding on moral philosophy when 
Wittgenstein, who had grabbed a red hot poker and was gesticulating with it, shouted 
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that Popper was confusing the issues, and challenged him to name one valid moral 
principle. The sequence of events is murky, but apparently Russell told Wittgenstein 
to put the poker down, saying to him that it was he who was confusing the issues. 
Popper, in response to Wittgenstein's challenge to state a valid moral principle, 
responded with something like, "One ought not to threaten visiting lecturers with pok­
ers." Witnesses to the incident have never agreed on whether Wittgenstein threatened 
Popper (as Popper claimed), or even whether Wittgenstein was still present in the room 
when Popper took up the challenge. In one version of the story (which Popper repeated 
in his memoirs), it was Popper's pungent retort that aggravated Wittgenstein so much 
that he stormed out of the room, slamming the door behind him. 

The controversy between Wittgenstein and Popper revolved around their different 
views of the proper role of philosophy. In an influential book entitled Tractatus 
Logico-Philosophicus, which first appeared in German in 1921 and was published in 
an English translation the following year (with an introduction by Russell), Wittgenstein 
had deconstructed philosophy to an atomistic level. Consisting of a series of numbered, 
tightly condensed, precisely articulated statements, the book begins, "The world is all 
that is the case," and ends with the oracular statement: "What we cannot speak about 
we must pass over in silence" (Wittgenstein, 1978, pp. 5, 74). Going back to the ancient 
Greeks, the orientation of philosophy had been the elucidation of problems-moral 
principle~, metaphysical and epistemological issues, and so on. Wittgenstein dismissed 
that work as futile wordplay, contending instead that philosophers' imprecise use of 
ordinary language had trapped them in a bottomless pit of ambiguity. There simply 
are no valid problems in philosophy, he argued, but only linguistic puzzles to be 
resolved by revealing the misuse of language. Popper, who was as irascible as 
Wittgenstein, thought this argument was nonsense, and Russell had come to think that 
Wittgenstein's dismissal of the problem-oriented approach jeopardized the existence 
of philosophy as an academic discipline. Nonetheless, Wittgenstein's view dominated 
the British scene, and those who dared to disagree with it (like Popper) were relegated 
to the role of disgruntled outsiders. 

Wittgenstein's and Popper's philosophical views notwithstanding, the distinction 
between puzzles and problems offers a convenient way to conceptualize ethical issues 
in science. The usual dictionary definition of a problem implies a dubious matter that 
is proposed for discussion and a solution. The problem of moral accountability in 
science has provoked considerable discussion and has led to a number of proposed 
solutions in the form of rules, regulations, and ethical guidelines. Their interpretation 
and implementation, however, can often be mystifying for researchers, who are obliged 
to puzzle out ways of adhering to ethical and scientific values simultaneously. We 
begin by giving a sense of this delicate balancing act, and throughout this chapter we 
mention examples of how scientists need to be attentive to societal and scientific 
imperatives. We also refer to the term ethics (derived from the Greek ethos, meaning 
"character" or "disposition"), which has to do with the values by which the conduct 
of individuals is morally evaluated. 

Although there are a number of ethical codes in the United States and abroad, we 
will focus on the most prominent set of guidelines in the field of psychology, that pro­
mulgated by the American Psychological Association (APA). We review the societal con­
text in which these guidelines were originally inspired, and we then give a flavor of the 
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most recent guidelines. Federal and state legal dictates imposing restrictions on the use 
of human subjects take precedence over the APA guidelines, but the APA ethics code 
(American Psychological Association, 1998) is far more focused and restrictive in many 
respects. Because many behavioral researchers belong not to the APA, but to the 
Association for Psychological Science (APS) or to other, more specialized societies (some 
with their own ethical guidelines, such as the Society for Research in Child Development, 
1993), there is no consensus in behavioral research. Nonetheless, we will use the framework 
of the APA code as a way of organizing our discussion of ethical issues, including conflicts 
between ethical accountability and the technical demands of scientific practices. Although 
the primary emphasis of this discussion is on research with human subjects, we end with 
a brief discussion of the ethical implications of using animals in behavioral research. 

A DELICATE BALANCING ACT 

As Wittgenstein implied, the very language we use is loaded with traps for the unwary. 
For example, when clinically oriented researchers say that certain behavior is "norma­
tive" (i.e., usual or typical), the implication to the layperson is that such behavior is 
to be expected and is therefore desirable. When social researchers study prejudice or 
mental illness, they touch on highly charged societal problems. Even when research­
ers study topics that may seem to them to be neutral (learning behavior, for example), 
they must realize that to others these topics may be supercharged with values and 
conflicts. Thus, it seems that virtually every aspect of the research process may be 
viewed as value-laden to some degree, from the statement of a topic, through the 
conceptualization and implementation of the investigation, to the data analysis, inter­
pretation, and reporting of findings. When research involves a societally sensitive 
issue (Lee, 1993), conce~s about values and ethics are further heightened. To address 
such concerns, various national codes of ethics have been formulated by psychologi­
cal associations in the United States, Canada, France, Germany, Great Britain, the 
Netherlands, Poland, and other countries (Kimmel, 1996; Schuler, 1982). The purpose 
of those codes is to provide guidelines to enable researchers to assess the morality of 
their scientific conduct. However, researchers must also make their way through a 
maze of cumbersome rules and regulations that are overseen by an independent group 
of evaluators, called an institutional review board (IRB). 

As if this situation were not puzzling enough, a further problem is that ethical 
guidelines cannot possibly anticipate every eventual case. At best, they can provide 
an evolving framework for evaluating (and trying to prevent) ethical transgressions. 
The interpretation of the guidelines is left to IRBs, researchers, and any others who 
feel the need to express an opinion. Collectively, these guidelines constitute what 
might be described as an idealized "social contract" of do's and don'ts, to which 
behavioral researchers are expected to subscribe as a prerequisite of conducting any 
empirical studies. Broadly speaking, the agreement to which social and behavioral 
scientists are generally held accountable can be summed up as the responsibility 
(a) not to do psychological or physical harm to the subjects and (b) to do beneficent 
research in a way that is likely to produce valid results (Rosnow, 1997). 

A further problem, however, is that, even when acting with the most noble inten­
tions, investigators can inadvertently transgress. As philosopher John Atwell (1981) 
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noted, research with human subjects always "treads on thin moral ice" because investiga­
tors "are constantly in danger of violating someone's basic rights, if only the right of 
privacy" (p. 89). Moreover, because scientists are also ethically bound to use their abil­
ities to advance knowledge, it has been argued that the scientific validity of the research 
design can also be viewed as an ethical issue, because poorly designed research cannot 
yield benefits and may actually be harmful (Rosenthal, 1994c, 1995a; Rosenthal & 
Blanck, 1993). Thus, research that is of higher scientific quality is presumed to be more 
ethically defensible, because of its better investment of the time of the research subjects, 
the funds of the granting agency, the space of the journals, and, not least, of the general 
investment that society has made in supporting science and its practitioners. 

As we shall see in this chapter, even very experienced researchers often find 
themselves caught between the Scylla of scientific and theoretical requirements and 
the Charybdis of ethical dictates and moral sensitivities. Ironically, many seminal stud­
ies in social and behavioral science (including some of those mentioned in the previ­
ous chapter) can no longer be replicated because of obstacles imposed by daunting 
arrays of ethical guidelines, bureaucracies, formalities, and legalities that simply did 
not exist in their present form a generation or more ago (Bersoff, 1995; Fisher & Tryon, 
1990; Kimmel, 1988; 1996; Koocher & Keith-Spiegel, 1990, 1998; Rosnow, Rotheram­
Borus, Ceci, Blanck, & Koocher, 1993; Scott-Jones & Rosnow, 1998; Sieber, 1982a, 
1982b). Md yet, society and science have benefited from the accrued wisdom of those 
findings. A further irony is that researchers are usually held to a higher standard of 
accountability than are many designated and self-appointed guardians of human rights. 
For example, although ethical guidelines circumscribe the use of deceptive practices 
and the invasion of privacy, the violation of privacy as well as deception by omission 
(called a passive deception) and commission (an active deception) are far from rare: 
Lawyers routinely manipulate the truth in court on behalf of clients; prosecutors sur­
reptitiously record private conversations; journalists often get away with using hidden 
cameras and other undercover practices to get stories; and police investigators use sting 
operations and entrapment procedures to gain the information they seek (Bok, 1978, 
1984; Kimmel, 1998; Saxe, 1991; Starobin, 1997). 

HISTORICAL CONTEXT OF THE AMERICAN 
PSYCHOLOGICAL ASSOCIATION CODE 

To put the original set of APA guidelines into context, we go back to the 1960s. During 
that period the American public had been whipped into a frenzy of anxiety by published 
reports of domestic wiretapping and other clandestine activities by the federal govern­
ment. Caught up in the temper of the times, leading psychologists voiced concerns 
about the status of human values in research with human participants, in particular 
expressing disillusionment over the use of deception in social psychology (Kelman, 
1967, 1968) and calling for more humanistic research methodology (Jourard, 1967, 
1968). Deception was used rarely in social psychology until the 1930s, then gradually 
increased until the 1950s, and sharply increased in the 1950s and 1960s-and more 
recently there has apparently been a decline in its use (Nicks, Korn, & Mainieri, 
1997). Going back to Asch's seminal studies of conformity in the 1950s, confederates 
had been required to deceive participants by keeping a straight face while making 
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ridiculous perceptual judgments. A decade later, obedience experiments done by 
Stanley Milgram (mentioned in Table 1.2) became the lightning rod for a heated 
debate about the morality of deception. Some critics argued that any deception in 
research was morally reprehensible because of its presumed adverse effects on the 
participants and the profession's reputation (see Kimmel, 1998, 2004, for citations 
and an updated discussion of this issue). 

Interestingly, a subsequent survey implied that psychologists might be more 
concerned about ethical issues in research than were their typical participants (Sullivan & 
Deiker, 1973). Adding fuel to the debate were more shocking events elsewhere. In bio­
medical research, flagrant abuses-some resulting in the death of the human participants­
were uncovered (Beecher, 1966, 1970). A notorious case, not made public until 1972, 
involved a U.S. Public Health Service study, conducted from 1932 to 1972, of the course 
of syphilis in more than 400 low-income African American men in Tuskegee, Alabama 
(Jones, 1993). The participants, who had been recruited from churches and clinics, were 
not told they had syphilis but were only told they had "bad blood." Nor were they given 
penicillin when it was discovered in 1943. They were given free health care and a free 
annual medical examination but were told they would be dropped from the study if they 
sought treatment elsewhere. The Public Health Service officials went so far as to have 
local physicians promise not to give antibiotics to subjects in the study (Stryker, 1997). 
As the disease progressed in its predictable course without treatment, the subjects expe­
rienced damage to the skeletal, cardiovascular, and central nervous systems and, in some 
cases, death. The Tuskegee study was not halted until 1972, when details were made 
public by a lawyer who had once been an epidemiologist for the Public Health Service. 
Among the horrendous abuses in this study were that subjects were not informed of the 
nature of the inquiry or the .fact that their disease was treatable by medical care readily 
available at that time (Fairchild & Bayer, 1999). 

Already in the 1960s, however, there were demands for reforms, with issues of 
research abuses and misconduct raised in newspapers, magazines, and congressional 
hearings (Kelman, 1968). For some time the APA (in its code of professional ethics) 
had addressed issues such as the confidentiality of research data. Spurred on by 
eloquent spokespersons who called for the codification of the research methods used 
in psychological research (e.g., M. B. Smith, 1967, 1969), the APA in 1966 created 
a task force--called the Cook Commission, after Stuart W. Cook, its chair-that was 
assigned to write a code of ethics for research with human participants. Out of those 
deliberations came a 1971 draft report (Cook et aI., 1971) and a revised report in 1972 
(Cook et al., 1972). The complete code was formally adopted by the APA in 1972, 
reissued a decade later (American Psychological Association, 1982), and in the late 
1990s rewritten by a task force, which for a time was cosponsored by the APA and 
the APS. After a disagreement about the spirit and content of the draft report (American 
Psychological Association, 1998), the l\PS withdrew its collaboration; a draft report 
was then circulated by the APA alone (American Psychological Association, 1998). 

Table 3.1 lists the ten ethical guidelines representing the core of the require­
ments that appeared in the 1982 version of the APA code. Drawing from philoso­
phy, law, and the American experience, European psychologists had by the early 
1980s formulated their own codes of ethical principles to help them meet their 
responsibilities to subjects (Schuler, 1981). Three principles that appeared without 



TABLE 3.1 

Ethical principles for research with human participants 

The decision to undertake research rests on a considered judgment by the individual psychologist about 
how best to contribute to psychological science and human welfare. Having made the decision to 
conduct research, the psychologist considers alternative directions in which research energies and 
resources might be invested. On the basis of this consideration, the psychologist carries out the 
investigation with respect and concern for the dignity and welfare of the people who participate and 
with cognizance of federal and state regulations and professional standards governing the conduct of 
research with human participants. 

A. In planning a study, the investigator has the responsibility to make a careful evaluation of its ethical 
responsibility. To the extent that the weighing of scientific and human values suggests a compromise 
of any principle, the investigator incurs a correspondingly serious obligation to seek ethical advice 
and to observe stringent safeguards to protect the rights of human participants. 

B. Considering whether a participant in a planned study will be a "subject at risk" or a "subject at 
minimal risk," according to recognized standards, is of primary ethical concern to the investigator. 

C. The investigator always retains the responsibility for ensuring ethical practice in research. The 
investigator is also responsible for the ethical treatment of research participants by collaborators, 
assistants, students, and employees, all of whom, however, incur similar obligations. 

D. Except in minimal-risk research, the investigator establishes a clear and fair agreement with research 
participants, prior to their participation, that clarifies the obligations and responsibilities of each. The 
investigator has the obligation to honor all promises and commitments included in that agreement. 
The investigator informs the participants of all aspects of the research that might reasonably be 
expected to influence willingness to participate and explains all other aspects of the research about 
which the participants inquire. Failure to make full disclosure prior to obtaining informed consent 
requires additional safeguards to protect the welfare and dignity of the research participants. Research 
with children or with participants who have impairments that would limit understanding and/or 
communication requires special safeguarding procedures. 

E. Methodological requirements of a study may make the use of concealment or deception necessary. 
Before conducting such a study, the investigator has a special responsibility to (I) determine whether 
the use of such techniques is justified by the study's prospective scientific, educational, or applied value; 
(2) determine whether alternative procedures are available that do not use concealment or deception; 
and (3) ensure that the participants are provided with sufficient explanation as soon as possible. 

F. The investigator respects the individual's freedom to decline to participate in or to withdraw from the 
research at any time. The obligation to protect this freedom requires careful thought and consideration 
when the investigator is in a position of authority or influence over the participant. Such positions of 
authority include, but are not limited to, situations in which research participation is required as part 
of employment or in which the participant is a student, client, or employee of the investigator. 

G. The investigator protects the participant from physical and mental discomfort, harm, and danger that 
may arise from research procedures. If risks of such consequences exist, the investigator informs the 
participant of that fact. Research procedures likely to cause serious or lasting harm to a participant 
are not used unless the failure to use these procedures might expose the participant to risk of greater 
harm or unless the research has great potential benefit and fully informed and voluntary consent is 
obtained from each participant. The participant should be informed of procedures for contacting the 
investigator within a reasonable time period following participation should stress, potential harm, or 
related questions or concerns arise. 

H. After the data are collected, the investigator provides the participant with information about the nature of 
the study and attempts to remove any misconceptions that may have arisen. Where scientific or humane 
values justify delaying or withholding this information, the investigator incurs a special responsibility to 
monitor the research and to ensure that there are no damaging consequences for the participant. 

I. Where research procedures result in undesirable consequences for the individual participant, the 
investigator has the responsibility to detect and remove or correct these consequences, including 
long-term effects. 

J. Information obtained about a research participant during the course of an investigation is confidential 
unless otherwise agreed upon in advance. When the possibility exists that others may obtain access 
to such information, this possibility, together with the plans for protecting confidentiality, is explained 
to the participant as part of the procedure for obtaining informed consent. 

Note: From Ethical Principles in the Conduct of Research with Human Participants. 1982, Washington, DC, pp. 5-7. 
Used by permission of the American Psychological Association. 



ETHICAL CONSIDERATIONS, DILEMMAS, AND GUIDELINES 67 

exception in all of the European and American codes were (a) to avoid physical 
harm, (b) to avoid psychological harm, and (c) to keep the data confidential 
(Schuler, 1982). The third principle, which evolved to safeguard the information 
divulged by clients in clinical situations, was commonly justified on the basis of 
three claims: (a) that fairness required respect for the research participants' privacy, 
(b) that scientists had the professional right to keep such disclosures secret, and 
(c) that more honest responding by subjects should result when the investigator 
promised to keep the subjects' personal disclosures confidential (Blanck, Bellack, 
Rosnow, Rotheram-Borus, & Schooler, 1992; Bok, 1978). Despite the value of 
those guidelines, professional codes had not incorporated much in the way of pen­
alties for noncompliance. The negative sanction for violating the APA ethical code 
was censure or expUlsion from the APA-by no means considered a severe penalty, 
as many psychologists engaged in productive, rewarding research careers do not 
belong to the APA. 

The 10 guidelines in Table 3.1 were formulated with the aim of instructing psy­
chological researchers about what their moral responsibilities are, how to decide what 
aspects of a proposed study might pose ethical risks, and how to choose an ethical 
strategy for addressing such problems. Notice, for example, that Principle E does not 
prohibit deception; instead, it implies when a deception may be permissible and also 
the attendant ethical responsibilities of researchers who want to use a deception. In fact, 
by the time of the first adoption of the APA research code, an assortment of deceptions 
had slipped into many researchers' methodological arsenals (Arellano-Galdames, 1972; 
Gross & Fleming, 1982). Active deceptions included misrepresenting the purpose of the 
study or the identity of the investigators, falsely promising something to subjects, 
misrepresenting the equipment or procedures, and using placebos, pseudosubjects, and 
secret treatments. Passive deceptions included disguising experiments in natural settings, 
observing people in a public setting without telling them they were being studied, 
secretly recording potentially embarrassing behavior, and using projective tests and other 
instruments without disclosing their purpose to the participants. 

THE BELMONT REPORT, FEDERAL 
REGULATIONS, AND THE INSTITUTIONAL 
REVIEW BOARD 

A moment ago we alluded to a survey that showed psychologists to be more concerned 
about ethical sensitivities than were their typical participants (Sullivan & Deiker, 
1973). Not every person felt the urgent need to codify such sensitivities, however. For 
example, Kenneth Gergen (1973a) expressed another popular sentiment among 
researchers when he warned of the possibility of a precarious trade-off of scientific 
advances for excessive constraints: 

Most of us have encountered studies that arouse moral indignation. We do not wish to 
see such research carried out in the profession. However, the important question is 
whether the principles we establish to prevent these few experiments from being con­
ducted may not obviate the vast majority of contemporary research. We may be mounting 
a very dangerous cannon to shoot a mouse. (p. 908) 
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A few years later, however, what Gergen characterized as a "dangerous cannon" 
seemed more like a popgun in light of dramatic changes that occurred when the review 
process was set in motion in 1974 by the National Research Act (Pub. L. No. 93-348). 
That statute also created the National Commission for the Protection of Human 
Subjects of Biomedical and Behavioral Research. 

The National Commission conducted hearings over a 3-year period, which 
culminated in the Belmont Report, named from the discussions that were held at the 
Smithsonian Institution's Belmont Conference Center in Washington, DC (National 
Commission for the Protection of Human Subjects of Biomedical and Behavioral 
Research, 1979). Ethical guidelines, the report concluded, should emphasize (a) show­
ing respect for individuals as autonomous agents and the protection of those with 
diminished autonomy, (b) maximizing plausible benefits and minimizing possible 
harms, and (c) using fairness or justice in distributing risks and benefits. In addition, 
federal directives now ordered institutions applying for grant support to create review 
boards to evaluate grant submissions (e.g., Department of Health, Education, and 
Welfare, 1978). If participation in a research study is classified by the IRB as involving 
more than "minimal risk," that study requires the use of specific safeguards. The 
safeguards include providing the participants with an adequate explanation of the 
purposes of the research, the procedures to be used, the potential discomforts and 
risks to subjects, the benefits that subjects or others may receive, the extent of ano­
nymity in any records that are kept, and the identity of an individual that subjects can 
contact about the research (Delgado & Leskovac, 1986). Most important perhaps is 
the investigator's responsibility to make sure that participants understand their pre­
rogative to withdraw from the study at any time without penalty. The spirit of the 
federal dictates is the same as that of the APA guidelines (Table 3.1), except that the 
government's rules are legally enforceable in a significant way. 

Only a few years after they were created, IRBs had become a source of con­
sternation to many researchers, who felt their research "had been impeded in a way 
that was not balanced by the benefits of the review process" (Gray & Cook, 1980, 
p. 40). In recent years, particularly with the development of research on AIDS (acquired 
immune deficiency syndrome), the sphere of responsibility of IRBs has been expanded 
as a result of a proliferation of self-imposed safeguards, legally mandated constraints, 
pressures by advocacy groups, and methodological innovations. The responsibility of 
IRBs is no longer limited to the evaluation of grant submissions or funded research 
and may encompass any proposed study in an institution. Minimal risk research 
(i.e., studies in which the likelihood and extent of harm to the subjects is perceived 
to be no greater than that typically experienced in everyday life or in routine physical 
or psychological examinations or tests) is authorized to get an expedited review, but 
even the most innocent study can touch a nerve in some designated regulatory body. 
Not many years ago, IRBs were seen as the guardians of informed consent, confiden­
tiality, and the safety and autonomy of the research participants. Today, some IRBs, 
particularly in medical schools, evaluate technical and statistical aspects of research. 

As if the pursuit of behavioral research were not already complicated, there are 
also state laws that limit the type of information requested of participants and the degree 
of acceptable risk to them, implying that some IRBs are legally bound to impose stricter 
standards. It is not uncommon that a research proposal approved without alterations at 
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one institution will be substantially modified or even rejected by an IRB at another 
participating institution (Ceci, Peters, & Plotkin, 1985; P. C. Williams, 1984). The problem 
of variability in decision making about research on sensitive issues is compounded by 
the subjectivity of an ethical review and the individual biases of IRB members (Kimmel, 
1991). As Ceci et al. (1985) noted, getting a socially sensitive proposal approved is 
sometimes a matter of the luck of drawing a particular group of IRB members whose 
values just happen to be congruent with the values of the researchers. In light of these 
developments, the latest version of the APA research code is self-described as more 
"aspirational" than "prescriptive," although there are, of course, certain behaviors that 
cannot be condoned under any circumstances (e.g., fraud). The emphasis of the current 
APA code is on five broad principles (reflecting the spirit of both the Belmont Report 
and various federal statutes and directives), which we explore next: (a) respect for persons 
and their autonomy, (b) beneficence and nonmaleficence, Cc) justice, Cd) trust, and 
(e) fidelity and scientific integrity (American Psychological Association, 1998). 

PRINCIPLE I: RESPECT FOR PERSONS AND 
THEIR AUTONOMY 

The first principle of the current APA document is a reflection of the earlier Principle 
D (see Table 3.1) and implies that our ethical (and legal) responsibility is to ensure 
that people's privacy is adequately protected, that potential participants know what 
they will be getting into, that they will not be humiliated, and that they are free to 
decide whether or not to participate. The heart of this principle is informed consent, 
which refers to the procedure in which prospective subjects (or their legally authorized 
representatives or guardians) voluntarily agree to participate in the research after being 
told about its purpose, including the nature of the instruments to be used and any 
anticipated risks and benefits (Scott-Jones & Rosnow, 1998). To the extent they are 
capable, prospective participants must be given the opportunity to choose what shall 
or shall not happen to them. If they have diminished autonomy (e.g., because of 
immaturity, incapacitation, or other circumstances that limit or restrict their ability or 
opportunity for autonomous choice), or if they have difficulty understanding the nature 
of the research because they are young or feeling anxious (Dom, Susman, & Fletcher, 
1995; Susman, Dom, & Fletcher, 1992), then they must be appropriately represented 
and protected. The responsibility for obtaining legally effective informed consent is 
the obligation of the principal investigator (Delgado & Leskovac, 1986). 

For example, whenever children or adolescents are proposed as subjects, research­
ers are required to obtain legally effective parental consent before proceeding and are 
not permitted to make appeals to children to participate before parental consent is 
obtained. If the children do not live with their parents (e.g., are wards of some agency), 
the researcher can speak with an advocate who is appointed to act in the best interests 
of the child in the consent process. Once informed consent of the parent or advocate 
has been obtained, the researcher asks the child on the day of the study whether he or 
she wishes to participate-assuming the child is mature enough to be asked about 
participation (Scott-Jones & Rosnow, 1998). It has been noted, however, that an unfor­
tunate consequence of increased scrutiny by IRBs is that the disclosure procedure has 
hecome so detailed and cumbersome in many institutions that it may actually defeat 
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the purpose for which informed consent was intended (Imber et aI., 1986). One 
psychologist reported that many of his adult subjects mistakenly thought they had 
relinquished their legal protection by signing an informed consent agreement (Mann, 
1994), although the right to sue for negligence is protected by federal regulations on 
the use of human participants (Department of Health and Human Services, 1983). 

A further concern is that, sometimes, informing subjects of some pertinent 
aspect of the investigation may impair the validity of the research. For example, 
Gerald T. Gardner (1978) performed a series of studies of the effects of noise on task 
performance. The aim of the research was to replicate a phenomenon first reported 
by Glass and Singer (1972), indicating that exposure to uncontrollable, unpredictable 
noise can negatively affect task performance. Although Gardner's initial experiments 
duplicated Glass and Singer's findings, two subsequent experiments did not. Bewil­
dered by that outcome, Gardner sought to puzzle out a reason for the discrepancy. 
The only difference in procedure between the early and later studies in the series was 
that the first studies had been performed before the implementation of federal guide­
lines requiring informed consent, and the later studies had been carried out using 
informed consent. This difference inspired Gardner to hypothesize that informed 
consent might actually have been responsible for the discrepant results. 

Acting on this hypothesis, Gardner conducted a final study in which two groups 
were expos~d to uncontrollable noise; one group had given informed consent, whereas 
the other group had not. The results of this study were that the group that had given 
informed consent did not show the emergence of negative effects of the noise, but 
the other group did. Gardner reasoned that negative effects did not emerge because 
the informed consent had created a perception in the subjects of control over the 
noise. As Gardner (1978) explained, perceived control "could result from references ... 
in the consent form to subjects' ability to withdraw from the study without penalty, 
to their freedom to choose an alternative to [subject] pool participation" (p. 633). 
Apparently, conforming to the new ethical guidelines in this instance seriously 
impaired the emergence of the negative effects of laboratory stressors. Had federal 
guidelines been instituted when Glass and Singer initiated their research in the late 
1960s, is it possible that important facts about environmental noise would never have 
come to light? 

Another early study was performed by clinical researchers Jerome H. Resnick 
and Thomas Schwartz (1973), who suspected that, in some circumstances, informed 
consent might trigger "paranoid ideation in otherwise non suspicious subjects" 
(p. 137). Using the traditional verbal conditioning procedure described in chapter 1 
(used by Crowne and Marlowe), Resnick and Schwartz experimentally manipulated 
the ethical standard of informed consent. The subjects were presented with a 
sequence of cards, each of which showed a specific verb and six pronouns (I, you, 
we, he, she, they) and were told to make up a sentence using the verb and any of 
the six pronouns. They were then verbally reinforced by the experimenter, who said 
"good" or "ok" each time the subject chose either I or we. Before the study began, 
half the prospective subjects were told the nature of the conditioning procedure in 
strict adherence with informed consent guidelines; the control subjects were not 
given that information, but were run just as the study would have been conducted 
before the era of informed consent. 
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The principal finding was that the control group conditioned as expected, but 
the fully informed subjects exhibited an unexpected reversal in the pattern of their 
conditioning behavior. Using postexperimental questionnaires, Resnick and Schwartz 
discovered that many of the fully informed subjects, after having been told so much 
about the study, questioned in their own minds the experimenter's "true" hypothesis. 
One subject stated that he "had wanted to play it cool; and to give the impression 
that the experimenter's reinforcements were having no effect" (p. l38). When told 
that his use of the two reinforced pronouns had decreased by more than half from the 
first 20 trials to the last 20, this person laughed and said, "I was afraid I would overdo 
it" (p. 138). Not only was it distressing to Resnick and Schwartz that their fully 
informed subjects were distrustful, but it was unclear what was happening in, as these 
researchers put it, "a room full of mirrors where objective reality and its perception 
blend, and thereby become metaphysical" (p. l38). The results seemed to imply that 
standard textbook principles of verbal learning would tum backward if all previous 
studies in this area had strictly adhered to fully informed consent. This study raised 
a red flag signaling that full disclosure may sometimes be an impediment to the pursuit 
of knowledge. 

Thus, we see that, as Gergen (1973a) and others anticipated, there are scientific 
puzzles associated with strict compliance with informed consent. In a later chapter we 
allude to another potential concern, which is the "delicate balance" between experi­
menter and subject artifacts (i.e., specific threats to validity that can be attributed to 
uncontrolled researcher- or participant-related variables) and ethics in behavioral research 
(Rosnow & Rosenthal, 1997; Suls & Rosnow, 1981). In chapter 9 we will describe how 
using volunteer subjects could introduce biases that then make the research results 
more difficult to generalize to populations consisting in part of potential nonvolunteers 
(Rosenthal & Rosnow, 1969b, 1975; Rosnow & Rosenthal, 1970, 1976). 

PRINCIPLE II: BENEFICENCE AND 
NONMALEFICENCE 

Beneficence means the "doing of good," which implies that the research is expected 
to have some conceivable benefit, and nonmaleficence implies that, as in the Hip­
pocratic oath that physicians take, behavioral and social researchers are also expected 
to "do no harm." The avoidance of harm as a standard for ethical research originally 
emanated from the Nuremberg Code of 1946-1949, developed in conjunction with 
expert testimony against Nazi physicians at the Nuremberg Military Tribunal after 
World War II. The risks of behavioral and social research pale by comparison with 
the appalling "experiments" done by Nazi physicians in the name of science, but 
federal regulations nevertheless insist that assessment of risk be part of the ethical 
evaluation of all proposed research with human subjects. Generally speaking, the most 
significant risks in traditional psychological research are associated with privacy inva­
sion or the use of some active or passive deception. When deception is used, the 
assumption is that (a) the research has genuine scientific value, (b) providing the 
subjects with full details of the research would seriously impair its validity, (c) no 
undisclosed "risks" to the subjects are more than minimal, and (d) the subjects will 
be adequately debriefed at some appropriate time. 
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Prior to the Belmont Report, a classic example of behavioral research that 
became the focus of concerns about the use of deception was social psychologist 
Stanley Milgram's research on how far a person would go in subjecting another per­
son to pain by the order of an authority figure (Milgram, 1963, 1965). Volunteer 
subjects, placed in the role of the "teacher," were deceived into believing that they 
would be giving varying degrees of painful electric shocks to another person (the 
"learner") each time he made a mistake in a learning task. Milgram varied the phys­
ical proximity between the teacher and the learner, to see whether the teacher would 
be less ruthless in administering the electric shocks as he or she got closer to the 
learner. The results were that a great many subjects (the teachers) unhesitatingly 
obeyed the researcher's command as they continued to increase the level of shock 
administered to the learner. Even when there was feedback from the learner, who 
pretended to cry out in pain, many subjects obeyed the researcher's order to "please 
continue" or "you have no choice, you must go on." The subjects were not told at 
the outset that the shock apparatus was fake but were extensively debriefed once the 
experiment was over. Even though the learner was a confederate of Milgram's and 
there were no actual shocks transmitted, concerns about ethics and values have dogged 
these studies since they were first reported (Milgram, 1963, 1965, 1975, 1977). 

For instance, psychologist Diana Baumrind (1964) quoted Milgram's own 
descriptions "of the reactions of some of the subjects: 

I observed a mature and initially poised businessman enter the laboratory smiling and 
confident. Within 20 minutes he was reduced to a twitching, stuttering wreck, who was 
rapidly approaching a point of nervous collapse. He constantly pulled on his earlobe, 
and twisted his hands. At one point he pushed his fist into his forehead and muttered: 
"Oh God, let's stop it." And yet he continued to respond to every word of the experimenter 
and obeyed to the end. (Milgram, 1963, p. 377) 

Baumrind posed the question of why Milgram had not terminated the deception when 
he saw that it was so stressful to his subjects. She concluded that there could be no 
rational basis for doing this kind of research, unless the subjects were forewarned of 
the psychological risks. Another criticism was that Milgram's deception had instilled 
in his subjects a general distrust of authority, and thus the study was unethical no 
matter whether the subjects were debriefed afterward. 

Milgram (1964) responded that it was not his intention to create stress, and, 
further, that the extreme tension induced in some subjects had not been expected. 
He noted that, before carrying out the research, he had asked professional colleagues 
for their opinions, and none of the experts anticipated the behavior that subsequently 
resulted. He stated that he also thought the subjects would refuse to follow orders. 
In spite of the dramatic appearance of stress, he believed there were no injurious 
effects to the subjects. Each subject was shown that the learner had not received 
dangerous electric shocks but had only pretended to receive them. Milgram also sent 
questionnaires to the subjects to elicit their reactions after they had been given a full 
report of his investigation. Less than 1 percent said they regretted having partici­
pated, 15 percent were neutral or ambivalent, and over 80 percent responded that 
they were glad to have participated. As for the criticism that his use of deception 
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had instilled a general distrust of authority, he replied that the experimenter in his 
research was not just any authority, but someone who ordered the subjects to act 
harshly and inhumanely toward another person. Milgram added that he would 
consider the result of the highest value if participation in the research did indeed 
inculcate a skepticism of that kind of authority. 

Duping subjects into believing they were administering painful electric shocks 
to another person is inherently disquieting, but it is hard to imagine how forewarning 
them about the use of deception would not have destroyed the validity of the investi­
gation. Furthermore, Milgram's follow-up treatments were unusually extensive. During 
the postexperimental debriefing session, he made sure that each subject was shown the 
reality of the experimental situation and had a friendly reconciliation with the learner 
and an extended discussion with the experimenter about the purpose of the study and 
why it was thought necessary to use deception. Subjects who had obeyed the experi­
menter when ordered to keep administering the electric shocks were told that their 
behavior was not abnormal, and that the feelings of conflict or tension they had expe­
rienced were shared by other SUbjects. The subjects were told that they would receive 
a comprehensive written report at the conclusion of the study. The report they received 
detailed the experimental procedures and findings, and the subject's own part in the 
research was treated with dignity. Subjects also received a questionnaire that asked 
them once again to express their thoughts and feelings about their behavior. One year 
after the experiment was completed there was an additional follow-up of 40 of the 
experimental subjects, who were intensively interviewed by a psychiatrist in order to 
rule out any delayed injurious effects resulting from the experiment. 

Milgram's follow-up treatments were more comprehensive than is characteristic 
of most studies. SubseliJ.uent ethical guidelines call for debriefing if deception is used 
in research (also referred to as dehoaxing) in order to remove any misconceptions the 
subjects may have about the research, allay any negative emotions or thoughts, and 
leave them with a sense of dignity, knowledge, and a perception of time not wasted. 
That debriefing can also provide researchers with information that subjects may be 
either reluctant or unable to disclose at any other point in the study (Rotheram-Borus, 
Koopman, & Bradley, 1989). For example, in experimental trials with persons infected 
by HlV, it has been a common practice for many participants to share medication with 
each other, gain access to drugs or treatments available outside the study, and take 
multiple drugs simultaneously,'thereby making it almost impossible to conduct an eval­
uation of a single drug uncontaminated by auxiliary treatments (Blanck et aI., 1992). 
Debriefing in this situation includes monitoring the degree and type of multiple drug 
use among subjects in the trials. Jones and Gerard (1967) suggested that debriefing also 
include discovery about what each subject thought of the research situation, providing 
the investigator with an experienti~ context in which to interpret the results. 

As mentioned, if the research involves any sort of deception, debriefing is 
usually expected to be used to reveal the truth about the study and the careful 
consideration that has been given to the use of the deception. For example, it might 
be explained to subjects that science is the search for truth, and that sometimes it is 
necessary to resort to withholding information in order to uncover the truth. In some 
cases, however, the revelation that a deception was part of the study spawns skepticism 
and leaves the subjects feeling gullible, as if they have been "had" by a fraudulent 
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procedure. Thus, it is also important to weigh the welfare and rights of the participants 
against the possibility that dehoaxing might itself lead to psychological discomfort 
(Fisher & Fyrberg, 1994). Assuming that debriefing can be done, the researcher might 
explain that being "taken in" does not reflect in any way on the subject's intelligence 
or character but simply shows the effectiveness or validity of the research design. 
Presumably, the researcher took some pains to achieve an effective design so as not 
to waste the subjects' time and effort. Most important, the debriefing should proceed 
gradually and patiently, with the chief aim of gently unfolding the details of any 
deceptions used and reducing any negative feelings. Instead of thinking of themselves 
as "victims," the subjects should then more correctly realize that they are "coinvesti­
gators" in the search for truth (Aronson & Carlsmith, 1968; Mills, 1976; Rosnow & 
Rosenthal, 1997). 

PRINCIPLE III: JUSTICE 

The third principle, simply called justice, implies "fairness" and, in behavioral research, 
refers to the ideal that the burdens as well as the benefits of the scientific investigation 
should be distributed equitably. The men who participated in the Tuskegee study could 
not have benefited in any significant way, and they alone bore the awful burdens as 

J' 

well. However, suppose it had been an experiment to test the effectiveness of a new 
drug in curing syphilis, the strategy being to give half the men at random the new 
drug and the other half a fake "pill" masquerading as the real thing (i.e., a placebo). 
Would that approach have made the study any more acceptable? Research on AIDS 
has made investigators sensitive to such ethical questions, and one response is to 
include potential participants or surrogates for them in the decision-making process­
although this inclusion does not absolve investigators themselves of their own respon­
sibilities to protect the safety and rights of their subjects (Melton, Levine, Koocher, 
Rosenthal, & Thompson, 1988). If an effective treatment is available, use of the effec­
tive treatment can be the control condition, so that the experimental comparison is 
now between the new therapy and the effective alternative. The Declaration of Helsinki, 
adopted by the general assembly of the World Medical Association in 2000, stipulated 
that a placebo be used only when there is no other effective drug or therapy available 
for comparison with the therapeutic being tested. In the case of the Tuskegee study, 
there was an effective treatment available (penicillin), and depriving men of that treat­
ment made the study profoundly unjust. Another design alternative (discussed in 
chapter 7), which is useful in certain randomized experiments (the Tuskegee study 
was not a randomized experiment), is to use a wait-list control group; in such a 
design the alternative therapy is given to the control group after it has been administered 
in the experimental group and the results have been documented. 

As daily life constantly reminds us, however, social, political, and legal justice 
are ideals that are unlikely to be achieved in a world that is never fully just. Is fairness 
or justice, then, merely in the eyes of the beholder? Philosophers make a distinction 
between two orientations, the consequentialist and the deontological, and argue that 
how people view ethical questions depends on their orientation. The consequentialist 
view refers to the argument that whether an action is right or wrong depends on its 
consequences. The deontological view is that some actions may be presumed to be 
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categorically wrong no matter what their consequences (e.g., threatening a visiting 
lecturer with a red hot poker). In fact, there is empirical support for the idea that 
people tend to judge the world from one of these two perspectives, or from a plural­
istic orientation that encompasses aspects of both (Forsyth, 1980; Forsyth & Pope, 
1984). Milgram lied to his subjects, and that lying was immoral if we believe that lying 
in any form is wrong (a deontological argument). On the other hand, it would appear 
that Baumrind's views of Milgram's research were influenced by her awareness of his 
results (the consequentialist view), just as Milgram's ideas may have been colored by 
his own pluralistic approach (i.e., containing elements of both the consequentialist and 
the deontological views, but not a blanket condemnation of deception). But some have 
also argued that deception was not all that was at stake. The studies were "unjust" 
because Milgram exposed his subjects to a possibility of unwanted and unasked-for 
self-knowledge (Cassell, 1982). How we ourselves perceive those issues may be a 
window into the nature of our personal orientation as consequentialist, deontological, 
or pluralistic (Forsyth & Pope, 1984; C. P. Smith, 1983; Waterman, 1988). 

Another early study helped to underscore the problem that injustice is not always 
easily anticipated. It involved a 1973 field experiment designed in part to improve the 
quality of work life at the Rushton Mining Company in Pennsylvania (Blumberg, 
1980; Susman, 1976). Developed on the basis of previous research in the United 
Kingdom (Trist & Bamforth, 1951; Trist, Higgin, Murray, & Pollock, 1963), the 
Rushton project had as its specific aims to improve employee skills, safety, and job 
satisfaction while raising the level of performance and company earnings (Blumberg & 
Pringle, 1983). After months of preparation by the researchers and the mining company, 
a call was issued for volunteers for a work group that would have direct responsibility 
for the production in one ~ section of the mining operations. The volunteers were 
instructed to abandon their traditional roles and, after extensive training in safety laws, 
good mining practices, and job safety analysis, were left to coordinate their own activ­
ities. Paid at the top rate, that of the highest skilled job classification in that section, 
they became enthusiastic proponents of "our way of working." 

All was not so rosy in the rest of the mine, however. Other workers, those in the 
control condition, expressed resentment and anger at the "haughtiness" of the volun­
teers and the injustice of the reward system. The volunteers had even been treated to 
a steak and lobster dinner by the president of the company, the others complained. Why 
should these "inexperienced" workers receive special treatment and higher pay than 
other miners with many more years on the job? Rumors circulated through the mine 
Ihat the volunteers were "riding the gravy train" and being "spoon-fed," and that auton­
omy was a "communist plot" because all the volunteers received the same rate and the 
company was "making out" at their expense. The researchers were rumored to be 
politically motivated to "bust the union" (Blumberg & Pringle, 1983). No matter what 
the important theoretical and applied benefits of the research would have been, the 
seeds of conflict were planted, and the experiment had to be prematurely concluded. 

In this case we see that applied research can have its own problems and puzzles, 
'Iuite apart from those encountered by Milgram. There was no deception or invasion 
of privacy in the Rushton study, but there was the problem of "injustice" because a 
sizable number of workers (nonvolunteers, to be sure) did not receive the benefits 
enjoyed by those in the experimental group. Still other risks may occur in applied 
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research. For example, a moral cost may be involved simply in the publication of the 
results. That is, the report might (a) upset some persons who are able to identify 
themselves in the publication, (b) subject the community to possible embarrassment 
or to unwanted publicity, (c) make those who are identifiable vulnerable to others who 
have power over them, or (d) weaken the scientific enterprise by communicating to 
people that science is exploitive (Johnson, 1982). On the other hand, what would be 
the social and scientific costs of not disseminating research findings? In chapter 1 we 
listed the ability to communicate-and by extension, the written record-as one of 
the essentials of sound scientific practice. The written record of the search for truth 
is the official archive that tells us about the observations that were made, the hypoth­
eses that were examined (and those that were ignored), the ideas that were found 
wanting, and those that withstood the test of further observations. One author was 
quoted in chapter 1: "Scientists must write ... so that their discoveries may be known 
to others" (Barrass, 1978, p. 25). 

Furthermore, "unfairness" and "injustice" are hardly limited to research situa­
tions. For example, Broome (1984) discussed the ethical issue of fairness in selecting 
people for chronic hemodialysis-a medical procedure that can save the life of a 
person whose kidneys have failed. It is expensive, and in many countries there are 
just not enough facilities available to treat everyone who could benefit. Because with­
out treatinent a patient quickly dies, how should a candidate for hemodialysis be 
selected? First come, first served was one way that some hospitals chose candidates. 
The inventor of hemodialysis, B. H. Scribner, is said to have selected people on the 
basis of their being under 40 years old, free of cardiovascular disease, pillars of the 
community, and contributors to the community's economics. He is also said to have 
taken into account whether they were married and whether they went to church. Still 
another approach uses randomness. Broome (1984) pointed out that selecting people 
randomly-such as by using a lottery to choose conscripts to fight in a war-is often 
justified as the "fairest" procedure because everyone has an equal shot at being 
selected for life or death. But suppose conscripts for the military were instead selected 
not randomly, but on the grounds of who was the biggest and strongest? Which 
approach is fairer: randomness or selection on the grounds of who is more likely to 
survive? Some hospitals chose candidates for hemodialysis on the basis of a lottery 
among those patients who were judged to be most medically suitable. 

PRINCIPLE IV: TRUST 

This principle refers to the establishment of a relationship of trust with the participants 
in the study. It is based on the assumption that subjects are fully informed about what 
they will be getting into, that nothing is done to jeopardize this trust, and that their 
disclosures are protected against unwarranted access. This last requirement is what is 
meant by confidentiality, which is intended to ensure the subjects' privacy by setting 
in place procedures for protecting the data. For example, the investigator might use 
a coding system in which the names of the participants are represented by a sequence 
of numbers that are impossible for anyone else to identify. In cases in which partici­
pants respond anonymously and are never asked to give any information that would 
identify them, their privacy is obviously protected. In certain government-funded 
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biomedical and behavioral research, it is sometimes possible for researchers to obtain 
from the funding agency a certificate of confidentiality, which is a formal agreement 
that requires the researcher to keep the data confidential and thus exempts the data 
from subpoena. However, the extent to which such a certificate can actually provide 
legal protection has not yet been established in the courts, and it is further complicated 
by the existence of laws that require the reporting of certain sensitive information. 

For example, as stipulated by the Child Abuse Prevention and Treatment and 
Adoption Reform Act (1992) and its revisions and amendments (Pub. L. No. 102-295), 
each state must pass laws to require the reporting of child abuse and neglect. The 
nature and wording of the statutes is left to the discretion of the states, which have 
increasingly expanded the lists of individuals who are obligated to report suspected 
cases (Liss, 1994). As a result, developmental psychologists working in the area of 
intervention research are often pressed to report child abuse. Researchers who are 
investigating abuse may be torn between reporting a suspected culprit Geopardizing 
the relationship of trust?) and losing a valuable participant in the study Geopardizing 
the validity or generalizability of the study?), or they may feel they do not have the 
moral right to report a parent on the basis of their limited training and the evidence 
they have. It may be that charges of abuse will not be proven, but this possibility 
does not excuse researchers from their legal responsibilities (Liss, 1994). Researchers 
who lack the training and clinical acumen to recognize abuse may overreport sus­
pected cases (Scott-Jones, 1994). These are obviously knotty problems, and they have 
led to suggestions about the need for specialized training opportunities for some 
researchers, new reporting methods in research protocols, the restructuring of ethical 
guidelines in populations at risk, and further research on the predictive power and 
diagnostic validity of the~relevant assessment tools (e.g., c. B. Fisher, 1994; Scarr, 
1994; Scott-Jones, 1994). 

PRINCIPLE V: FIDELITY AND 
SCIENTIFIC INTEGRITY 

The relationship between scientific quality and ethical quality is the essence of the fifth 
principle, which includes a wide range of issues (Rosenthal, 1994c, 1995a; Rosenthal & 
Blanck, 1993). One issue involves telling prospective participants, granting agencies, 
colleagues, administrators, and ourselves that the research is likely to achieve goals 
Ihat it is, in fact, unlikely to achieve, that is, hyper claiming (Rosenthal, 1994c). It is 
lrue that colleagues can often figure out for themselves whether research claims are 
cxaggerated, but prospective subjects are not usually equipped to question "hyper­
daims," such as the idea that an investigation will yield a cure for panic disorder, 
depression, schizophrenia, or cancer. Closely related to this problem is causism, which 
mcans implying a causal relationship where none has been established by the available 
dula. Characteristics of this problem include (a) the absence of an appropriate eviden­
liul base; (b) the use of language implying cause (e.g., "the effect of," "the impact of," 
"Ihe consequence of," "as a result of') where the appropriate language would actually 
he "was related to," "was predictable from," or "could be inferred from"; and (c) self­
serving benefits, because it makes the causist's result appear more important or funda­
mental than it really is (Rosenthal, 1994c). A perpetrator of causism who is unaware 
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of the hyperclaim shows poor scientific training or lazy writing. The perpetrator who 
is aware of the hyperclaim shows blatant unethical misrepresentation and deception. 

To illustrate how a poorly trained investigator might stumble into causism, 
imagine that a research protocol that comes before an IRB proposes the hypothesis 
that private schools improve children's intellectual functioning more than public schools 
do. Children from randomly selected private and public schools are to be tested exten­
sively, and the research hypothesis is to be tested by a comparison of the scores earned 
by students from private and public schools. The safety of the children to be tested is 
certainly not an issue; yet it can be argued that this research violates the principle of 
scientific integrity because of the inadequacy of the research design. The purported 
goal of the study is to learn about the "causal impact on performance of private versus 
public schooling," but the design of the research does not permit sound causal inference 
because of the absence of random assignment to conditions or of a reasonable attempt 
to consider plausible rival hypotheses (Cook & Campbell, 1979). The design provokes 
ethical objections to the proposed research because (a) students', teachers', and admin­
istrators' time will be taken from potentially more beneficial educational experiences; 
(b) the study is likely to lead to unwarranted and inaccurate conclusions that may be 
damaging to the society that directly or indirectly pays for the research; and (c) the 
allocation of time and money to this poor-quality science will serve to keep those finite 
resources of time and money from better quality science. However, had the research 
question addressed been appropriate to the research design, these ethical issues would 
have been less acute. If the investigator had set out only to learn whether there were 
"performance differences between students in private versus public schools," the design 
would have avoided the causism problem and been appropriate to the question. 

The analysis of research data is another area that raises ethical issues involving 
fidelity and scientific integrity. The most obvious and most serious transgression is the 
fabrication of data. Perhaps more frequent, however, is the omission of data contradict­
ing the investigator's theory, prediction, or commitment. There is a venerable tradition 
in data analysis of dealing with outliers (extreme scores), a tradition going back over 
200 years (Barnett & Lewis, 1978). Both technical and ethical issues are involved. The 
technical issues have to do with the best statistical ways of dealing with outliers without 
reference to the implications for the data analyst's theory (discussed in chapter 10). 
The ethical issues have to do with the relationship between the data analyst's theory 
and the choice of method for dealing with outliers. For example, there is some evidence 
that outliers are more likely to be rejected if they are bad for the data analyst's theory 
and are treated less harshly if they are good for the data analyst's theory (Rosenthal, 
1978b; Rosenthal & Rubin, 1971). At the very least, when outliers are rejected, that 
fact should be reported. In addition, it would be useful to report in a footnote the results 
that would have been obtained had the outliers not been rejected. 

Many researchers have been traditionally taught that it is technically improper 
(perhaps even immoral) to analyze and reanalyze their data in multiple ways (i.e., to 
"snoop around" in the data). We ourselves were taught to test the prediction with one 
particular preplanned analysis and take a result significant at the .05 level as our reward 
for a life well lived. Should the result not be significant at the .05 level, we were taught, 
we should bite our lips bravely, take our medicine, and definitely not look further at 
the data. Such a further look might tum up results significant at the .05 level, "results 
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to which we were not entitled. All this makes for a lovely morality play, and it reminds 
us of Robert Frost's poem about losing forever the road not taken, but it makes for 
bad science and for bad ethics. It makes for bad science because, although exploratory 
data analysis does affect p values, it is likely to turn up something new, interesting, 
and important (Tukey, 1977). It makes for bad ethics because scientific data are expen­
sive in terms of time, effort, money, and other resources, and because the antisnooping 
dogma is wasteful of time, effort, money, and other resources. If the research is worth 
doing, the data are worth a thorough analysis and being held up to the light in many 
different ways so that the research participants, funding agencies, science, and society 
will get their time and money's worth. We have more to say on this topic in chapter 10, 
but before leaving this issue, we should repeat that exploratory data analysis can indeed 
affect the p value obtained, depending on how the analysis was done. In chapter 14 
we will show how statistical adjustments can be helpful here. Most important, 
replications will be needed no matter whether the data were snooped or not. 

Although all misrepresentations of findings are damaging to the progress of sci­
ence, some are more obviously unethical than others. The most blatant deliberate mis­
representation is the reporting of data that never were, which constitutes fraud (Broad & 
Wade, 1982). That behavior, if detected, ends (or ought to end) the scientific career of 
the perpetrator. Plagiarism (which comes from a Latin word meaning "kidnapper") is 
another breach of the fidelity principle; it refers to stealing another's ideas or work and 
passing it off as one's own-or as one author characterized it, "stealing into print" 
(Lafollette, 1992). A further distinction is sometimes made between "intentional" and 
"accidental" plagiarism (Rosnow & Rosnow, 2006). By intentional plagiarism, we 
mean the deliberate copying or taking of someone else's ideas or work and then know­
ingly failing to give credit or failing to place the quoted passage in quotation marks 
with a specific citation (Mallon, 1991). By accidental plagiarism, we mean the use of 
someone else's work but then innocently forgetting (not neglecting) to credit it (i.e., 
lazy writing). Intentional plagiarism is illegal, but this warning does not mean that 
researchers cannot use other people's ideas or work in their writing; it does mean that 
the writer must give the author of the material full credit for originality and not 
misrepresent (intentionally or accidentally) the material as one's own original work. 

COSTS, UTILITIES, AND INSTITUTIONAL 
REVIEW BOARDS 

We previously mentioned that, as required by federal law, institutions in which 
research with human subjects is conducted are required to maintain a review board 
(IRB) for the purpose of evaluating proposed investigations and monitoring ongoing 
research. The researcher provides the IRB with a detailed description (or "protocol") 
of the proposed investigation, and the IRB is then required (a) to evaluate whether 
the study complies with the standards for the ethical treatment of research participants 
and (b) to ensure that the potential benefits to individual participants (and society) 
will be greater than any risks the participants may encounter in the research (Stanley & 
Sieber, 1992). Some categories of studies may be exempt from IRB review, such 
as those in normal educational settings on normal educational processes; those involv­
ing educational tests, surveys, interviews, or observations of public behavior, as long 
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as the individual participants cannot be identified; and research involving existing 
public data (e.g., archival material) in which the individuals cannot be identified. In 
practice, however, universities often require that the protocol of any proposed study 
be submitted for review, so that the IRB can decide whether the study falls into a 
category that is exempt from review (Scott-Jones & Rosnow, 1998). 

How can researchers forearm themselves against a capricious or overly zealous 
ethical review? There is no easy answer to this question, except to say that prudent 
researchers must sharpen their understanding of how risks and benefits are assessed 
in the review process (e.g., Brooks-Gunn & Rotheram-Borus, 1994; Ceci, Peters, & 
Plotkin, 1985; Diener & Crandall, 1978; Kimmel, 1996; Rosenthal, 1994c, 1995a; 
Rosnow, Rotheram-Borus, Ceci, Blanck, & Koocher, 1993; Wilcox & Gardner, 
1993). When IRBs are confronted with a problematic or questionable protocol, they 
are expected to adopt a cost-utility approach in which the costs (or risks) of doing 
a study are evaluated simultaneously against such utilities (or benefits) as those 
accruing to the research participants, to society at large, and to science. Presumably, 
the potential benefits of higher quality studies and studies addressing more important 
topics are greater than the potential benefits of lower quality studies and studies 
addressing less important topics. Figure 3.1 shows a two-dimensional plane repre­
senting this type of analysis, in which the costs are one dimension and the utilities 
are the Olher (Rosenthal & Rosnow, 1984; Rosnow, 1990). In theory, any study with 
high utility and low cost should be carried out forthwith, and any study with low 
utility and high cost should not be carried out. Studies in which costs equal utilities 
are very difficult to decide on (B-C axis). In the case of low-cost, low-utility 
research, an IRB might be reluctant to approve a study that is harmless but is likely 
to yield little benefit. 

As many researchers know from personal experience, however, the review pro­
cess often ignores utilities and merely uses the A-C axis value for the criterion. 
Moreover, we have become convinced that, even when utilities are considered, this 
cost-utility model is insufficient because it ignores the costs of research not done. By 
concentrating only on the act of doing research and ignoring the act of not doing 
research, the review process uses a less rigorous standard of accountability than that 
aspired to by most researchers (Haywood, 1976; Rosenthal & Rosnow, 1984). 

Ar-------------------~ 
High DON'T DO 

Utility of doing 

DO 

. D 
High 

FIGURE 3.1 
A decision-plane model of the costs and utilities of 
doing research. Studies falling at Point A are not 
carried out. Studies falling at Point D are carried out. 
Studies falling along the diagonal of indecision, B-C, 
are too hard to decide on. 
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Researchers often complain of their frustration at having research with possible soci­
etal benefits impeded by the review process or by political interference (Brooks-Gunn & 
Rotheram-Borus, 1994). In the 1990s, a prominent case involved a sexual survey of 
adolescents. The study was terminated prematurely on the grounds that it had violated 
community norms, but this decision simply deprived the community of data essential 
to addressing health problems of general concern (Wilcox & Gardner, 1993). If an 
IRB sent back a proposal for research that could conceivably find a way of prevent­
ing AIDS, on the grounds that its methodology did not ensure the privacy of the 
participants, the cost in human terms of the research not done could be high. Similarly, 
rejecting a sociopsychological investigation that might help to reduce violence or 
prejudice, but that involved a disguised experiment in a natural setting (i.e., a decep­
tion), would not solve the ethical problem, essentially trading one ethical issue for 
another. 

It has been argued that it is incumbent upon researchers and their scientific 
organizations to educate IRBs about the costs of research not done, and about the 
costs to science and to society of not being able to replicate classic experiments that 
have generated important findings (Rosnow, Rotheram-Borus, Ceci, Blanck, & 
Koocher, 1993). A more complete analysis is represented by the two decision planes 
shown in Figure 3.2 or by the more complex model shown in Figure 3.3 (Rosenthal & 
Rosnow, 1984). Figure 3.2 is self-explanatory. Suppose, however, we added a new 
diagonal A-D (not shown) to these two planes and called it the "decision diagonal" 
(in contrast to B-C and B '-C', the diagonals of indecision). For any point in the plane 
of doing, there would be a location on the cost axis and on the utility axis. Any such 
point could then be translated to an equivalent position on the decision diagonal. For 
example, if a point were twice as far from A as from D, we would see the translated 
point as located two thirds of the way on the decision diagonal A-D (i.e., closer to 
D than to A). The same reasoning would apply to not doing, except that closeness to 
A would mean "do" rather than "not do." 

DOING RESEARCH NOT DOING RESEARCH 
A ,----------..", B A'.---------------------..",B' 

High DON'T DO High DO 

i 
u 

I.ow DO Low DON'T DO 
C IL-----------'D C' IL-__________________ ------' D' 

Low High Low High 

Utility Utility 

.·U;tJRE 3.2 
Ilrl'ision planes representing the costs and utilities of doing (left plane) and not doing (right plane) 
Ir~rllrch. 
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Putting these decision diagonals together gives Figure 3.3, and we are now 
back to two dimensions. In this composite plane, points near D tell us to do the 
study. Points near D' tell us not to do the study. Points on the indecision diagonal 
leave us unsure. Points on the D'-D decision diagonal (not shown) tell us whether 
we are clo~er to "don't do" or "do." The purpose of this figure is to get us all to 
think about issues of cost and utility in terms of a more complete analysis. For 
example, the Tuskegee study reminds us that there have been shocking instances in 
which the safety of human subjects has been ignored or endangered (see also Beecher, 
1970; Bok, 1978; Katz, 1972), but bureaucratic imperialism can also have serious 
consequences. As West and Gunn (1978) pointed out, if ethical guidelines are imposed 
absolutely, then "researchers may simply turn their attention to other topic areas that 
ethics committees and review boards find less objectionable" (p. 36). The result could 
be that research that needs to be done, to address vital scientific and societal ques­
tions, would cease. Considerations such as those indicated by Figures 3.2 and 3.3, 
if adopted by an IRB, would make it harder to give absolute answers to questions 
of whether or not particular studies should be carried out. Those who argue that a 
given study is unethical and should be prohibited would have to answer in ethical 
and moral terms for the consequences of their decision no less than the researchers 
proposing the study. 

SCIENTIFIC AND SOCIETAL 
RESPONSmILITIES 

We have examined the kinds of questions concerning ethics and values that constantly 
confront behavioral researchers in studies with human participants. The ethical pro­
priety of using animals in behavioral research has also attracted considerable attention, 
as research on animals has played a central role in our science since its beginning 
(e.g., studies by Ivan Pavlov and E. L. Thorndike). Attitudes toward the use of animals 
in behavioral research vary greatly among psychologists, most of whom nevertheless 
seem to approve of standard observational studies in which animals were confined in 
some way but apparently disapprove of studies involving pain or death (PIous, 1996). 
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Although the usual justification of animal research in psychology has been that it has 
clinical applications in humans and animals, questions have been raised about how 
often clinicians or clinical investigators actually draw on the results of animal research 
(Giannelli,1986; Kelly, 1986). On the other hand, a strong case has been made by 
many scientists that research on animals has been the foundation for numerous 
significant advances, including the rehabilitation of persons suffering from spinal cord 
injuries, the treatment of diseases and eating disorders, improvement in communica­
tion with the severely retarded, and a better understanding of alcoholism (Domjan & 
Purdy, 1995; N. E. Miller, 1985). For example, animal experiments by Roger Sperry, 
who won a Nobel Prize for his work, revealed that severing the fibers connecting the 
right and left hemispheres of the brain (resulting in a so-called split brain) did not 
impair a variety of functions, including learning and memory. That important discovery 
led to a treatment for severe epilepsy and made it possible for people who would 
have been confined to hospitals to lead normal lives (Gazzaniga & LeDoux, 1978; 
Sperry, 1968). 

Just as the scientific community recognizes both an ethical and a scientific 
responsibility for the general welfare of human subjects, it also assumes responsibility 
for the humane care and treatment of animals used in research. There is an elaborate 
regulatory system to protect animals in scientific research, including professional and 
scientific guidelines (American Psychological Association, 1996), federal regulations, 
Public Health Service specifications, and state and local laws (see, e.g., PIous, 1996). 
Some years ago, the British zoologist William M. S. Russell and microbiologist 
Rex L. Burch made the argument that, given scientists' own interest in the humane 
treatment of the animals used in research, it would be prudent to search for ways to 
(a) reduce the number of animals used in research, (b) refine the experiments so that 
there is less suffering, and (c) replace animals with other procedures whenever pos­
sible. Called the "three Rs principle" by Russell and Burch (1959), this principle 
defines part of the moral contract to which researchers who use animal subjects 
subscribe. 

Each researcher must weigh his or her responsibilities to science and to society 
very carefully. Even when the research is not directly funded by some agency of 
society, it is at least countenanced and indirectly supported, because our society places 
a high value on science and gives scientists a relatively free hand to study whatever 
they want to study. There are, to be sure, limits on how far scientists can go in the 
quest for knowledge, and we discussed some of those limits earlier. Society provides 
the circumstances and a psychological environment that are conducive to the practice 
of science. Because no scientist can guarantee that the outcome of his or her work 
will actually benefit society, what then does the scientist owe society in return for that 
privilege? As we have tried to show in this chapter, the researchers' ethical responsi­
bilities are twofold: On the one hand, researchers must protect the integrity of their 
work in order to ensure that it measures up to the technical standards of sound sci­
entific practice. On the other hand, researchers must also respect the dignity of those 
they study and the values that allow the pursuit of scientific knowledge in a free 
society. 
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In this chapter, and in the following two chapters, we turn to the operationalization 
and measurement of the variables of interest. Generally speaking, reliability implies 
the degree to which it is possible to repeat or corroborate these measurements 
(i.e., Do the measures give results that are consistent, dependable, or stable?), and 
validity implies the degree to which the measures are appropriate or meaningful in 
the way they claim to be. Whatever the measuring instruments employed (e.g., paper­
and-pencil or computerized tests or questionnaires, devices like magnetic resonance 
imaging, or a group of judges who make ratings), researchers are usually interested 
in their reliability and validity. As we will illustrate, although particular kinds of reli­
ability and validity have quite specific meanings, these concepts are generally related 
to each other in ways that are often misunderstood. Later in this chapter we examine 
the widespread (but incorrect) belief that having "acceptable validity" invariably 
depends on having some minimum level of reliability. 

We will show how to improve reliability by increasing the number of individual 
components (e.g., the number of test items or the number of judges) that define the 
particular instrument. However, a measure can be very reliable without being at all 
valid. For example, it is possible to imagine that people blink their eyes the same 
number of times a minute under a variety of circumstances (i.e., the eye-blink measure 
has high reliability), but under no conditions could one predict their running speed 
from their eye-blink rate (i.e., the eye-blink measure has low validity as a predictor 
tlf running speed). 

87 
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It is commonly assumed that measurements made in the behavioral and social 
sciences (the so-called soft sciences) are less replicable than measurements made in 
the "hard sciences" (e.g., physics, astronomy, and chemistry). However, Hedges 
(1987) observed that measurements reported in the hard sciences, although they were 
usually more precise than in behavioral research (e.g., physical science measurements 
may be quoted in which the uncertainties are billionths of a second), are not 
necessarily more replicable than precise experimental measures in psychology. 
Hedges collected a number of cases in astronomy and thermochemistry where there 
were substantial differences between the reported values of experimental results. In 
the experimental field of thermodynamics, he noted that of 64 values reported for 
64 elements in 1961, 25 of them (as of 1975) were later found to be in error by 
over 10%, 16 by over 30%, 8 by over 50%, 2 by over 100%, and 1 by over 245%. 
Hedges added that "in other areas (such as X-ray crystallography and certain protein 
assays), the folklore of the research community is that between-laboratory differences 
are so large that numerical data should only be compared within laboratories" 
(p. 453). In analytic chemistry, scientists working in different laboratories often 
arrange for "cooperative experiments" in the expectation that there will be differences 
in their quantitative analyses. 

The fact is that all measurements are subject to fluctuations (called error) that 
can affect reliability and validity, and this is true no matter how precise the 
measurements. To illustrate, the scales at your local supermarket or corner grocery 
are based on a set of standard weights. Those and other standard measurements, 
which are housed at the National Bureau of Standards (NBS) in Washington, DC, 
are periodically checked by the NBS in a rigorously controlled setting. The purpose 
of this repeated checking is to ensure that we get what we pay for when, say, we 
ask for a pound of string beans. One such standard weight is called NB 10 because 
its nominal value is 10 grams (the weight of two nickels). NBS technicians have 
weighed NB10 weekly ever since it was acquired around 1940, while keeping all 
factors known to affect such measurements (like air pressure and temperature) as 
constant as possible. Listed below are five values borrowed from a longer list noted 
by Freedman et al. (1991). These values represent the estimated weight of NBlO 
calibrated in micrograms to 6 decimal places: 

9.999591 grams 

9.999600 grams 

9.999594 grams 

9.999601 grams 

9.999598 grams. 

Notice that although the first four digits are consistent (at 9.999), the last three digits 
are, as Freedman et al. called them, "shaky" (p. 92). They vary from one measurement 
to another because of chance error (also frequently described as noise). 

No matter whether the obtained measurements are of a pound of string beans, a 
10-gram weight, or a psychological attribute, they can be understood as a combination 
of two components: (a) the presumed actual value (or "true value") of the thing measured 
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(Le., an ideal that would be obtained with a perfect measuring instrument) and (b) chance 
error (or noise). Traditionally, this general relationship is expressed as follows: 

Observed value = Actual ("true") value + Chance (random) error. 

In psychological testing, for example, because the reliability of a test reflects both 
real individual differences and error fluctuations, if everyone were alike the only 
measurable differences among them would be due to chance error (Graham & Lilly, 
1984). The technical name for this type of error is random error, and it is presumed 
to be uncorrelated with the actual value. 

A further distinction is made between random error and systematic error (also 
called bias). The basic difference is that random errors are thought to push measurements 
up and down around an exact value, so that the average of all observed values over many 
random trials should be very close to the actual value. Systematic error, on the other 
hand, is understood to push measurements in the same direction and thus to cause the 
mean value to be either too big or too small. Another way of thinking about this distinc­
tion is that random errors, on the average over many repeated measurements, are expected 
to cancel out, but systematic errors are not expected to cancel out. Suppose the grocer 
always weighs string beans with a thumb on the scale; he will inflate the price by tacking 
extra ounces onto the obtained measurement (a systematic error). Or suppose we want 
to estimate the weight of a child, and we weigh the child several times in a row but still 
get small variations in the measurements. Assuming the fluctuations are a function of 
random errors (which cancel out over the long run), we can estimate the child's true 
weight by averaging all the observed values. But suppose the scale has never been 
calibrated properly and is always 3 pounds too high. To cancel this known systematic 
error, we simply subtract 3 pounds from the mean of the observed values. 

In chapter 7 we will describe how systematic errors in experimental research are 
the main concern of internal validity-which refers to the degree of validity of statements 
about whether changes in one variable result in changes in another variable. In some 
situations, a little systematic error may actually be better than a lot of random error, 
particularly when the direction and magnitude of the systematic error are known and can 
be compensated for (Stanley, 1971). We will also discuss how certain fluctuations in 
experimental responses due to the behavior or expectations of experimenters and research 
participants constitute systematic errors and what can be done to control for these biases, 
and in the next chapter we will discuss systematic rating errors made by judges and 
observers and the ways in which they are usually handled. The remainder of the present 
chapter is primarily concerned with methods that can be used by researchers to assess 
reliability and Validity in different situations. We also explore the relationship between 
Ihe concept of reliability and the role and limitations of replication in science. 

ASSESSING STABILITY AND EQUIVALENCE 

()ne situation in which reliability is a major concern is in the use of a psychological test 
III measure some attribute or behavior. If the researchers are to understand the function­
ing of the test, they must understand its reliability. Three traditional types of reliability 
in this situation are test-retest reliability, alternate-form reliability, and internal-consistency 
reliability. Each in tum is quantified by a particular reliability coefficient, which tells 
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researchers what they might expect in repeated samples or replications with similar mean 
values. We start by explaining test-retest and alternate-form reliability, and then we will 
have much to say about internal-consistency reliability in separate sections. 

Test-retest reliability (also called retest reliability) refers to the stability of a 
measure or particular instrument from one measurement session to another. The 
procedure for estimating the test-retest coefficient involves administering the instrument 
to a group of subjects and then administering it to the same group again later. The 
Pearson correlation (r) between these two sets of scores indicates the test's retest 
reliability. Most researchers believe that it is important to know this type of reliability 
if they plan to use a psychological test to predict or to measure trait characteristics 
(which are, by definition, individual attributes that are expected to have high temporal 
stability, such as someone's usual reaction time). On the other hand, if researchers are 
interested in something that is understood to be changeable or volatile under specifiable 
conditions (called a state characteristic, such as mood), much lower retest reliability 
would be expected. 

In practice, many useful measuring instruments in the social and behavioral 
sciences have test-retest reliabilities substantially lower than r = 1.0. For instance, 
Parker, Hanson, and Hunsley (1988) estimated an average retest reliability for the 
Wechsler Adult Intelligence Scale (WAIS) of r = .82, for the Minnesota Multiphasic 
Personality Inventory (MMPI) of r = .74, and for the Rorschach inkblot test of 
r = .85. Braun and Wainer (1989) noted that typical retest reliabilities obtained by 
the Educational Testing Service (the company in Princeton, NJ, which developed, 
revises, and administers the Scholastic Assessment Test, or SAT) included correlations 
between .3 and .6 for SAT essay scores in the humanities, and between .6 and .8 for 
chemistry. To give us a feeling for what these numbers mean, Braun and Wainer 
mentioned that if we ranked a group of boys by height at age 6 and then again at age 
10, the expected retest correlation would be greater than .8. If we ranked the boys by 
performance on an objectively scored intelligence test at two different ages, the 
expected correlation would be greater than .6. By way of comparison, if the boys 
were ranked once by height and again by performance on the intelligence test at the 
same age, the expected correlation would be only about .2 or .3 for these relatively 
unrelated variables. 

Alternate-form reliability refers to the degree of equivalence of different 
versions of an instrument with different components (e.g., test items) that are all 
intended to measure the same thing (e.g., an attribute of some kind). Because alter­
nate forms of a test must, by definition, be interrelated, we expect them to be highly 
correlated with one another when they are administered to the same individuals in 
the same session. Thus, the correlation between them at a particular time is one 
indication of how equivalent the measurement content of one form of the instrument 
is to the content of another form (also called equivalent-forms reliability by 
Guilford, 1954). To be equivalent in a statistical sense, however, the instruments 
are also expected to have similar variances, as well as similar intercorrelations with 
other theoretically relevant criteria (Gulliksen, 1950; Nunnally & Bernstein, 1994). 
Why should a researcher want more than one form of a measuring instrument? 
Suppose the research participants were administered the same test twice. The retest 
reliability might be artificially inflated because of the subjects' familiarity with the 
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items, but we can avoid this problem by using two or more equivalent forms of the 
same instrument. Not all measuring instruments have equivalent forms, but many 
of the most popular .psychological tests do. 

Figure 4.1 illustrates the reliability coefficients for stability and equivalence in 
the case of alternate forms A and B of a test administered to the same participants at 
Times 1 and 2. Some of the correlations can be more precisely characterized as 
stability coefficients (i.e., correlations between scores on the same form administered 
to the same people at different times) and others, as coefficients of equivalence 
(i.e., correlations between scores on different forms administered to the same people 
at approximately the same time). Stability coefficients include the correlation between 
repeated administrations of Form A at Times 1 and 2 (r AlA2) and the correlation 
between repeated administrations of Form B at Times 1 and 2 (rBlB2). Coefficients of 
equiValence include the correlation between Forms A and B at Time 1 (r AIBl) and the 
correlation between Forms A and B at Time 2 (rA2B2). Not shown in this figure are 
the correlation between Form A at Time 1 and Form B at Time 2 (r AlB2)' or the cor­
relation between Form B at Time 1 and Form A at Time 2 (rBlA2); they are sometimes 
referred to as cross-lagged correlations because one of the two variables (A or B) is 
treated as a time-lagged value or the other variable. In chapter 8 we will illustrate 
how cross-lagged correlations have been used to try to tease out hypothesized causal 
chains in relational research designs. 

We repeat that there can be difficulties in interpreting test-retest correlations. For 
example, one difficulty is distinguishing between the effect of memory and the effect of 
real changes (Remmers, 1963). If the interval between the two testing sessions is too 
short, the test-retest correlation may be inflated by the effect of memory in increasing 



92 OPERATIONALIZATION AND MEASUREMENT OF DEPENDENT VARIABLES 

the consistency of responses. On the other hand, if the interval is too long, there may be 
some real change in the characteristic being measured, which in turn could lower the 
retest correlation. Practice might also lead to varying amounts of improvement in the 
retest scores of some individuals on certain reasoning tests, because a person who has 
figured out a general solution will find it easier to solve similar problems more quickly 
on the retest (Anastasi & Urbina, 1997). If many respondents are inattentive because they 
do not feel the research is very important, their attitude could be reflected in noticeably 
diminished retest reliability (Rosnow, Skleder, Jaeger, & Rind, 1994). Furthermore, there 
really is no single retest reliability for a test, as the stability coefficient depends in part 
on the time interval between the two measurements (Thorndike, 1933). 

Professional standards for educational and psychological testing nevertheless 
insist that test manuals attempt to specify an optimum interval between the test and 
the retest as well as any real changes (e.g., the effects of counseling, career moves, 
psychotherapy) that may affect measurement stability (American Psychological 
Association, 1985). If we know (through some independent observations, for 
example) that real changes in behavior have occurred, we can infer whether an 
instrument used to measure that behavior was sensitive enough to detect the changes 
(Martin & Bateson, 1986). Knowing that the behavior changed, resulting in changes 
in persons' relative standings, but finding a retest correlation near r = 1.0 would 
be a red fllg that the instrument is insensitive to the behavioral change (Lindzey & 
Borgatta, 1954). 

INTERNAL-CONSISTENCY RELIABILITY 
AND SPEARMAN-BROWN 

The third type of reliability is internal-consistency reliability; it tells us the degree of 
relatedness of the individual items or components of the instrument in question when we 
want to use those items or components to obtain a single score. Because it indicates how 
well the separate items or components "hang together," it is also called the reliability of 
components. To distinguish it from other indices of reliability, we use the symbol R (and 
a superscript to denote the approach used to calculate this reliability). We focus this and 
the following section on three popular, classic approaches: (a) the Spearman-Brown 
equation, (b) Kuder and Richardson's Formula 20, and (c) Cronbach's alpha coefficient. 
If we judge the internal-consistency reliability of a test to be too low, we can increase 
the value of R by increasing the number of items, as long as the items remain reasonably 
homogeneous (i.e., the new items are similarly correlated with the old items and with 
each other, and all items, old and new, have the same variance). What constitutes an 
acceptable level of internal-consistency reliability? There is no specific criterion of 
acceptability; it would depend on the situation, but Parker et al. (1988) estimated the 
average internal-consistency reliability of the WAIS to be .87, which they compared with 
their estimate of the average internal-consistency reliability of the MMPI (.84) and the 
Rorschach inkblot test (.86). Generally speaking, values of this magnitude are considered 
very substantial by psychometric standards, but tests with much lower levels of reliability 
have still been found very useful. 

We begin with RSB and the Spearman-Brown equation that is used to calculate 
it. This approach is particularly convenient to use in predicting how changing the 
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length of a test should affect the total reliability of the test. The Spearman-Brown 
equation, which takes its name from the fact that Charles Spearman (1910) and 
William Brown (1910) independently reported it in the same issue of the British 
Journal of Psychology, is represented in the following expression: 

(4.1) 

where RSB is the reliability of the sum of n item scores, and rjj is the mean intercor­
relation among all the items (i.e., the item-to-item correlation, or the reliability of a 
single item). 

To illustrate, suppose we administer a three-item test to a group of people and 
calculate the following correlations among the items: r 12 = .45 (i.e., the correlation 
between scores on Item I and Item 2), r'3 = .50, and r23 = .55. The mean of these 
correlations is rjj = .50 (i.e., the average item reliability), and substituting in Equation 
4.1, with n = 3 items, gives us 

RSB - 3(.50) - 75 
- 1 + (3 - 0.50 -. , 

which is the overall (or composite) reliability of the test as a whole, when it is also 
assumed that all items have the same variance. This reliability will increase mono­
tonically with increased test length as long as the items being added are relevant and 
are not less reliable than the items already in the test (Li, Rosenthal, & Rubin, 1996). 
To give an extreme case, suppose the items being added were pure noise. Because 
their addition would increase the error variance, the reliability of the total of all items 
would decrease (unless the new items were given zero weight when the test is scored). 
The point is that the Spearman-Brown equation formally assumes that the items in 
the composite test, whose score is the simple total of all items, measure the same trait 
and have the same variance, and that all pairs have the same correlation. To the extent 
that those assumptions are more and more violated, the Spearman-Brown equation 
and its implications are less and less accurate. 

However, let us assume those assumptions are not violated by the addition of 
three new items we have created that will double the test length. We now want to 
estimate the reliability of the six-item test as a whole. Assuming no change in the 
item-to-item (i.e., mean) correlation with the addition of our three new items (i.e., rjj 

remains at .50), using Equation 4.1 gives us 

RSB - 6(.50) - 86 
- 1 + (6 - 0.50 -. . 

What if we want to further increase. the length of the test, going to nine items? Assuming 
the new items meet the aforementioned assumptions, using Equation 4.1 gives us 

RSB - 9(.50) - 90 
- 1 + (9 - 0.50 -. . 

In all, if we double the test length, we expect to increase its internal-consistency 
reliability from .75 to .86. Tripling the test length, we expect to increase its internal­
consistency reliability to .90. We find that, by adding similar new items, we can keep 
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improving the internal-consistency reliability. However, there is a psychological limit 
to how many items we should add, because the larger the number of items, the more 
likely it is that fatigue and boredom will result in inattention and careless (or inaccurate) 
responding. 

To find out quite directly how many items (n) we will need to reach any particular 
level of internal-consistency reliability, we rearrange Equation 4.1 as follows: 

RSB (1 - fli) 
n = fli (1 _ RSB ) , (4.2) 

with all symbols defined as before. Continuing with our three-item test, where we had 
mean item-to-item reliability of rii = .50, we want to know how many items, all 
averaging rii = .50, we need to achieve a Spearman-Brown internal-consistency 

reliability of .90. Substituting in Equation 4.2, we find 

_ .90(1 - .50) - 9 
n - .50(1 - .90) - . 

Thus, the value of the Spearman-Brown procedure is not only that it allows us to 
estimate the expected increase in internal-consistency reliability (Equation 4.1), but 
that it cal! also tell us quite directly the number of items we need to reach a desired 
level of reliability (Equation 4.2). 

Table 4.1 is a useful summary table (Rosenthal, 1987a). It gives the internal­
consistency reliability (RSB) of values ranging from one to 100 items. Thus, given 
the obtained or estimated mean reliability (r) and the number of items (n) in a 
test, we can look up the internal-consistency reliability (RSB) of the test. Alterna­
tively, given the obtained or estimated mean reliability (rii ) and the desired internal­
consistency reliability (RSB), we can look up the number of items (n) we will need. 
As we illustrate shortly, Table 4.1 is also useful when, instead of a test made up 
of a number of items, we have a group of judges or raters and want to estimate 
values similar to those above. 

KR20 AND CRONBACH'S ALPHA 

The reliability literature is immense, and the Spearman-Brown method is one of 
several classic approaches to internal-consistency reliability. Another method was 
created by Kuder and Richardson (1937). For a long time, the standard method for 
estimating the reliability of components was to correlate one half of the test with the 
other half, a correlation yielding split.half reliability (e.g., correlating the odd- and 
even-numbered items). The problem is that we can get different split-half correla­
tions, depending on how a test is divided in half. Kuder and Richardson created a 
number of equations, of which the 20th has become the most famous and has come 
to be called KR20 (symbolized here as RKR20). It implies the split-half reliability 
based on all possible splits, and it is used when test items are scored dichotomously. 
In a true-false achievement test, for example, correct answers would be scored 1 and 
incorrect answers O. In a psychological test in which there are no right or wrong 
answers, the score of the answers would be 1 or 0 based on the scoring key and the 
objective of the test. 
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n .01 

1 .01 
2 .02 
3 .03 
4 .04 
5 .05 
6 .06 
7 .07 
8 .07 
9 .08 

10 .09 
12 .11 

14 .12 
16 .14 
18 .15 
20 .17 

24 .20 
28 .22 
32 .24 
36 .27 
40 .29 
50 .34 
60 .38 
80 .45 

100 .50 

.03 .05 .10 

.03 .05 .10 

.06 .10 .18 

.08 .14 .25 
.11 .17 .31 
.13 .21 .36 
.16 .24 .40 
.18 .27 .44 

.20 .30 .47 

.22 ···.32 .50 

.24 .34 .53 

.27 .39 .57 

.30 .42 .61 

.33 .46 .64 

.36 .49 .67 

.38 .51 .69 

.43 .56 .73 

.46 .60 .76 

.50 .63 .78 

.53 .65 .80 

.55 .68 .82 

.61 .72 .85 

.65 .76 .87 

.71 .81 .90 

.76 .84 .92 

.15 

.15 

.26 

.35 

.41 

.47 

.51 

.55 

.59 

.61 

.64 

.68 

.71 

.74 

.76 

.78 

.81 

.83 

.85 

.86 

.88 

.90 

.91 

.93 

.95 

.20 .25 

.20 .25 

.33 .40 

.43 .50 

.50 .57 

.56 .62 

.60 .67 

.64 .70 

.67 .73 

.69 .75 

.71 .77 

.75 .80 

.78 .82 

.80 .84 

.82 .86 

.83 .87 

.86 .89 

.88 .90 

.89 .91 

.90 .92 

.91 .93 

.93 .94 

.94 .95 

.95 .96 

.96 .97 

~ Note: * = approximately .99; ** = approximately 1.00. 

Mean reliability (r li or r jj) 

.30 .35 .40 .45 .50 .55 

.30 .35 .40 .45 .50 .55 

.46 .52 .57 .62 .67 .71 

.56 .62 .67 .71 .75 .79 

.63 .68 .73 .77 .80 .83 

.68 .73 .77 .80 .83 .86 

.72 .76 .80 .83 .86 .88 

.75 .79 .82 .85 .88 .90 

.77 .81 .84 .87 .89 .91 

.79 .83 .86 .88 .90 .92 

.81 .84 .87 .89 .91 .92 

.84 .87 .89 .91 .92 .94 

.86 .88 .90 .92 .93 .94 

.87 .90 .91 .93 .94 .95 

.89 .91 .92 .94 .95 .96 

.90 .92 .93 .94 .95 .96 

.91 .93 .94 .95 .96 .97 

.92 .94 .95 .96 .97 .97 

.93 .95 .96 .96 .97 .98 

.94 .95 .96 .97 .97 .98 

.94 .96 .96 .97 .98 .98 

.96 .96 .97 .98 .98 .98 

.96 .97 .98 .98 .98 * 

.97 .98 .98 .98 * * 

.98 .98 * * * * 

.60 

.60 

.75 

.82 

.86 

.88 

.90 

.91 

.92 

.93 

.94 

.95 

.95 

.96 

.96 

.97 

.97 

.98 

.98 

.98 

.98 

* 
* 
* 
* 

.65 

.65 

.79 

.85 

.88 

.90 

.92 

.93 

.94 

.94 

.95 

.96 

.96 

.97 

.97 

.97 

.98 

.98 

.98 

* 
* 
* 
* 
* 
* 

.70 

.70 

.82 

.88 

.90 

.92 

.93 

.94 

.95 

.95 

.96 

.97 

.97 

.97 

.98 

.98 

.98 

.98 

* 
* 
* 
* 
* 
* 

** 

.75 

.75 

.86 

.90 

.92 

.94 

.95 

.95 

.96 

.96 

.97 

.97 

.98 

.98 

.98 

.98 

* 
* 
* 
* 
* 
* 
* 

** 
** 

.80 

.80 

.89 

.92 

.94 

.95 

.96 

.97 

.97 

.97 

.98 

.98 

.98 

.98 

* 
* 
* 
* 
* 
* 
* 

** 
** 
** 
** 

.85 

.85 

.92 

.94 

.96 

.97 

.97 

.98 

.98 

.98 

.98 

* 
* 
* 
* 
* 
* 
* 
* 

** 
** 
** 
** 
** 
** 

.90 

.90 

.95 

.96 

.97 

.98 

.98 

.98 

* 
* 
* 
* 
* 
* 
* 
* 

** 
** 
** 
** 
** 
** 
** 
** 
** 

.95 

.95 

.97 

.98 

* 
* 
* 
* 
* 
* 
* 

** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
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To illustrate the application of KR20, we refer to Table 4.2, in which 8 people 
responded to three dichotomous items. The formula for computing KR20 is 

RKR20 = (_n_)( ar - Z.PQ) (4.3) 
n-l ar ' 

in which n = number of items in the test; a~ = variance of the total test score; 
P = proportion of responses scored 1 for each item in tum; Q = 1 - P (i.e., the 
proportion of responses scored ° for each item); and z.PQ instructs us to sum the 
products of P and Q over all items. The variance of the total test score (ar) is 
obtained from the total scores (t) of the persons (P) tested: 

2 _ z.(tp - tpf 
at - P , (4.4) 

where tp is the mean of all the tp scores. For our three-item test, we would compute 
the variance of the total test score as follows: 

6 2 _ [(3-2.25)2 + (3-2.25)2 + (2-2.25)2 + (3-2.25)2 + (1-2.25)2 + (0-2.25)2 + (3-2.25)2 + (3-2.25)2] 
t - 8 

=1.1875 

We obtain the value of IPQ from Table 4.2 as follows: ., 
IPQ = .234 + .188 + .109 = .531 

TABLE 4.2 

Responses of eight participants to three dichotomous items 

Participants 

Person 1 

Person 2 

Person 3 

Person 4 

Person 5 

Person 6 

Person 7 

Person 8 

P 

Q 

'PQ = (1; 
bSZ 

r12 = .745 

r13 = .488 

r23 = .655 

rji = .629 

1 

1 

o 

o 
o 

.625 

.375 

.234 

.268 

Items 

2 

o 
o 

.750 

.250 

.188 

.214 

3 

o 

.875 

.125 

.109 

.125 

Total (t) 

3 

3 

2 

3 

o 
3 

3 

rr? = 1.188 

~ = 1.357 

'IPQ = .531 

bISZ = .607 
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iubstitution in Equation 4.3 yields 

RKR20 = (_3_)(1.188 - 0.531) - 830 
3 - 1 1.188 - . 

The Kuder-Richardson equation is also understood to be a special case of a 
nore general expression called Cronbach's alpha, or the alpha coefficient-which 
Ne symbolize as RCronbach to emphasize that it was Lee J. Cronbach (1951) who 
ieveloped this approach. The <17 value of Equation 4.3 is replaced by S7, the variance 
)f the total test scores of the p persons tested: 

S2 _ ~(tp -tpY 
( - p-l (4.5) 

The IpQ value of Equation 4.3 is replaced by I(S1), the sum of the variances of the 
Individual items, that is, 

RCronbach = (_n_)( Sf - ~(sn) 
n-l Sf ' 

Dr alternatively, 

RCronbach = (_n_)(l _ ~(Sf)) 
n - 1 Sf· 

For the data of Table 4.2, we find 

RCronbach = (1)( 1.357 - .607) = 829 
2 1.357 ., 

within rounding error of the "Value we obtained for KR20. 

(4.6) 

(4.7) 

Cronbach's alpha coefficient can also be estimated from the analysis of 
variance, which makes the alpha coefficient convenient when there are large 
numbers of items and it becomes cumbersome to calculate the intercorrelations by 
hand. To illustrate we refer to Table 4.3, which summarizes the analysis of variance 
obtained on the data in Table 4.2. The estimation of coefficient alpha from those 
results is as follows: 

C b h ( 
n)( MSpersons + (n - I)MSresidual) 

Rronac = -- 1- , 
n - 1 (n)MSpersons 

(4.8) 

TARLE 4.3 

Repeated-measures analysis of variance on results in Table 4.2 

Source Sum of squares df Mean squares 

Hclween persons 3.167 7 .452 

Within persons 

Items .250 2 .125 

hems x Persons 1.083 14 .077 
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where n is the number of items, and the other symbols are defined in Table 4.3 
(Li & Wainer, 1998). Substitution in Equation 4.8 gives us 

RCronbach = (1)(1 _ .452 + (2).077) = 830 
2 (3).452 . 

To bring the discussion full circle, we now use the Spearman-Brown formula 
(Equation 4.1) to compute the reliability of the data in Table 4.2: 

RSB = 3 (.629) 836 
1+(3-1).629 = .. 

In this illustration, all the obtained estimates of internal-consistency reliability are 
quite similar. Li and Wainer (1997) showed that when all item variances are equal, 
the estimates obtained from these methods should be identical, as the methods are 
mathematically equivalent. 

EFFECTIVE RELIABILITY OF JUDGES 

The same reliability procedures are applicable when researchers use judges to classify 
or rate things and want to estimate the reliability of the judges as a group, or what 
we calf effective reliability. Suppose there are three judges who rate five clients who 
have been administered a counseling or clinical treatment, with the results shown in 
Table 4.4. We approach this question the same way we approached that of "How many 
items?" in the previous discussion. Using the Spearman-Brown formula (Equation 4.1), 
with notation redefined, we can estimate the effective reliability of the 3 judges 
(assuming the reliability of the individual judges is similar; Li et al., 1996; Tinsley & 
Weiss, 1975; Overall, 1965) by using the following formula: 

nn 
R SB = " 

1 + (n - l)r~' 

TABLE 4.4 

Ratings and intercorrelations for 
three judges 

Judges 

Clients A B 

Person 1 5 6 

Person 2 3 6 

Person 3 3 4 

Person 4 2 2 

Person 5 4 

r AB = .645 

rAC = .800 

rBC = .582 

r~ = .676 

C 

7 

4 

6 

3 

4 

(4.9) 
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where RSB is the effective reliability (i.e., reliability of the total set of judges), n is 
the number of judges, and rjj is the mean correlation among all the judges (i.e., our 
estimate of the reliability of an individual judge). Applying Equation 4.9 to the results 
in Table 4.4, we find 

RSB - 3 (.676) - 862 
- 1 + (3 - 1) .676 - . . 

We again consult Table 4.1, in which case we can estimate anyone of the three 
values once we know the other two. For example, given an obtained or estimated 
mean reliability of rjj = .40, and assuming we want to achieve an effective reliability 
of RSB = .85 or higher, we will need at least n = 9 judges. 

Alternatively, using Equation 4.8, we can compute Cronbach's alpha coefficient 
from the information in Table 4.5, with results as follows: 

RCronbach = G)( 1 - 6.0~3~~~~·85) = .858. 

Another classic analysis of variance (ANOVA) procedure, introduced by 
C. Hoyt (1941), allows us to estimate the effective reliability by 

RHoyt = MSpersons - MSresidual 

MSpersons ' 
(4.10) 

from which we obtain 

RHoyt = 6.0~~g.85 .858. 

It turns out that RHoyt is identical to Equation 4.8, the ANOVA-based procedure for 
estimating RCronbach. 

To obtain an estimate of the judge-to-judge reliability, we use the following 
formula to calculate the intraclass correlation: 

I1ntraclass = rjj = MS + ( 1) MS ' persons n - residual 

MSpersons - MSresidual 

which, applied to the results in Table 4.5, yields 

6.00 - 0.85 
.669. 

rjj = 6.00 + (3 - 1) 0.85 

TABLE 4.5 

Repeated-measures analysis of variance on results in Table 4.4 

Source Sum of squares df Mean squares 

Between persons 24.0 4 6.00 

Within persons 

Judges 11.2 2 5.60 

Judges X Persons 6.8 8 0.85 

(4.11) 
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The estimate of effective reliability that we obtained by the Spearman-Brown 
procedure (RSB = .862) differs by only .004 from the estimate obtained by Cronbach's 
approach (RCronbach = .858) or by Hoyt's method (RHoyt = .858). Furthermore, the 
mean correlation shown in Table 4.4 (rjj = .676) differs by only .007 from the estimate 
(.669) obtained by the analysis of variance. In general, the differences obtained 
between those approaches are quite small. In this simple example, the Spearman­
Brown procedure was also not an onerous one to use, with only three correlations to 
compute. However, as the number of judges (or number of items) increases, it becomes 
increasingly more convenient to use the analysis of variance approach. (We will see 
the results in Tables 4.4 and 4.5 again in a later chapter, when we discuss repeated­
measures designs and the intraclass correlation, which is another name for the average 
judge-to-judge or item-to-item reliability.) 

EFFECTIVE COST OF JUDGES 

In our discussion of judges, we have assumed that they were of a "single type." 
That is, they are more-or-Iess interchangeable, in that different judges showed 
similar variance in ratings and the intercorrelations among pairs of judges 
were also very similar. In many research situations that employ judges or raters, the 
interchangeability criterion applies pretty well. The judges may be undergraduate 
students enrolled in introductory psychology courses, or they may be graduate 
students in psychology, or they may be highly specialized mental health professionals 
(e.g., psychiatrists, clinical or counseling psychologists, or psychiatric social 
workers). But suppose all those types were available for use as judges. Without 
special care, it does not work well to select judges with such different backgrounds, 
who would very likely differ considerably in their reliabilities, or in their cost to 
the researcher. Procedures are available that allow us to select the type of judge we 
ought to employ to maximize effective reliability for fixed cost (Li et a!., 1996). 
The selection rule requires the computation of a simple quantity, called 
effective cost (ECj for judge type j, i.e., the effective reliability cost of a judge of 
this type): 

( 1 - r.,) 
ECj =Cj rii JJ , (4.12) 

where Cj is the cost per judge of type j, and rjj is the average intercorrelation of judges 
of type j with one another. Table 4.6 provides a feel for the quantity ECj at various 
levels of reliability and cost. 

Once we have computed the effective reliability cost of each type of judge, the 
selection rule requires us to rank the judge types by their effective reliability cost 
from smallest (best) to greatest (worst) and to select judges starting from the best 
until either the number of judges or the funds available are exhausted. By way of 
illustration, suppose we want to rate the degree of anxiety shown by a series of clients 
undergoing psychotherapy. Hiring college students to do the ratings would cost us 
$20 per rater, and the average intercorrelation among these college students (their 
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TABLE 4.6 

Table of effective reliability cost (EC) 

Reliability (rn or r i) 

Cost 
($) .05 .10 .20 .30 .40 .50 .60 .70 .80 .90 

19 9 4 2.33 1.50 0.67 0.43 0.25 0.11 

5 95 45 20 11.67 7.50 5 3.33 2.14 1.25 0.56 

10 190 90 40 23.33 15.00 10 6.67 4.29 2.50 Lll 

15 285 135 60 35.00 22.50 15 10.00 6.43 3.75 1.67 

20 380 180 80 46.67 30.00 20 13.33 8.57 5.00 2.22 

30 570 270 120 70.00 45.00 30 20.00 12.86 7.50 3.33 

40 760 360 160 93.33 60.00 40 26.67 17.14 10.00 4.44 

50 950 450 200 116.67 75.00 50 33.33 21.43 12.50 5.56 

60 1140 540 240 140.00 90.00 60 40.00 25.71 15.00 6.67 

70 1330 630 280 163.33 105.00 70 46.67 30.00 17.50 7.78 

80 1520 720 320 186.67 120.00 80 53.33 34.29 20.00 8.89 

90 1710 810 360 210.00 135.00 90 60.00 38.57 22.50 10.00 

100 1900 900 400 233.33 150.00 100 66.67 42.86 25.00 lLll 

200 3800 1800 800 466.67 300.00 200 133.33 85.71 50.00 22.22 

300 5700 2700 1200 700.00 450.00 300 200.00 128.57 75.00 33.33 

400 7600 3600 1600 933.33 600.00 400 266.67 171.43 100.00 44.44 

• Note: The effective cost values can be obtained from the following equation: 

EC = Cost (1 ~ r), where r can refer either to the average judge-to-judge reliability (rjj) or the average item-to-item 

reliability (r;). 

reliability) is .40. Thus, from Equation 4.12, the effective reliability cost for each 
college student is 

EC - C (1 - rstudent) student - student r. 
student 

=$20(1 - .40) = $30 
.40 

Hiring experienced clinicians would cost $400 per clinician rater, and the average 
intercorrelation among these clinicians is .60. The effective reliability cost for each 
clinician is 

EC - C (1 - rclinician) 
clinician - clinician .,.. . . . 

'chrnclan 

= $400 ( 1 ~(60) = $266.77 

In this example, our best strategy to maximize the effective reliability for a fixed 
cost would be to choose only college students as raters. Table 4.1, based on the 
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Spearman-Brown procedure, indicates that it would take 6 college student raters 
(with a mean reliability of .40) to produce an effective reliability of .80. The total 
cost is the effective cost multiplied by the number (n) of judges, and so the total 
cost = $30 X 6 = $180. To achieve an effective reliability of .90 would require that 
we employ 14 college student raters with total cost of $30 X 14 = $420. If we used 
experienced clinicians (with a mean reliability of .60), Table 4.1 shows that we would 
require only 3 raters to reach an effective reliability of about .80 and 6 raters to reach 
an effective reliability of .90. We would need fewer raters, but the cost would be a 
good deal more than that of choosing college students, that is, $266.67 X 3 = $800 
to reach an effective reliability of about .80 (compared to $180 for college students). 
Employing clinicians to reach an effective reliability of .90 would cost $266.67 X 6 = 
$1,600 (compared to only $420 for college student raters). 

Suppose that, in our thinking about the selection of raters to maximize reliability 
for a fixed cost, we add a third type of rater, for example, graduate students in clinical 
psychology. Further, assume that hiring a graduate student rater would cost $35, and 
that the average intercorrelation among graduate student raters is .55. Then, from 
Equation 4.12, the effective reliability cost is 

EC= $35(1 5i5 ) =$28.61 

Because the effective reliability cost of $28.64 per graduate student is lower than the 
effective cost of $30 per undergraduate student, our best strategy to maximize effective 
reliability would be to choose only graduate students. If not enough graduate students 
are available (e.g., we want seven to achieve an effective reliability of .90, but only 
four are available), we can employ all that are available and add raters of the type with 
the next lowest effective reliability cost (college students in this example). 

When two or more different types of judges (i.e., those differing in their 
average judge-to-judge intercorrelations, as in the present example) are employed, 
the Spearman-Brown formula does not apply, nor does Equation 4.1, which is based 
on the Spearman-Brown. Instead, we can use slightly more specialized equations, 
which are described elsewhere (Li, 1994; Li et aI., 1996). These equations allow us 
to compute an overall reliability when two or more different types of judges are 
employed and we want to estimate a single effective reliability as opposed to 
computing reliabilities for each different type of judge or rater. 

EFFECTIVE COST OF ITEMS 

We have discussed the effective reliability of judges in two conditions: (a) when 
judges are of a single type and (b) when they are of two or more types. Everything 
we have said about judges or raters applies equally to the items of a test. Thus, the 
selection rules for choosing the type of judges to maximize effective reliability (for 
fixed cost) also apply to the selection of items to maximize the internal-consistency 
reliability of a test (for fixed cost). 

For example, suppose we want to construct a test of content mastery with both 
essay questions and multiple-choice items available. The essay items cost $1.00 to score, 
and their average intercorrelation (i.e., item-to-itemreliability) is rii = .60. Multiple-choice 
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items cost only $.01 to score, but their average intercorrelation is only rii = .10. Using 
Equation 4.12, we find that the effective cost (EC) for an essay item is 

( 1 - n.) 
ECessay = Ci ~ 

( 1 - .60) = $1.00 -----0:6() = $0.67, 

and the effective cost for a multiple-choice item is 

ECmultiple-Choice = $0.01(1 ~OlO) = $0.09. 

To maximize internal-consistency reliability-say, for a fixed cost of $7-we 
would choose 700 multiple-choice items (mean reliability of .10), yielding an internal­
consistency reliability of RSB = .99. If we had spent $7 on 7 essay items (mean reliability 
of .60), our internal-consistency reliability would have been lower (RSB = .91). Had there 
been only 200 multiple-choice items available, we would have used these at a cost of 
$2 and added 5 essay items at a cost of $5. Using equations that are available elsewhere 
(Li et al., 1996), we could compute the internal-consistency reliability of this hybrid test 
as RSB = .97, which is lower than the test composed of 700 multiple-choice items but 
higher than the test composed exclusively of 7 essay items. 

INTERRATER AGREEMENT 
AND RELIABILITY 

An unfortunate practice among many researchers is to confuse the percentage of 
agreement of judges or raters with their interrater reliability. Interrater agreement and 
interrater reliability are not merely synonyms. As we will now show, percentage 
agreement is often ambiguous and can be quite misleading (even in the case of just 
two judges). To calculate the percentage of agreement of the judges, we need to know 
the number of agreements (A) and the number of disagreements (D) among them. 
Then we simply substitute this information in the following formula: 

Percentage agreement = (A! D) 100, (4.13) 

or we can compute the net agreement of the judges by 

(A-D) Net agreement = A + D 100 .. (4.14) 

The specific failing of both these indices is that they do not differentiate between 
accuracy and variability (Cohen, 1960; Robinson, 1957; Rosenthal, 1987a; Tinsley & 
Weiss, 1975). 

Table 4.7 shows that percentage agreement can be a very misleading indicator 
of interjudge reliability. In Part A of this table, Smith and Jones independently have 
two judges evaluate the same 100 film clips of children for the presence or absence 
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TABLE 4.7 

Examples of percentage agreement 

A. Two cases of 98 % agreement 

Smith's results 

Judge A 

Judge B Frown No frown 

Frown 98 

No frown o 
Agreement = 98% 

rAB (phi) = -.01, and xlI) = 0.01 

Jones's results 

Judge D 

Frown 

No frown 

Frown 

49 

Agreement = 98% 

Judge C 

No frown 

49 

rCD (phi) = +.96, and xlI) = 92.16 

B. Two cases of 50% agreement 

Hill's results 

Judge F 

Frown 

No frown 

Frown 

50 

25 

Agreement = 50% 

Judge E 

No frown 

25 

o 

rEF (phi) = -.33, and Xfl) = 11.11 

Reed's results 

Judge H 

Frown 

No frown 

Frown 

25 

o 
Agreement = 50% 

Judge G 

No frown 

50 

25 

rOH (phi) = +.33, and xlI) = 11.11 

of frowning behavior, with the results as shown. Based on Equation 4.13, Smith finds 
that the percentage agreement between Judges A and B is 

Percentage agreement = (9i! 2)100 = 98% 

and Jones finds that the percentage agreement between Judges C and D is 

Percentage agreement = (9i! 2)100 = 98% 

The percentages are identical, yet in Table 4.7 we can clearly see that the original 
data collected by Smith and Jones are very different. Judges A and B in Smith's study 
may have shared the same bias, each judge showing a variance (S2) of only .01. Judges 
C and D in Jones's study were consistently unbiased, each judge showing a variance 
(S2) of .25. 

A better procedure would be to report the product-moment correlation (r). In 
this case, it is natural to report the phi (<I» coefficient, which is the product-moment 
r for a 2 X 2 table of counts. Rearranging Equation 2.1 in Chapter 2, we obtain 

<1>= ff-, (4,15) 
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For Smith's results, solving Equation 4.15 yields 

r = j ig~ =-0.01, 

whereas for Jones's results, we find 

(9TI6 
r = V 100 = .96. 

Clearly the effect size correlation is more sensitive than percentage agreement to the 
quite noticeable difference between Smith's and Jones's results in Table 4.7. 

Part B of Table 4.7 shows two additional cases of percentage agreement obtained 
by Hill and Reed. This time, the two investigators both obtained an apparently chance 
level of agreement (i.e., 50%). Both results, however, are very far from reflecting 
chance agreement, both withp = .0009. Most surprising, perhaps, is that Hill obtained 
a substantial negative reliability (r = - .33), whereas Reed obtained a substantial 
positive reliability (r = + .33). This is another illustration of why percentage agreement 
is not a very informative index of reliability. 

COHEN'S KAPPA 

Jacob Cohen (1960) developed a popular index called kappa (lC), which successfully 
addresses some of the problems of percentage agreement. In particular, kappa is 
adjusted for agreement based on simple lack of variability, as illustrated in Table 4.7, 
where in Smith's study both judges reported 99% of the expressions they saw as 
frowning behavior. Table 4.8 gives an example of the type of situation in which kappa 
is often employed. Suppose that two clinical diagnosticians have examined 100 people 
and assigned them to one of four classifications (schizophrenic, neurotic, normal, and 
brain damaged). The three quantities needed to compute kappa are symbolized as 
0, E, and N. 

TABLE 4.8 

Results of two diagnosticians' classification of 100 persons into one of 
four categories 

Judge 1 

A B C D 
Judge 2 Schizophrenic Neurotic Normal Brain-damaged 

A Schizophrenic 13 0 0 12 

Ii Neurotic 0 12 13 0 

(' Normal 0 13 12 0 

I> Brain-damaged 12 0 0 13 

Sum 25 25 25 25 

O-E 50 - 25 
K(df= 9) = N _ E = 100 _ 25 =.333 

Sum 

25 

25 

25 

25 

100 
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The value designated as 0 refers to the observed number on which the two judges 
have agreed (i.e., numbers on the diagonal of agreement), which in this example is 
o = 13 + 12 + 12 + 13 = 50. The value designated as E refers to the expected 
number under the hypothesis of only chance agreement for the cells on the diagonal 
of agreement. For each cell, the expected number is the product of the row total and 
the column total divided by the total number of cases, which in this example gives us 
E = (25 X 25)/100 + (25 X 25)/100 + (25 X 25)/100 + (25 X 25)/100 = 6.25 + 
6.25 + 6.25 + 6.25 = 25. And N is the total number of cases classified, or in this 
example N = 100. The equation for Cohen's kappa is 

O-E 
K= N-E' (4.16) 

and substitution in this equation yields (50 - 25)/(100 - 25) = .333. 
Although Cohen's kappa is clearly an improvement over percentage agreement, 

as an index of interrater reliability it does raise some serious questions. When we are 
working with tables larger than 2 X 2 (e.g., the 4 X 4 example in Table 4.8), kappa 
suffers from the same problem as does any statistic with df > 1 (which we call 
omnibus statistical procedures, distinguishing them from 1-df tests, called focused 
statistical procedures). The problem with most omnibus kappas is that we cannot 
tell which focused or specific judgments are made reliably and which are made unre­
Ii ably. Only when kappa approaches unity is its interpretation straightforward; that is, 
all judgments are made reliably (Rosenthal, 1991b). 

We illustrate the difficulty in interpreting kappa by returning to Table 4.8. The 
4 X 4 table we see, based on 9 df (i.e., the number of rows minus 1 times the number 
of columns minus 1), can be decomposed into a series of six pairwise 2 X 2 tables, 
each based on a single df, and each addressing a focused (very specific) question about 
the reliability of dichotomous judgments. These six focused questions pertain to the 
reliability of 

Variable A versus Variable B, 

Variable A versus Variable C, 

Variable A versus Variable D, 

Variable B versus Variable C, 

Variable B versus Variable D, and 

Variable C versus Variable D 

Table 4.9 shows the results of computing kappa separately for each of these six 
pairwise 2 X 2 tables. Of the six focused or specific reliabilities that were computed, 
the subheadings note that four are kappas of 1.00, and two are kappas near zero 
(.04 and - .04). The mean of all six of these 1-df kappas is .667, and the median is 
1.00; neither value is predictable from the omnibus 9-df kappa value of .333. 

To demonstrate even more clearly how little relation there is between the 
omnibus values of kappa and the associated 1-df kappas (i.e., the focused reliability 
kappas), we refer to Tables 4.10 and 4.11. Table 4.10 shows an omnibus 9-tlf kappa 
value of .333, exactly the same value as that shown in Table 4.8. Table 4.11 shows 
the six focused reliabilities of df = 1 associated with the omnibus value of kappa 



TABLE 4.9 

Breakdown of the 9-df omnibus table of counts of Table 4.8 into 
six specific (focused) reliabilities of df = 1 each 

A. Schizophrenic versus neurotic (kappa = 1.00) 

A B 
Categories Schizophrenic Neurotic Sum 

A Schizophrenic 13 0 13 

B Neurotic 0 12 12 

Sum 13 12 25 

B. Schizophrenic versus normal (kappa = 1.00) 

A C 
Categories Schizophrenic Nonnal Sum 

A Schizophrenic 13 0 13 

C Normal 0 12 12 

Sum 13 12 25 

C. Schizophrenic versus brain-damaged (kappa = .04) 

A D 
Categories Schizophrenic Brain-damaged Sum 

A Schizophrenic 13 12 25 
D Brain-damaged 12 13 25 

Sum 25 25 50 

D. Neurotic versus normal (kappa = -.04) 

B C 
Categories Neurotic Nonnal Sum 

B Neurotic 12 13 25 

(' Normal 13 12 25 

Sum 25 25 50 

K Neurotic versus brain-damaged (kappa = 1.00) 

B D 
Categories Neurotic Brain-damaged Sum 

B Neurotic 12 0 12 

() Brain-damaged 0 13 13 

Sum 12 13 25 

.... Normal versus brain-damaged (kappa = 1.00) 

C D 
Clltegories Nonnal Brain-damaged Sum 

(' Normal 12 0 12 

() Brain-damaged 0 13 13 

Sum 12 13 25 
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TABLE 4.10 

Alternative results of two diagnosticiaus' classification of 
100 persons into one of four categories 

Judge 1 

Judge 2 A B C D Sum 

A 25 0 0 0 25 

B 0 0 25 0 25 

C 0 25 0 0 25 

D 0 0 0 25 25 

Sum 25 25 25 25 100 

( ) 0 - E 50 - 25 
K df=9 = N-E = 100-25 =.333 

(.333). We see that of those six focused kappas, four are kappas of .00, one is a kappa 
of + 1.00, and one is a kappa of -1.00. The mean and median focused kappas both 
have a vaiue of .00. Table 4.12 summarizes the two omnibus kappas of Tables 4.S 
and 4.10 and their associated focused kappas of Tables 4.9 and 4.11. Thus, we have 
two identical kappas, one made up primarily of perfect reliabilities, and the other 
made up primarily of zero reliabilities. 

Although the greatest limitations on kappa occur when it is based on df > 1, 
there are some problems with kappa even when it is based on a 2 X 2 table of counts 
with df = 1. The basic problem under these conditions is that very often kappa is not 
equivalent to the product-moment correlation computed from exactly the same 2 X 2 
table of counts. This is certainly not a criticism of kappa, since it was never intended 
to be a product-moment correlation. The limitation, however, is that we cannot apply 
various interpretive procedures or displays to kappa that we can apply to product­
moment correlations (such as the binomial effect size display, or BESD, which is 
described in chapter 11). 

Here, we need indicate only the conditions under which a I-df kappa would, or 
would not, be equivalent to a product-moment correlation (referred to as a Pearson r 
in the general case or, as noted previously, the phi coefficient in the case of a 2 X 2 
table of counts). Simply stated, K and r are equivalent when the row totals for levels 
A and B are identical to the column totals for levels A and B, respectively. Consider 
the examples in Table 4.13. Computing kappa on the data in the 2 X 2 table in Part 
A, where the marginal totals for level A are identical for Judges 1 and 2 (i.e., both 
sums = SO), from Equation 4.16 we obtain 

K(df= 1) = 1~00 -=-~SS = .375, 

and r (or equivalently, <\» yields the identical value of .375 by computations fully 
described in chapter 11, or simply by computation of the 1-df chi-square and then 
substituting in Equation 4.15. In chapter 11 we also describe the binomial effect size 



fABLE 4.11 

Breakdown of the 9-df omnibus table 
of counts of Table 4.10 into six 
specific (focused) reliabilities of 
df = 1 each 

A. Variable A versus Variable B (kappa = .00) 

Variables A B Sum 

A 25 0 25 

B 0 0 0 

Sum 25 0 25 

B. Variable A versus Variable C (kappa = .00) 

Variables A C Sum 

A 25 0 25 

C 0 0 0 

Sum 25 0 25 

C. Variable A versus Variable D (kappa = 1.00) 

Variables A D Sum 

A 25 0 25 

D 0 25 25 

Sum 25 25 50 

I). Variable B versus Variable C 4J!:appa = -1.(0) 

Variables B C Sum 

B 0 25 25 

C 25 0 25 

Sum 25 25 50 

K Variable B versus Variable D (kappa = .00) 

Variables B D Sum 

B 0 0 0 

D 0 25 25 

Sum 0 25 25 

.... Variable C versus Variable D (kappa = .00) 

Variables C D Sum 

C 0 0 0 

D 0 25 25 

Sum 0 25 25 
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TABLE 4.12 

Summary of omnibus and focused examples 

Location of example 

Summary of results Tables 4.8 and 4.9 Tables 4.10 and 4.11 

Omnibus kappa 

Mean focused kappa 

Median focused kappa 

.33 

.67 

1.00 

.33 

.00 

.00 

display (BESD), which can be used to interpret this particular kappa because it is 
equivalent to a Pearson r. 

Now consider the example in Part B of Table 4.13, in which we have the same 
four cell entries and the same marginal totals as in the preceding example. The only 
thing that has changed is the location of the cell with the largest count (70) so that 
the marginal totals for level A differ for Judges 1 and 2 (Le., 20 versus 80). In this 
example, using Equation 4.16, we find 

20 - 32 
K(df= 1)= 100-32 =-.176, 

but r (<I» yields a markedly different value of -.375. We can, therefore, use the BESD 
(chapter 11) for the r, but not for the kappa. Therefore, we generally recommend using 

TABLE 4.13 

Comparison of kappa and the product­
moment correlation 

A. Kappa equivalent to phi (kappa = .375; phi = .375) 

Judge 2 

A 

B 

Sum 

A 

70 

10 

80 

Judge 1 

B 

10 

10 

20 

Sum 

80 

20 

100 

B. Kappa not equivalent to phi (kappa = -.176; phi 
= -.375) 

Judge 2 

A 

B 

Sum 

A 

10 

10 

20 

Judge 1 

B 

70 

10 

80 

Sum 

80 

20 

100 
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the other procedures discussed in this chapter rather than using kappa as an index of 
reliability. 

REPLICATION IN RESEARCH 

Before we turn to the concept of validity, we must say something about the relationship 
between reliability and replication (or repeatability). The undetected equipment 
failure, the possible random human errors of procedure, observation, recording, 
computation, or report are well enough known to make scientists wary of unreplicat­
ed research results. Generalizability is sought in the replication of research results 
across time (a generalizability similar to test-retest reliability) and across different 
measurements, observers, or manipulations (a generalizability similar to the reliability 
of components). However, whereas replicability is universally accepted as one of the 
most important criteria of the establishment of true constants (e.g., the speed of light), 
even in the natural sciences it is not possible to repeat and authenticate every 
observation at will or with exactitude. In research with human participants, we should 
not think of replication as analogous to an exact photographic reproduction from a 
negative. 

Clearly, the same experiment in behavioral research can never be repeated by 
a different worker. Indeed, it can never be repeated by even the same experimenter, 
because at the very least the participants and the experimenter are older. But to avoid 
the not very helpful conclusion that there can be no replication, we can speak of 
relative replications. We might, for example, rank experiments on how close they are 
to each other in terms of participants, experimenters, tasks, and situations, and perhaps 
agree that this experiment, more than that one, is like a given standard experiment. 
When researchers speak of replication, then, they are referring to a relatively exact 
repetition of a research result. Three factors affecting the utility of any particular 
replication as an indicator of reliability are (a) when the replication is conducted, 
(b) how the replication is conducted, and (c) by whom the replication is conducted 
(Rosenthal, 1990b). 

The first factor-when the replication is conducted-is important because 
replicated studies conducted early in the history of a particular research question are 
usually more useful than replications conducted later in the history of that question. 
The first replication doubles our information about the research issue; the fifth 
replication adds 20% to our information level; and the fiftieth replication adds only 
2% to our information level. Once the number of replications grows to be substantial, 
our need for further replication is likely to be due not to a real need for repetition of 
results but to a desire for the more adequate evaluation and summary of the replications 
already available (described in chapter 21). 

How the replication is conducted is another important factor to keep in mind, 
us shown in Table 4.14. It has already been noted that replications are possible only 
in a relative sense. Still, there is a distribution of possible replications in which the 
variance is generated by the degree of similarity to the standard (i.e., the original 
study) that characterizes each possible replication. Let us assume the original study 
lind the replication were correctly derived from a theory and that the original study 
lind the replication addressed the same prediction or theoretical claim. A precise 



112 OPERATIONALIZATION AND MEASUREMENT OF DEPENDENT VARIABLES 

TABLE 4.14 

Theoretical implications of precision and success of replication 

Result of replication 

Successful 

Unsuccessful 

Nature of the replication 

Precise replication 

Supports the theory 

Damages the theory 

Varied replication 

Extends the theory 

Limits the theory 

replication would be one that was intended to be as close to the original design as 
possible, and a varied replication would be one in which some aspect of the original 
design was intentionally varied in some way. A precise replication, if successful, 
would increase our confidence in the stability of the original finding and, in turn, in 
the theory that had predicted it, whereas a precise replication, if unsuccessful, would 
damage the theory by making us question the original result. A varied replication, if 
successful, would extend the generalizability of the theory, whereas a varied replication, 
if unsuccessful, would imply either specifiable limits (or boundaries) of the theory or 
make us question the original result. Thus, if we design replications to be as exactly 
like the original as possible, we may be more true to the standard, but we pay a price 
in terms of generalizability. However, if all we know is that the results of a replication 
did not support the original result, we cannot say (without further details) whether the 
lack of support stems from the instability of the original result, an unknown problem 
in the original study, or the imprecision of the replication. 

The third factor-by whom the replicated research is conducted-is important 
because of the problem of correlated replicators (Rosenthal, 1990b). So far, we have 
assumed that the replications are independent of one another, but what does "independence" 
mean in this situation? The usual minimum requirement for independence is that the 
participants be different persons. What about the independence of the replicators? Are 
10 replications conducted by a single investigator as independent of one another as a 
series of 10 replications each conducted by a different investigator? A scientist who 
has devoted her life's work to the study of vision is less likely to carry out a study 
of verbal conditioning than is an investigator whose interests have always been in the 
area of verbal learning. To the extent that researchers with different interests are dif­
ferent kinds of people-and as such are likely to obtain different data from their 
participants-we are forced to the conclusion that, within any given area of science, 
researchers come "precorrelated" by virtue of their common interests and any associ­
ated characteristics (i.e., they are correlated replicators). Thus, there is a limit on the 
degree of independence we may expect from workers or replicators in a common field. 
In different fields, however, the degree of correlation or similarity among the workers 
may be quite different. We all know of researchers in a common field who obtain data 
quite dissimilar from those obtained by others in that field. The actual degree of 
reliability, then, may not be very high and may even be represented by a negative 
correlation. 

Behavioral research is commonly conducted nowadays by a team of researchers. 
Sometimes these teams consist entirely of colleagues; often they consist of one or 
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more faculty members, one or more postdoctoral students, and one or more students 
at various stages of progress toward the Ph.D. degree. Researchers within a single 
research group may reasonably be assumed to be even more highly intercorrelated 
than any group of workers in the same area of interest who are not within the same 
research group. Students in a research group are perhaps more correlated with their 
major professor than would be true of another faculty member of the research group. 
There are two reasons for this likelihood: selection and training. First, students may 
elect to work in a given area with a given investigator because of their perceived or 
actual similarity of interest and associated characteristics. Colleagues are less likely 
to select a university, area of interest, and specific project because of a faculty mem­
ber at that institution. Second, students may have had a larger proportion of their 
research training under the direction of a single professor. Other professors, although 
collaborating with their colleagues, have more often been trained in research else­
where by other persons. Although there may be exceptions, it seems reasonable, on 
the whole, to assume that student researchers are more correlated with their adviser 
than another professor might be. 

The correlation of replicators that we have been discussing refers directly to a 
correlation of attributes and indirectly to a correlation of the data the investigators will 
obtain from their participants. The issue of correlated replicators is by no means a new 
one; Karl Pearson (1902) spoke of the "high correlation of judgments [suggesting] an 
influence of the immediate atmosphere, which may work upon two observers for a 
time in the same manner" (p. 261). He believed the problem of correlated observers 
to be as critical for the physical sciences as for the behavioral sciences. Out of this 
discussion a simple principle emerges, which is that, generally speaking, replications 
yielding consistent results tend to be maximally informative and maximally convincing 
when they are maximally separated from the first study and from each other along such 
dimensions as time, physical distance, personal attributes of the researchers, expectancies 
on the part of the researchers and participants, and the degree of personal contact 
hetween the researchers. 

VALIDITY CRITERIA IN ASSESSMENT 

We tum now to the major approaches used by researchers to assess validity. Deter­
mining the validity of a test or questionnaire for use in behavioral research generally 
means finding out the degree to which it measures what it is supposed to measure, 
considered the most important concern in test evaluation. Determining validity typi­
cally involves accumulating evidence in three categories: (a) content-related validity, 
(h) criterion-related validity, and (c) construct-related validity (American Psychological 
Association, 1985). King and King (1990) described a number of interrelated activities 
specifically in relation to the assessment of construct validity, including the assessment 
of content- and criterion-related validity, but also defining the construct both theo­
retically and operationally (discussed in chapter 2) as well as weighing and justifying 
its position and role in some larger conceptual scheme. 

Content validity requires that the test or questionnaire items represent the basic 
kinds of material (or content areas) they are supposed to represent. In the creation of 
standardized educational and psychological tests, the subjective evaluations of expert 
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judges are usually required to assess this factor. Haynes, Richard, and Kubany (1995), 
among others, recommended that a multimethod approach be used, particularly in 
clinical test development, in which not only the experts would be consulted, but also 
a sample of patients from the target popUlation. In the spirit of that recommendation, 
Vogt, King, and King (2004) described a focus group and interview procedure for use 
early in the item selection process. Less formal methods are used as well. For example, 
if we were creating a final exam in a particular course, we might start by asking 
ourselves, "What kinds of material should students be able to master after studying 
the textbooks and taking this course?" We would make a list of the material the exam 
would be expected to sample and then write questions to represent that material. Tests 
and questionnaires are regarded as more content-valid the more they cover all the 
relevant material. This type of validity is traditionally expressed either as a global, 
nonquantitative judgment or in terms of the adequacy of the sampling of the content 
to be covered. 

Criterion validity refers to the degree to which the test or questionnaire correlates 
with one or more relevant criteria. If we were developing a test of college aptitude, 
we might select as our criterion the successful completion of the first year of college, 
or perhaps grade point average after each year of college. If we were developing a test 
to measure anxiety, we might use as our criterion the pooled judgments of a group of 
highly liained clinicians who rate (e.g., on a scale of anxiety) each person to whom 
we have administered the test. In testing for criterion validity, we try to select the most 
sensitive and meaningful criterion in the past, present, or future. 

When a criterion is in the immediate present, we speak of concurrent validity. 
Clinical diagnostic tests are ordinarily assessed for criterion validity by this procedure, 
because the criterion of the patients' "real" diagnostic status is in the present with 
respect to the test being validated. Shorter forms of longer tests are also often evaluated 
for their concurrent validity; the longer test is used as the criterion. It could be 
reasonably argued in such cases that it is not validity but reliability that is being 
assessed. Thus, although reliability and validity are conceptually distinguishable, it is 
sometimes difficult to separate them in practice. 

Another type of criterion-related evidence is relevant when researchers 
attempt to predict the future. Tests of college aptitUde are normally assessed for 
predictive validity, inasmuch as the criteria of graduation and grade point average 
will occur in the future. The aptitude test scores are saved until the future-criterion 
data become available and are then correlated with them. The resulting correlation 
coefficient serves as another statement of criterion validity. Grade point average 
tends to be a fairly reliable criterion; clinicians' judgments (e.g., about complex 
behavior) may be a less reliable criterion. Previously, we showed how the reli­
ability of pooled judgments can be increased by the addition of more judges. We 
can increase the reliability of pooled clinical judgments by adding more clinicians 
to the group whose pooled judgments will serve as our criterion (Rosenthal, 
1987). 

It is also sometimes necessary to be concerned about the validity of the criteria 
chosen by researchers. Suppose a researcher wants to develop a short test of anxiety 
that will predict the scores on a longer test of anxiety. The longer test serves as the 
criterion, and the new short test may be relatively quite valid with respect to the 
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longer test. But the longer test may be of dubious validity with respect to some other 
criterion (e.g., clinicians' judgments). Sometimes, therefore, criteria must be evaluated 
with respect to other criteria. However, there are no firm rules (beyond the consensus 
of the researchers in the particular area) about what would constitute the "ultimate" 
criterion. 

More sophisticated views of the validation of tests, or of observations generally, 
require that researchers be sensitive not only to the correlation between their measures 
and some appropriate criterion, but also to the correlation between their measures and 
some inappropriate criterion. Suppose we develop a measure of adjustment and find 
that it correlates positively and substantially with our criterion of clinicians' judg­
ments. Imagine, however, that we administer a test of intelligence to all our partici­
pants and find that the correlation between our adjustment scores and intelligence is 
also positive and substantial. Is our new test a reasonably valid test of adjustment, of 
intelligence, of both, or of neither? That question is difficult to answer, but we could 
not claim on the basis of our results to understand our new test very well. It was not 
intended, after all, to be a measure of intelligence. In short, our test has good concurrent 
validity but fails to discriminate: It does not correlate differentially with criteria for 
different types of observation. 

CONVERGENT AND DISCRIMINANT 
VALIDITY 

The ability to discriminate is a characteristic of construct validation evidence. The 
term construct validity refers to the degree to which the test or questionnaire score 
is a measure of the psychological characteristic of interest. However, it is possible 
for an instrument to have good construct validity and yet not predict very well in 
a given situation because of the problem of range restriction (Nunnally & Bernstein, 
1994). For example, scores on the Graduate Record Examination (GRE) are required 
of applicants to many selective graduate schools, but the GRE is often criticized 
for relating poorly to grades in graduate school. The problem is that students 
enrolled in graduate programs usually are fairly homogeneous in their cognitive 
ability, which is what the GRE is intended to measure. Thus, graduate admissions 
committees routinely use other selection criteria as well (including recommendations, 
grades in college, statements of career objectives, and relevant experience). 

As Popper's falsificationist approach implies, constructs Gust like theories) 
can never be verified or proved, as one can never expect to complete every possible 
check on a construct (Cronbach & Quirk, 1971). Furthermore, it is impossible to 
rule out an undiscovered disconfirmation (like Hume's black swan, noted in chap­
ter 2). In a classic paper, Campbell and Fiske (1959) sought to formalize the 
construct validation procedure by proposing two kinds of construct validation 
evidence: (a) the testing for "convergence" across different methods or measures 
of the same trait or behavior and (b) the testing for "divergence" between methods 
or measures of related but conceptually distinct behaviors or traits. To illustrate, 
suppose we are developing a new test to assess people's ability to read other 
people's emotions from still photographs. We would want the test to correlate 
highly with other tests of sensitivity to nonverbal cues; if it does so, we have 
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achieved convergent validity. But we would not want our new test to correlate 
very highly with ordinary intelligence as measured by some standard IQ test. If it 
does correlate highly, it could be argued that what we have developed is simply 
one more test of general intelligence. The lack of divergence would argue for poor 
discriminant validity. 

In other words, researchers want their measures to correlate highly with the 
measures that their constructs imply they should correlate highly with (convergent 
validity), but to correlate less with measures that the constructs imply they should not 
correlate so highly with (discriminant validity). Campbell and Fiske proposed that a 
multitrait-multimethod matrix of intercorrelations be constructed to help researchers 
triangulate (zero in on) the convergent and discriminant validity of a construct. Thus, 
the researcher could pair different methods (A, B, C, etc.) with different trait variables 
(1, 2, 3, etc.), as illustrated by the following design: 

Method A Method B Method C Method D Method E 

Traits 1 2345 1 2345 1 2345 1 2345 1 2345 

The idea behind using multiple methods to measure the same and differing traits is 
that it avoids the problem that high or low correlations may be due not to convergent 
or discriminant validity, but to their common basis in the same method of measure­
ment. Later in this book, we will turn to statistical procedures that can be used to 
quantify the degree to which a particular test shows a desirable combination of con­
vergent and discriminant validity (Rosenthal & Rubin, 1986; Westen & Rosenthal, 
2003). Called contrasts, these procedures operate on the assumption that the test 
developer is able to describe the desired pattern of (a) correlations between the new 
test and other measures that are predicted to be highly correlated and (b) correlations 
between the new test and other measures that are predicted to be correlated much 
less. 

Campbell (1998b) also advocated the use of multiple independent perspectives 
and triangulation in research in general, on the assumption that multiple independent 
vantage points permit fixing on a real effect in a way that is impossible to achieve 
from a single perspective (see Brewer & Collins, 1981). However, some have argued 
that multiple independence is an ideal that may not exist (Alwin, 1974; Jackson, 
1969), and that the "hidden hand of common influence" makes it uncertain whether 
scientists can ever arrive at conclusions completely independently (Skagestad, 1981). 
Philosophers and methodologists have wrestled with this problem (Brewer & Collins, 
1981; Browne, 1984; Campbell & O'Connell, 1967, 1982; Fiske, 1982; Kalleberg & 
Kluegel, 1975), but all seem to agree on one point: Given fallible measurements, our 
recourse as scientists is always to use multiple operations even if they are not 
completely independent (Houts, Cook, & Shadish, Jr., 1986; Rosnow & Georgoudi, 
1986). 

Earlier, we mentioned estimates of the average retest and internal-consistency 
reliability of the Rorschach and the MMPI tests, and we can also say something about 
the criterion-related validity evidence for these same tests. Only limited claims can 
be made about multidimensional instruments, such as these two, but in general the 
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typical level of criterion-related validity of the Rorschach has been estimated as r = 
.29, and of the MMPI as r = .30, based on a comparative meta-analysis (Hiller, 
Rosenthal, Bomstein, Berry, & Brunell-Neuleib, 1999). These values contradict earlier 
claims of higher mean validity coefficients for the same instruments (Atkinson, 1986; 
Parker et aI., 1988). However, as noted by Jacob Cohen (1988), "when one looks at 
near-maximum correlation coefficients of personality measures with ... real-life crite­
ria, the values one encounters fall at the order of r = .30" (p. 81). Thus, the validity 
estimates reported by Hiller et al. may actually be about as high as can be expected 
of personality tests, overall. 

TEST VALIDITY, PRACTICAL UTILITY, 
AND THE TAYLOR-RUSSELL TABLES 

The Rorschach and the MMPI are classic test instruments. In reporting their typical 
levels of validity, we are not implying that validity coefficients (rs) must reach these 
levels to be useful either for purposes of research or for purposes of practical 
application. In a classic paper, H. C. Taylor and J. T. Russell (1939) demonstrated 
that the practical utility of tests used in personnel selection increased not only as the 
validity coefficient increased, but also as the employers could afford to become more 
and more selective. The "selection ratio" is the proportion of applicants to be selected 
by a test. If that ratio is very high (e.g., .95 or higher, where nearly all applicants 
must be employed-perhaps because there is a severe shortage of this occupational 
group at this place, at this time), then even a test with very high validity would be of 
little value. If that ratio becomes very low (e.g., .05 or lower, so that only the very 
best applicants-the top' 5% or so-are employed), then even a quite modest validity 
coefficient could be of great practical value. 

Taylor and Russell gave a large number of examples in the form of tables. To 
illustrate, we tum to Table 4.15, which shows the percentage of employees selected by 
a given test who are successful for 5 levels of Validity coefficients and 11 levels of selec­
tion ratios. This table is also predicated on an employment situation in which, before the 
test, about half of all employees are successful and half are not. Thus, if no test were 
used, or if the test had a validity coefficient of rxy = .00, it follows that 50% of the 
employees would be successful. As this table illustrates, if the employing organization 
could not be very choosy and had to employ 95% of those applying (i.e., selection 
ratio = .95), even a validity coefficient as high as .75 would improve the number of selected 
employees who succeeded only from 50% (i.e., validity coefficient of .00) to 53%. But 
if the employing organization could be very choosy and selected only the top 5% (i.e., 
selection ratio = .05) of the applicants, that same validity coefficient of .75 would 
improve the number of selected employees who succeeded from 50% to 99%! Even with 
a much lower validity of r xy = .25, the number of selected employees who succeeded 
would improve from 50% to 70% with a .05 selection ratio (very few are hired), whereas 
with a .95 selection ratio (almost all are hired), the improvement would be only from 
50% to 51 %. Overall, this table shows that selection accuracy increases as (a) validity 
coefficients increase, (b) selection ratios decrease, and (c) the benefits of increasing 
validity coefficients are usually greater and greater as selection ratios decrease. 
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TABLE 4.15 

Selection accuracy (percentage of those selected who are 
successful) as a function of validity coefficient (r Xy) and selection 
ratio for an employment context in which 50% of the employees 
are successful before the test is introduced 

Validity coefficient (r xy) 

Selection ratio .00 .25 .50 .75 1.00 

.95 50 51 52 53 53 

.90 50 52 54 55 56 

.80 50 54 57 61 63 

.70 50 55 60 66 71 

.60 50 56 63 72 83 

.50 50 58 67 77 100 

.40 50 60 70 82 100 

.30 50 62 74 87 100 

.20 50 64 78 92 100 

.10 ;> 50 67 84 97 100 

.05 50 70 88 99 100 

TABLE 4.16 

Selection accuracy (percentage of those selected who are 
successful) as a function of validity coefficient (r Xy) and selection 
ratio for an employment context in which 10% of the employees 
are successful before the test is introduced 

Validity coefficient (r xy) 

Selection ratio .00 .25 .50 .75 1.00 

.95 10 10 11 11 11 

.90 10 11 11 11 11 

.80 10 11 12 12 13 

.70 10 12 13 14 14 

.60 10 13 15 16 17 

.50 10 13 17 19 20 

.40 10 14 19 23 25 

.30 10 16 22 29 33 

.20 10 17 26 37 50 

.10 10 19 32 51 100 

.05 10 22 39 64 100 
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The effects would be even more dramatic for employment situations in which 
smaller and smaller percentages of employees are successful before the test is introduced. 
To illustrate, Table 4.16 is predicated on an employment context in which only 10% of 
the employees are successful before the test is introduced. Just as in Table 4.15, 
Table 4.16 shows that selection accuracy increases as (a) validity coefficients increase, 
(b) selection ratios decrease, and (c) the benefits of increasing validity coefficients are 
usually greater and greater as selection ratios decrease. Because the employment context 
of Table 4.16 is such that only 10% of employees are successful before the test is 
introduced, the practical benefits of greatly increasing validity coefficients as selection 
ratios decrease are even greater in this table than in Table 4.15. At a selection ratio of 
.95, increasing the validity from .00 to 1.00 results in an increase of only I % (from 
10% to 11 %). However, at a selection ratio of only .05, increasing the validity from .00 
to 1.00 results in an increase of 90% (from 10% to 100%). 

RELATIONSHIP OF VALIDITY 
TO RELIABILITY 

In the evaluation of the measuring instruments of behavioral research, be they based on 
test items or on judges' ratings, researchers usually prefer their validity coefficients to 
be as high as possible and their reliability coefficients to be as high as possible as well. 
The bottom line characteristic, however, is validity. It rarely serves the researcher's 
scientific or applied goals to have a highly reliable test or group of judges whose items 
or ratings correlate with nothing of consequence. 

It is a widespread belief that an acceptable level of validity depends on some 
minimum level of internal-consistency reliability, but that is not the case. Table 4.17 
shows that both the predictor variable (made up of items or judges) and the criterion 
variable can both show internal-consistency reliability of .00 with a predictor-criterion 
validity of 1.00. In this illustration, the predictor variable is the sum (but it could also 
be the mean) of two peer raters (A and B) of students' current adjustment. The criterion 
variable is the sum (or mean) of two experts' (C and D) subsequent ratings of mental 
health. In practice, such low reliabilities associated with high validity are not common, 
but they can occur. For example, "different aspects of the truth" may be captured in 
the ratings of both the two predictor raters (A and B) and the two criterion raters 
(C and D). The combination of the two predictor peers (A + B) provides a good 
predictor, and the combination of the two criterion experts (C + D) provides a useful 
criterion. 

In general, the validity of a composite instrument (r ), made up of a set of nx.y 

items, subtests, or judges, depends on three factors, which are all incorporated in the 
following equation suggested by J. P. Guilford (1954, p. 407): 

(4.17) 

The three factors are (a) the average validity of each individual item, subtest, or 
judge (rx); (b) the number of items, subtests, or judges (n); and (c) the average intercor­
relation (reliability) with each other of the items, subtests, or judges (r xx), First, the 
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TABLE 4.17 

Example of perfect validity with zero reliability of both 
predictor and criterion 

Student 1 

Student 2 

Student 3 

Student 4 

A 

A -

B 

C 

D 

(A + B) 

Peer raters of 
current adjustment 

A B 

3 1 

5 2 

2 3 

4 4 

Reliability = .00 

Predictor variable 
(A + B) 

4 

7 

5 

8 

Expert raters of 
subsequent mental health 

C D 

2 4 

3 6 

4 3 

5 5 

Reliability = .00 

Outcome variable 
(C + D) 

6 

9 

7 

10 

Predictive Validity = 1.00 

Peers Experts Predictor Criterion 

B C D (A + B) (C + D) 

.00 .00 1.00 .71 .71 

- 1.00 .00 .71 .71 

- .00 .71 .71 

- .71 .71 

1.00 

Validity of A 

Validity of B 

Validity of (A + B) 

larger the average validity (rXY)' the greater the validity of the composite. Second, the 
larger the number (n) of items, subtests, or judges, the greater generally the validity of 
the composite. Third, the larger the average intercorrelation (rxx) , the less the benefit 
that will accrue from increases in n. This third relationship, though not widely known, 
is quite intuitive. If two items or judges are perfectly correlated with each other, having 
two of them adds nothing new to having either one of them alone. 

Equation 4.17 can be rewritten as follows to show more clearly these three 
factors: 

rnx.y = rxy X In X 1 
./1 + (n - I)rxx 

(4.18) 
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TABLE 4.18 

Validity coefficients of a composite predictor (rnx ) as a function of the .y 
reliability (rxx)' validity (rXY)' and number (n) of its elements 

Reliability (r ",) 

Validity (r "1) n .00 .10 .20 .30 .40 

1 .02 .02 .02 .02 .02 

4 .04 .04 .03 .03 .03 

9 .06 .04 .04 .03 .03 

.02 16 .08 .05 .04 .03 .03 

25 .10 .05 .04 .03 .03 

100 .20 .06 .04 .04 .03 

225 .30 .06 .04 .04 .03 

1 .05 .05 .05 .05 .05 

4 .10 .09 .08 .07 .07 

9 .15 .11 .09 .08 .07 

.05 16 .20 .13 .10 .09 .08 

25 .25 .14 .10 .09 .08 

100 .50 .15 .11 .09 .08 

225 .75 .16 .11 .09 .08 

1 .10 .10 .10 .10 .10 

4 .20 .18 .16 .15 .13 

9 • .30 .22 .19 .16 .15 

.10 16 .40 .25 .20 .17 .15 

25 .50 .27 .21 .17 .15 

100 1.00 .30 .22 .18 .16 

225 1.00 .31 .22 .18 .16 

1 .20 .20 .20 .20 .20 

4 .40 .35 .32 .29 .27 

9 .60 .45 .37 .33 .29 

.20 16 .80 .51 .40 .34 .30 

25 1.00 .54 .42 .35 .31 

100 1.00 .61 .44 .36 .31 

225 1.00 .62 .44 .36 .32 

1 .30 .30 .30 .30 .30 

4 .60 ; .53 .47 .44 .40 

9 .90 .67 .56 .49 .44 

.30 16 1.00 .76 .60 .51 .45 

25 1.00 .81 .62 .52 .46 

100 1.00 .91 .66 .54 .47 

225 1.00 .93 .66 .54 .47 

.50 

.02 

.03 

.03 

.03 

.03 

.03 

.03 

.05 

.06 

.07 

.07 

.07 

.07 

.07 

.10 

.13 

.13 

.14 

.14 

.14 

.14 

.20 

.25 

.27 

.27 

.28 

.28 

.28 

.30 

.38 

.40 

.41 

.42 

.42 

.42 
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Applying Equation 4.18 to the data of Table 4.17 yields the correlations indicated in the 
matrix at the bottom of that table (i.e., r xy = .71, n = 2 judges, and rxx = 00), so that 

rnxy =.71x/2x 1 =1.00 
. /1 +(2 -1).00 

Table 4.18 shows the validity coefficients of composite predictors (r ) as a nx.y 
function of (a) five levels of average item or judge validity (rXY = 02, .05, .10, .20, 
.30); (b) seven levels of n (1, 4, 9, 16, 25, 100, 225); and (c) six levels of item or 
individual judge reliability (rxx = .00, .10, .20, .30, .40, .50). Examination of this 
table shows that the validity of the composite predictor increases as the average 
validity of its items or judges increases, a result that is hardly surprising. More inter­
esting is the observation that as the number of items or judges increases, so does the 
validity of the composite predictor. Most interesting, however, and most surprising to 
many researchers, is the observation that this benefit to composite validity of adding 
items or judges increases dramatically as the reliability of items or judges decreases. 
For example, for the validity of an average item or judge of r xy = .10, when we go 
from one item or judge to 100 items or judges, the composite validity increases from 
.10 to 1.00 if the item-to-item or judge-to-judge reliability (rxx) is .00, but it increases 
only from .IQ to .14 if the reliability is .50! 
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AND EVALUATING 

CHAPTER 

5 
OBSERVATIONS, 

JUDGMENTS, 
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COMPOSITE 
VARIABLES 

"You see, but you do not observe," Sherlock Holmes says to Dr. Watson in A Scandal 
in Bohemia (Baring-Gould, 1967, p. 349). Holmes was not only a keen observer, but 
extraordinarily intuitive and a remarkably astute logician; he was constantly astounding 
Watson by deducing solutions to the most baffling mysteries. Earlier, we described 
situations in which behavioral researchers used intuition and logic to formulate working 
hypotheses for scientific inquiry and empirical observations. In this chapter we describe 
strategies and procedures for categorizing and interpreting the variables measured or 
observed. We begin by describing an approach called participant observation. We will 
explain how ethnographic researchers and others who use this approach impose meaning 
(called sense-making) on qualitative data. By the term qualitative, as used in this 
context, we simply mean that the data do not exist in some numerical (or quantitative) 
form, but instead consist of people's spoken words, recorded conversations, narrative 
responses in nondirective or unstructured (also called open-ended) interviews, and 
observable behavior (Denzin & Lincoln, 2000; Taylor & Bogdan, 1998). 

The qualitative-quantitative distinction, although frequently invoked by sociolo­
gists and other social scientists, is not unambiguous (cf. Wolcott, 1994); nor are the 
Iwo classes mutually exclusive. The same investigation may integrate both qualitative 
lind quantitative methods. For example, when human subjects in lab experiments are 
debriefed, it might be informative to interview a selected sample to find out what 
Ihey thought about their participation. It may also be enlightening to observe the 
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demeanor of subjects in the experimental setting. Were they paying attention, or 
bored and distracted? Were they calm and composed, or anxious to know how they 
would be evaluated? Sometimes it is possible to observe or measure behavior in 
inconspicuous ways or to use archival data to test hypotheses, and we will give 
examples. We can also quantify qualitative data, for example, by having judges rate 
well-defined variables (e.g., rate the intensity of expressions of feelings) or categorize 
archival data based on precisely described dimensions. In developmental psychology, 
researchers have long used scaling methods to test hypothesized qualitative models 
of developmental processes (e.g., review by Henning & Rudinger, 1985). 

In the previous chapter we illustrated a procedure for estimating the effective 
cost reliability of judges; in this chapter we describe how to select the most accurate 
judges. The procedures used to identify accurate judges can be used in other situations 
as well. For example, they might also be used in signal detection experiments where 
researchers are interested in the accuracy of each subject's responses, or in organiza­
tions where the most accurate job applicants are chosen. We will explain the relation­
ship between category and rating judgments, and how to decide on the number of 
response alternatives to use. We will also discuss the effects of guessing and of omit­
ted items on the accuracy of judgments. In the previous chapter we mentioned that 
another name for systematic error is bias; we will examine some sources of response 
bias ;and how they are usually controlled. Finally, we will describe procedures for 
forming and assessing composite variables when the dependent variables are interrelated 
and there is no theoretical or practical advantage in treating them separately. 

OBSERVING WHILE PARTICIPATING 

Social scientists who identify themselves as ethnographers are usually interested in 
"cultures" (a term that is broadly defined), and their preferred strategy of investigation 
is participant observation (i.e., interacting while participating as observers in a cul­
ture). Indigenous members of the culture studied who provide these researchers with 
information are known as informants. In feminist ethnographic research, for instance, 
a popular area of investigation is cultures that are defined as "living in oppression." 
Some ethnographers have studied their own social scientific culture, calling such stud­
ies autoethnography (Tedlock, 2000). In the late 1800s and early 1900s, the culture 
of interest to many sociologists who wanted to promote social change (called action 
research) was made up of immigrants living in urban areas, which at the time were 
considered exotic settings (Hallett & Fine, 2000). Other classical examples of qualita­
tive ethnographic research conducted in a wide variety of cultural settings include the 
work of Howard Becker, Ruth Benedict, Franz Boas, Raymond Firth, Margaret Mead, 
Bronislaw Malinowski, William Whyte, and other prolific sociologists and anthro­
pologists. These social scientists spent many months, sometimes years, observing 
behavior, collecting narrative accounts, and recording personal impressions and reflec­
tions based on fieldwork in particular societies. In all societies, humans relate to one 
another by role and by affect (emotion). In employing participant-observer methods 
to explore the social context of human behavior, ethnographers believe they are able 
to discern the frustrations and enthusiasms of people in ways that are beyond the 
reach of other methodological strategies. 
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The term participant observation is used liberally to embrace diverse strategies, 
flexible research designs, and different levels of involvement. The participant observer 
might be an interested outsider, an unobtrusive observer who tries to "blend into the 
woodwork" (Taylor, Bogdan, & Walker, 2000), an active member of the culture or 
group, or in some cases, a skilled investigative reporter (Levine, 1980). In one fasci­
nating case, psychologist David Rosenhan (1973) was interested in how people who 
are labeled "mentally ill" become stigmatized and what determines the way they are 
treated. A number of volunteers, including Rosenhan himself, feigned psychiatric 
symptoms in order to be admitted to mental hospitals. During their hospitalizations, 
they then behaved quite normally. They kept detailed records of their interactions with 
the psychiatrists, psychologists, and resident physicians. Research like this involves 
making judgments about the actions and conversations of individuals, trying to appre­
hend their experiential world (cf. Fine & Elsbach, 2000; Heritage, 1984; Spradley, 
1980). Rosenhan and his volunteer participants observed how the staff members 
avoided interacting with patients. This finding, Rosenhan concluded, explained the 
"depersonalization" that he and the other participants felt, similar to the powerlessness 
felt by mental patients. 

In this study the psychiatrists, psychologists, and others working in the hospitals 
were not told that their behavior was being investigated by Rosenhan and his team 
of participant observers. It is more typically true of participant-observer research that 
the members of the "culture" being studied are aware that they are being observed 
for research purposes. Sensitive to their loss of privacy, they may become increasingly 
selective in cooperating with the researchers. In one case, 40 researchers visited a 
single Indian settlement in the Northwest Territories of Canada one summer; another 
who then showed up to observe these same Indians nearly ended up being thrown 
into the river (Lotz, 1~68). Each person has an individual sense of the loss of privacy 
and the invasion of his or her personal life, and participant observers (as well as any 
other researchers) must be attuned to such psychological limitations and mindful of 
their ethical responsibility to respect people's privacy. 

MAXIMIZING CREDffiILITY 
AND SERENDIPITY 

In the early development of ethnographic research, there was not yet a tradition of 
how to ensure the most credible qualitative data. In recent years, ethnographic 
researchers have been sensitive to ways of trying to maximize credibility and not 
sacrifice flexibility. In the earlier era it was not uncommon for the researchers not 
even to describe how their data had been collected, leaving it to readers to figure out 
what was done (Hallett & Fine, 2000). That is no longer the case; journal editors 
require detailed descriptions of th~ procedures used-although, as Taylor et al. (2000) 
noted, qualitative researchers pride themselves in being free spirits. Participant observers 
also frequently work in teams and use checks and balances to try to control for biases 
in observations and interpretations. Nevertheless, the sense-making process, in which 
meaning is imposed on qualitative observations, depends a great deal on intuition 
and serendipity, such as stumbling on an unpredicted but poignant event or quote 
(Glaser & Strauss, 1967). Fine and Deegan (1996) reminded researchers, however, 
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that there are often ways to "maximize the chances of obtaining memorable data" by 
anticipating "just the right time and just the right place" to court serendipity (p. 439). 
Suppose a researcher wanted to observe barroom brawls. Clearly, the researcher is 
more likely to witness such behavior on weekend nights than during afternoons in the 
middle of the week. Thus, as Fine and Deegan (p. 435) advised, "Courting serendipity 
involves planned insight married to unplanned events." 

Animal behaviorists who engage in field research often adopt this common­
sense strategy when investigating the social life and customs of wild animals in their 
natural habitats. A hypothesis-testing observational study conducted in Africa by 
comparative psychologist Ronald Baenninger and coworkers is illustrative (Baenninger, 
Estes, & Baldwin, 1977). These researchers unobtrusively watched the course of 
actions taken by a troop of baboons that suddenly encountered a cheetah drinking in 
the river. Other researchers had claimed that adult male baboons will actively defend 
their troops against predators, but there were few accepted observations of this kind 
of behavior at the time of this particular study (DeVore & Washburn, 1963). The 
results of Baenninger et al.' s observational research dispelled any doubts as to baboons' 
defensive behavior. As the researchers watched and recorded what they saw, they 
observed two male baboons harass the cheetah until they had successfully chased 
the cheetah far away from the main body of the troop. For these researchers, being 
in tfie right place was planned, although they were fortunate to be there at the most 
opportune time. 

The animal behaviorists who engage in this kind of field research make distinc­
tions that have been borrowed by, and from, social scientists who do participant­
observer studies of human cultures (Altmann, 1974). One distinction is made between 
the observation of events (relatively brief occurrences that are observed at their onset 
or at some single defining moment) and states (occurrences of more appreciable 
duration). The researchers in the investigation above observed and recorded the 
course of actions of a troop of baboons chasing a cheetah from the very onset of 
that event; they might also have appraised the organizational structure of the troop 
(a state). As Altmann (1974) noted, questions about frequencies of behavior (i.e., the 
number of occurrences) usually entail considering the behavior as a set of events. 
Several types of data sampling for behavior events have been used. One popular 
type, time sampling, involves sampling specified periods and recording everything 
of interest during each period. For example, in other field research conducted by 
Baenninger (1987), the objective was to document the yawning response in different 
species (humans, Siamese fighting fish, lions, and mandrills), and he observed the 
subjects over sampled periods and counted the number of times yawning occurred. 
Another popular type of data sampling, behavioral sampling, is used when a par­
ticular ongoing behavior is of interest; the researcher samples the behavior periodi­
cally, typically using tally sheets and field notes to keep records of a multitude of 
occurrences. For a detailed discussion of sampling methods employed by animal 
behaviorists, see Altmann (1974). 

Several conventions and guidelines have been adopted by ethnographers when 
they take field notes. One rule of thumb is to indicate for every written note referring 
to a conversation whether it is based on a verbatim quote or is instead the researcher's 
paraphrase. Where there are paraphrases, the risk is that the researcher may have 
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unwittingly distorted what the informants reported. For that reason, audio and video 
recordings are routinely made, but only with the permission of the informants. In the 
case of written notes, one type is called the condensed account because it consists of 
phrases, single words, and unconnected sentences quoted on the spot. The shortened 
version of what was observed is amplified in the expanded account, which fills in 
details from recall of things that were not recorded earlier. The fieldwork journal is 
the ethnographer's written diary of particular experiences, ideas, fears, mistakes, 
confusions, and problems; like any diary, it represents the researcher's personal 
reactions to the events of the day (Spradley, 1980). 

ORGANIZING AND SENSE-MAKING IN 
ETHNOGRAPHIC RESEARCH 

After all this qualitative information has been gathered, it must be organized and 
interpreted. To help researchers put their thoughts in order, Goodenough (1980) listed 
several questions they might ask themselves. First, assuming the observations were 
of a well-defined group or culture and that specific activities or events were observed, 
what was the occasion or purpose of each activity? Second, what procedures or oper­
ations were involved, and were any raw materials used or particular skills required 
of the participants? Third, what were the time and space requirements of each activ­
ity (e.g., how much time was needed, what areas or facilities were required, and were 
any obstacles in the way of these activities)? Fourth, how many people participated, 
who were they, and were there specialized roles? Fifth, regarding the state of the 
social organization, what were the particular categories of all the various actors, 
including their rights, duties, privileges, and powers and the types of sanctions used? 
Assuming any of the;e questions are pertinent, they would still need to be tailored to 
each situation. 

Wolcott (1994) listed other traditional ways to organize qualitative information. 
For example, if the data are related to events, a simple fallback way to present this 
information is in chronological sequence. Alternatively, it may be illuminating to 
specify a problem of interest and then to build the data around this problem, that is, 
"slowly zooming from broad context to the particulars of the case, or starting with 
u close-in view and gradually backing away to include more context" (p. 18). Another 
strategy is the day-in-the-life approach, where a real or fictionalized account of an 
entire day (or a customary sequence of events) is described. Still other ways of relat­
ing qualitative information are to focus on critical or key events, or on plots and the 
sociological roles of the characters involved, or on groups in interaction. One other 
upproach is to present the events as if one were writing a mystery story, that is, not 
giving away the ending in advance, but gradually leading to an exciting discovery 
or insight. 

Fine and Deegan (1996) provided tips and cautionary advice on how best to go 
nhout the process of trying to make theoretical sense of the data, a process they char­
acterized as "analytical serendipity" (p. 442). First, it is important to know the 
published literature, especially what respected researchers believe is true about the 
culture or activities under study. In Fine and Deegan's words, "Theory never develops 
out of thin air, but is responsive to those intellectual currents that are in circulation 
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and to which the researcher has been exposed" (p. 442). A cautionary note, however, 
is that the researcher must rely on well-documented conclusions rather than stereotypes. 
A second piece of advice is to keep one's eyes and ears open to the unexpected 
(i.e., things that elicit "Ah-ha!" experiences), because there are almost always exceptions 
to conventional wisdom. This advice, of course, applies to other research situations as 
well. Third is to ask oneself the reporter's question: "What is it like?" Thinking of 
dramatic metaphors is the way that ethnographers try to conceptualize activities in a 
new light. Fourth, however, is our own cautionary note to beware of interpreter and 
observer biases. 

INTERPRETER AND OBSERVER BIASES 

Interpreter and observer biases illustrate what Rosenthal (1966) generally categorized 
as noninteractional artifacts, meaning that they are systematic errors that operate, 
so to speak, in the mind, in the eye, or in the hand of the scientist but are not due 
to uncontrolled variables that might interact with the subjects' behavior. The 
first type, interpreter biases, refers to systematic errors that occur during the 
interpretation-of-data phase of the research process (cf. MacCoun, 1998). A glance 
at any of the research journals will suggest that, although behavioral and social 
researchers only rarely question the observations made by one another, they often 
question the interpretation of those observations. It is as difficult to state rules for 
the accurate interpretation of data as it is to state rules for the accurate observation 
of data, but the variety of interpretations offered to explain the same data implies 
that many researchers must turn out to be wrong, or at least partly wrong. The 
history of science generally, and of behavioral and social research more specifically, 
suggests that more of us are wrong longer than we need to be because we hold our 
theories not quite lightly enough. Clinging to a theory does have its advantages, 
however. It keeps researchers motivated to make crucial observations. The usual 
way to control for interpreter bias is to make the results available to other researchers, 
who are then free to agree or disagree with the interpretation. 

An illustration of interpreter biases was described by John J. Sherwood and Mark 
Nataupsky (1968). They were interested in whether biographical characteristics of indi­
vidual researchers might predict how the researchers interpreted certain data pertaining 
to racial differences in IQ research. Questionnaire data were gathered from 82 inves­
tigators who had published comparative studies of the IQs of blacks and whites. The 
information (the age of the investigator when the research was published, birth order, 
whether the researcher's grandparents were American or foreign-born, father's and 
mother's educational level, childhood in rural or urban community, and undergraduate 
scholastic standing) was then analyzed for its possible relationship to the nature-versus­
nurture conclusions reached by the 82 investigators. These were among the alternatives 
considered: (a) Differences in IQ between blacks and whites are due to the innate 
inferiority of blacks; (b) racial differences in IQ are due to environmental factors; and 
(c) no reliable racial differences in IQ exist. Based on their analysis of the relationship 
between the biographical data and the published conclusions of the investigators stud­
ied, Sherwood and Nataupsky concluded that it was possible statistically to discriminate 
particular conclusions reached by the investigators studied. 
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The second type of noninteractional artifact noted above, observer biases, refers 
to systematic errors in the observation or recording phase of research. The problem, 
as one writer put it, is the tendency of many people to "equate what they think they 
see, with what actually happens" (Lane, 1960). For example, biologist M. L. Johnson 
(1953), in an article entitled "Seeing's Believing," told about a radiologist who mistook 
a button caught in a patient's throat for a button "on the vest"-where a button ought 
to be present. Johnson concluded: 

Our assumptions define and limit what we see, i.e., we tend to see things in such a way 
that they will fit in with our assumptions even if this involves distortions or omissions. 
We therefore may invert our title and say 'Believing is Seeing.' (p. 79) 

In another case, one of us (Rosenthal, 1969, 1978b) counted the recording errors in 
a small set of experiments that just happened to be available for another purpose 
(viz., an analysis of the unintended effects of researchers). The studies, all of which 
were designed (at least in part) to permit the quantitative assessment of error rates, 
ranged widely in terms of research areas and locus of data collection (e.g., studies 
of reaction time, person perception, human and animal learning, task ability, psycho­
physical judgments, questionnaire responses, and even mental telepathy). Because 
this was not a random sample of experiments, we make no claims beyond the data 
in this set. However, when there were recording errors, they generally favored the 
experimenter's hypotheses about two thirds of the time, which was more frequently 
than would be expected by chance. There appeared to be no clear relationship 
hetween the area of research and either the rate of errors or the likelihood of errors 
heing biased when they did occur. 

A notorious, case of observer bias in science involved the "discovery" 
of so-called N rays by the physicist Andre Blondlot in the early part of the 20th 
century. N rays, he contended, made reflected light more intense and were bent by 
aluminum; anyone could see this effect with the naked eye under the proper condi­
tions. Many scientists claimed to have observed Blondlot's N rays, though others 
rcported difficulty trying to replicate his experiments. How this episode unfolded was 
rccounted in an entertaining book by Richard P. Feynman (1989), who told how the 
physicist R. W. Wood "put an end to the N-ray." Blondlot gave a lecture and 
Ilcmonstration to show how N rays were bent by aluminum. He told the audience 
that he had constructed a sandwich of different kinds of lenses, with an aluminum 
prism in the middle. He then manipulated an apparatus that was supposed to turn 
thc prism slowly to reveal how N rays "came up this way and bent that way" 
(Feynman, 1989, p. 147). All the while, Blondlot's assistant kept announcing the 
intensity of his readings for different angles. Blondlot told the audience that it was 
necessary to darken the room because N rays were affected by light, and turning the 
light off would make the assistant's readings more sensitive. When the lights came 
hack on at the end of the demonstration, there was Wood in the front row. Previously 
unheknownst to anyone, he had surreptitiously removed the prism from Blondlot's 
IIppuratus and was holding it high in the air, balanced on the tips of his fingers, for 
nil to see! Here, for all really to see, was incontrovertible proof that N rays were 
nothing more than a figment of imagination. 
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UNOBTRUSIVE OBSERVATIONS AND 
NONREACTIVE MEASUREMENTS 

In contrast to noninteractional artifacts, there are also interactional artifacts, which 
are uncontrolled variables that do have a direct impact on the reactions of research 
participants (Rosenthal, 1976). We will have more to say about interactional artifacts 
in Chapter 7, but another relevant distinction in this context is made between reactive 
measures and nonreactive measures (Campbell & Stanley, 1963; Webb, Campbell, 
Schwartz, & Sechrest, 1966). The two terms are used to differentiate measurements 
that do (reactive) from those that do not (nonreactive) affect the behavior that is being 
measured. For example, in a study on therapy for weight control, the initial weigh-in 
may be a reactive stimulus to weight reduction, even without the therapeutic interven­
tion (Campbell & Stanley, 1963). Or suppose we wanted to measure blood pressure 
while subjects were presented a list of stimulus words or pictures; merely applying 
the cuff of the sphygmomanometer would introduce changes in the subjects' blood 
pressure (Sarbin, 1944). Eugene J. Webb and his coauthors (Webb et aI., 1966, 1981) 
collected a miniencyclopedia's worth of nonreactive strategies, procedures, and mea­
surements, including numerous illustrations of the use of archives, physical traces, and 
unobtrusive observations. We will give a flavor of each, as well as describe how the 
method of content analysis is sometimes used to categorize and evaluate such data. 

Archives 

As Webb et al. (1981) noted, the quantity of information that is recorded and stored in 
various archives is staggering. All that is required of researchers is to "know where to 
look and what to do with what they find" (p. 139). Elder, Pavalko, and Clipp (1993) 
discussed methods of implementing this kind of search and then working with the recov­
ered data. Webb et al. described two subcategories of archives as running records (many 
of which can be accessed from Web sites) and personal documents and episodic records. 
Running records include things like actuarial data (birth, marriage, and death records), 
political and judicial information (voting records of legislators or speeches printed in the 
Congressional Record), other records in federal depositories (records of inventions, crime 
reports), mass media information (news reports, advertisements, editorials), records of 
sales (sales at airport bars, sales of trip insurance policies), and industrial and institutional 
information (sicknesses and absences from the job, complaints, unsolicited communica­
tions from the public, accident reports). Personal documents and episodic records include 
things like diaries and letters (e.g., from captured soldiers in wartime or letters of protest 
sent to large corporations), rumors that people phoned in to rumor control centers, pho­
tographs and picture postcards, and visual presentations in picture books (e.g., Allport, 
1942). A classic study by Thomas and Znaniecki (1927) of Polish immigrants in America 
and their families in Europe was based largely on letters written to relatives overseas, 
which the researchers obtained by placing ads in newspapers and newsletters. 

A study by cognitive psychologist Robert W. Weisberg (1994), who has written 
extensively about human creativity (e.g., Weisberg, 1986, 1993), illustrates the use of 
archival data. Fascinated by an old theory asserting that genius and madness are 
intimately related (cf. Martindale, 1997), Weisberg decided to test that theory by means 
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of a case study of the great 19th-century German composer Robert Schumann, who 
suffered from manic-depression and eventually committed suicide. By searching library 
archives, Weisberg was able to compile a comprehensive list of Schumann's musical 
compositions, identify those that experts considered either ordinary or works of genius, 
and document the specific years in which Schumann was reported to have suffered 
from depression or hypomania (a mild form of mania, characterized by elation and 
quickness of thought). Weisberg found no convincing support for the general prediction 
that madness fostered brilliance in Schumann's work (i.e., the quality of his work was 
not significantly related to his mental health). Weisberg did find, however, that the state 
of Schumann's mental health was associated with the quantity of compositions that he 
wrote: Schumann created more musical compositions when he was in a hypomanic 
than when he was in a depressive state. In other work, by Arnold M. Ludwig (1995), 
in which 20th-century biographical data on more than 1,000 eminent people were 
collated, creativity appeared to be linked to moderate (as opposed to very low or very 
high) levels of alcohol abuse, neurosis, or somatic dysfunction. 

Archival Data and Content Analysis 

Another example of archival data, as well as an illustration of the method of content 
analysis, was a study done by Crabb and Bielawski (1994). These investigators were 
interested in how visual presentations in influential books written for children portrayed 
female and male roles. Content analysis is the name given to a set of procedures that 
are used to categorize and evaluate pictorial, verbal, or textual material. In fact, many 
different procedures have been developed for this purpose; for example, leading 
researchers in group dynamics and communication networks have developed their own 
content categories and procedures for analyzing verbal data in human interactions 
(Gersick, 1989, 1991; Wheelan, 1994). Crabb and Bielawski chose for their study all 
the picture books that had received a particular prestigious award (the Caldecott Medal) 
over 53 years, with the idea that those books would have a high profile in libraries and 
bookstores. The books identified contained 416 illustrations showing female characters 
and 1,197 showing male characters. Because the coding was done by hand, Crabb and 
Bielawski wanted to pare down the number of illustrations, so they randomly sampled 
300 representative pictures of gender and decade for the judges to analyze. 

When designing a content analysis, the idea is to use commonsense logic, 
theory, or a question or hypothesis as a basis of the categorical judgments to be made. 
It is certainly possible to use a computer to do the itemizing and counting, though 
the researcher still must decide what is to be analyzed and how it is to be categorized 
(Stone, 2000). In Crabb and Bielawski's study, the 300 sampled pictures were given 
to two independent judges for coding after the judges had been rehearsed in how to 
lise a simple coding sheet. They were instructed to record the sex of each character 
depicted and then to record whether that individual appeared to be using household 
tools (e.g., those used in food preparation, cleaning, repair, or family care), nonhouse­
hold tools (e.g., construction, agricultural, or transportation tools), or other utensils or 
paraphernalia not falling in the above two categories. Also coded were various features 
of the characters and the nature of the situation depicted in each scene. The judges' 
results were in strong agreement with one another. Regarding the question that inspired 
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Crabb and Bielawski, they concluded that household tools were more often used by 
female characters and that nonhousehold tools were more often used by male char­
acters. Another finding was that the proportion of male characters depicted with 
household tools had increased over time, but the proportion of female characters with 
nonhousehold tools had not changed very much over time. 

There was, in fact, a long history of doing content analyses by hand, even before 
this strategy got its name (McCormack, 1982; Woodrum, 1984). Many years before 
computers existed, priests burrowed through texts and sermons for evidence of heresy, 
philosophers through ancient books and documents for their hidden meaning, and censors 
through books and documents for taboo matter. The model of content analysis for coding 
thematic characteristics of textual data was introduced by the political theorist Harold 
Lasswell in the 1920s, but it was not until 1952 that the first definitive published text 
appeared (Bernard Berelson's Content Analysis in Communication Research). Another 
important early contribution (with detailed procedures, later adapted for computers) 
was Stone, Dunphy, Smith, and Ogilvie's (1966) text on a method and a computer 
program they called the General Inquirer. Researchers who are interested in doing a 
content analysis will find a number of helpful resources, including Holsti's (1968) and 
Stone's (1997) incisive reviews, Boyatzis's (1998) instructions for thematic coding 
based on an approach created by David McClelland, and various handbooks and texts 
(e.g:, Krippendorff, 1980; Rosengren, 1981; Weber, 1985). The three essentials of any 
content analysis are (a) that the sorting of the data be consistent among judges; (b) that 
the specific categories and units chosen be relevant to the question of interest; and (c) that 
if not all the material available is to be analyzed, an appropriate sampling procedure be 
used (Bere1son, 1954; see also Woodrum, 1984). 

Physical Traces 

In writing about physical traces, Webb et al. (1966, 1981) took as their point of depar­
ture the brilliant way that Sherlock Holmes depended on physical evidence for clues. 
An example of a behavioral trace was discovered by a committee that had been formed 
to set up a psychological exhibit for children in a science museum. The committee 
learned that the vinyl tiles around one particular exhibit (which showed live, hatching 
chicks) needed to be replaced every six weeks, whereas tiles around other exhibits in 
the museum lasted for years without being replaced. A problem, however, was that it 
was not clear exactly what this nonreactive measure implied (a puzzle that Webb et al. 
mentioned was common when physical traces are used). That is, without actually 
observing what was happening in front of each exhibit, it was impossible to say whether 
the erosion was due to the children's standing around and shuffling their feet, or to a 
constant flow of large numbers of people viewing certain exhibits. Another interesting 
physical trace appeared on the exhibits' glass fronts; it was learned that each evening 
they had to be dusted for noseprints. Webb et al. raised the possibility that counting 
the noseprints might provide a crude, nonreactive measure of which exhibits were more 
frequently or more closely scrutinized. The distance of the noseprints from the floor 
might even provide a rough measure of the ages of the children. 

As another example of physical traces, Webb et al. described a statistician's 
measure of the wear and tear on separate sections of an encyclopedia as a nonreactive 
indicator of which parts were actually being consulted a lot; he simply recorded the 
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pages on which there were dirty edges, dirt smudges, finger marks, and underlining. 
One more example of a physical trace involved an automobile dealer who had his 
mechanics record the radio dial settings in cars brought in for service. The dealer used 
these data to select the radio stations to carry his ads. This case also illustrates what 
Webb et al. described as simple unobtrusive observation, which means that the 
mechanics' observations were inconspicuous to the car owners and there was nothing 
contrived or manipulated in the situation. In a comprehensive literature review of 
unobtrusive studies of racial discrimination and prejudice, Crosby, Bromley, and Saxe 
(1980) concluded that discriminatory behavior was "more prevalent in the body of 
unobtrusive studies than we might expect on the basis of survey data" in which 
respondents were asked directly to express their racial attitudes (p. 557). 

Unobtrusive Observation 

Another illustration of simple unobtrusive observation (and another example of content 
analysis) was some research conducted by University of South Australia psychologist 
Prashant Bordia (1996; Bordia & Rosnow, 1995), who was interested in Internet chat 
group discussions of rumors. Because many group discussions on the Internet are in a 
public forum, Bordia reasoned that the participants were aware that their communications 
were open and visible to all. He concluded, therefore, that there could be no ethical 
problem of invasion of privacy (which would be a concern had he decided to snoop into 
people's private e-mail correspondence). However, to ensure people's privacy, Bordia did 
not publish any lengthy segments of the communications that could in any way possibly 
identify people as individuals. Bordia's interest in this area was piqued by studies reported 
by Allport and Postman (1947) employing a "telephone game" simulation of the process 
of rumor transmissio~. The simulation procedure consisted of showing a picture of a 
complex social scene to a subject and asking the subject to describe the scene to a second 
subject. The first subject then left the room, and the second subject described what he 
or she had been told to a third subject, who told it to a fourth subject, and so on. The 
descriptions, as they were passed from person to person, became noticeably shorter in 
certain systematic ways-a characteristic that Allport and Postman believed was typical 
of all rumors. That finding has been successfully replicated, but other researchers have 
raised a criticism that the one-way transmission process studied by Allport and Postman 
did not reflect how rumors are usually transmitted in everyday life, where there are often 
give-and-take discussions (Buckner, 1965; Shibutani, 1966). It was also observed that 
not all rumors shrink in everyday life; some have been known to expand to mammoth 
proportions (e.g., Rosnow & Fine, 1974, 1976). Bordia was intrigued by the opportunity 
to observe a give-and-take discussion of a rumor in vivo, although he realized that an 
Internet chat group is also a special situation with its own limitations. 

For his content analysis study, Bordia developed categories into which the 
various statements and responses could be sorted. For instance, one category was 
called "apprehensive statements," identified by a detectable level of anxiety. Another 
category consisted of "interrogatory statements," either questions or statements seek­
ing information. Still another category consisted of "belief or disbelief statements" 
because credulity or a lack of credulity was apparent. There were other categories as 
well. A general finding was that the frequency of "prudent statements" (i.e., those 
with qualifiers) was particularly high in the beginning of the chat group discussion; 
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the participants were cautious (writing things like "This mayor may not be true"). 
As the discussion progressed, the cautiousness seemed to diminish as the participants 
realized that others had similar ideas and concerns. By tracking individual responses, 
Bordia was able to identify "communicative postures" that the people adopted, includ­
ing such transient roles as "skeptical disbelievers," "apprehensive believers," "the 
curious," and "prudent initiators." Sometimes the same person was a prudent initiator 
early on, sought more information along the way (becoming one of the "curious"), 
and ended as a skeptical disbeliever (Bordia & DiFonzo, 2002). In Allport and 
Postman's (1947) classic studies, it would have been impossible to identify roles like 
these because of the one-way transmission paradigm that was used. 

In Crosby et al.'s (1980) literature review of unobtrusive studies of racial dis­
crimination, some of the studies used simple unobtrusive measures, whereas others 
used unobtrusive measures in manipulated situations (called contrived unobtrusive 
observation by Webb et al., 1981). Experiments by social psychologist Roy E. Feldman 
(1968) illustrate contrived unobtrusive observations in a field study. Feldman was 
interested in identifying certain national differences in helping behavior. For many 
kinds of behavior, the cultural context is presumed to be an important factor. Feldman 
repeated several standard experiments in Athens, Paris, and Boston using foreigners 
and locals as confederates. In one experiment, he had confederates ask directions from 
passersby. In another, the confederates asked strangers to mail a letter for them, 
explaining that they were waiting for someone and could not leave the spot right then. 
In a third experiment, the confederates overpaid merchants and taxi drivers and then 
observed whether those people were honest and returned the money. From his cross­
tabulations of the reactions of more than 3,000 individuals, Feldman concluded that 
when a difference in helping behavior occurred in these experiments, the Parisians 
and Bostonians treated their compatriots better than they treated foreigners, whereas 
Athenians were more helpful to foreigners than to compatriots. The reason we also 
consider this study an example of nonreactive measurement is not that the confederates 
were concealed or inconspicuous (which they were not), but that their role as 
experimental accomplices was unknown to the people observed and the dependent 
variables were measured unobtrusively. 

SELECTING THE MOST APPROPRIATE 
JUDGES 

In the observational studies we have discussed so far in this chapter, observations and 
judgments were directly made by the researchers or by the researchers' associates or 
accomplices. In other studies, however-generally known as judgment studies--judges 
are used to evaluate or categorize the variables of interest. In most judgment studies, the 
researchers have no special interest in any individual differences among the judges when 
considering interjudge reliability. The researcher simply decides on the type of judges to 
be used (e.g., college students, industrial psychologists, linguists, mothers) and then 
regards each judge as more-or-Iess equivalent to, or interchangeable with, any other judge 
in the sample. The choice of the most appropriate judges is pretty much left to the 
researcher's intuitions. If a sample of educated judges were needed for a content analysis, 
the researcher might conveniently select graduate or advanced undergraduate students. 
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To rate nonverbal cues to psychoses, the researcher would probably want to recruit 
experts, such as clinical psychologists or psychiatrists. For judgments of nonverbal cues 
to discomfort in infants, mothers, child psychologists, or pediatricians might be recruited. 
If judgments of nonverbal cues of persuasiveness were required, the judges chosen might 
be trial lawyers, fundamentalist ministers, or salespersons. 

However, suppose we wanted judges with the highest possible levels of general 
accuracy. In this case, we might do even better by making a nonrandom selection of 
judges. We could search the literature to find out whether anyone has identified specific 
characteristics of those who are more sensitive to what is being judged, and then we 
could recruit those particular kinds of judges. In the case of those sensitive to non­
verbal cues, for example, the research literature suggests that judges who are female, 
college-aged, cognitively complex, and psychiatrically unimpaired will give us the 
most accurate judgments (Rosenthal, Hall, DiMatteo, Rogers, & Archer, 1979). 
Another way to select judges for accuracy is to compare those in a pool of potential 
judges in terms of their accuracy of judgments on some relevant criterion. Say we 
want to select judges who are likely to be the most accurate in categorizing or rating 
nonverbal behavior. We can test a number of potential judges in a pilot study in which 
we give them certain known nonverbal stimuli to identify, and then we can simply 
pick the most accurate judges for our research. 

To illustrate, suppose we begin by generating photographs of skilled actors who 
are instructed to exhibit six different facial emotions: anger, disgust, fear, happiness, 
sadness, and surprise. We select 60 of these photos to serve as the stimuli in our pilot 
study, 10 to represent each of the emotions. We show the 60 photos in random order to 
participants, instructing them to circle the one of the six emotions that is most like the 
one in the photo. In analyzing these data we want to assess how biased or accurate 
each participant is, ,and afterward we will recruit those who were the most accurate. 
Table 5.1 shows a full data matrix indicating one participant's responses to all 60 photos 
(Rosenthal, 1987). For each of the correct categories of emotion as listed in the column 
headings, we see the distribution of responses according to the category chosen by this 

TABLE 5.1 

Full data matrix for one hypothetical participant 

Correct category 
Chosen 
category Anger Disgust Fear Happiness Sadness Surprise Sum 

Anger 8a 4 3 2 2 20 

Disgust 4a 2 3 12 

Fear 3' 2 2 10 

Happiness 0 0 0 3' 0 4 

Sadness 0 2 4' 2 10 

Surprise 0 0 0 2 0 2' 4 

Sum 10 10 10 10 10 10 60 

!Lltems scored as accurate; total accuracy = 24. 
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individual. This person correctly identified 8 of 10 anger stimuli but missed 2 others; 
one missed stimulus was mistakenly identified as disgust and the other as fear. The 
column totals of a full data matrix are fixed by the design of the study. In this case, each 
column sums to 10 because we balanced the set of stimuli for the frequency with which 
each emotion was the correct alternative. The row totals in the far right column define 
the participant's bias. A fully unbiased judge, regardless of his or her total level of 
accuracy, would show no differences in the row totals. If we want to test statistically 
whether the illustrative participant of Table 5.1 is significantly biased, we can compute 
a one-sample chi-square test (Siegel, 1956). We will have more to say about the chi­
square statistic in chapter 19, but to anticipate a little, the basic data and calculations are 
illustrated in Table 5.2. For this person, the bias-based primarily on choosing the 
category of anger too often, and the categories of happiness and surprise not often 
enough-was statistically significant at p = .0035. 

As Table 5.1 implies, the bias of seeing "too much" of one category (e.g., anger) 
tends to inflate accuracy for the biased category. If there were perfect bias for one 
category (e.g., anger), all categories would be identified as that category, and all items 
for which that particular category is the correct answer would be scored correct. 
Therefore, there is generally a positive correlation between bias toward a category 
and accuracy in that category. For the illustrative data of Table 5.1, the correlation 
between bias (the sums in the far right column) and accuracy (the entry with the 
superscript a in each column) is r = .93. Inasmuch as the accuracy score is one 
component of the row total (or bias), we expect to see a positive correlation between 
accuracy and bias. It often happens that even when we correct the row total for accu­
racy by subtracting the accurately categorized items from the row total, the correlation 
between accuracy and bias remains positive. For example, for the data of Table 5.1, 
the row totals of 20, 12, 10, 4, 10, 4 become 12, 8, 7, 1, 6, 2 when corrected by 
accuracy scores of 8, 4, 3, 3, 4, 2 (i.e., when this last set is subtracted from the first). 
Still, the correlation between these accuracy scores and the accuracy-corrected bias 
scores remains positive and substantial: r = .85. As before, we could also compute 
a one-sample chi-square test for bias on the accuracy-corrected row totals, that is, if 
we should want an estimate of bias omitting the items categorized accurately. In this 
case, when we use the accuracy-corrected observed row totals, the test for bias is 
X2 = 13.67, df = 5, N = 60 - 24 = 36, p = .018. 

TABLE 5.2 

Contingency table and one-sample X2 for single judge's bias in Table 5.1 

Expected 

Observed 

Anger 

10 

20 

Disgust 

10 

12 

Category of emotion 

Fear 

10 

10 

Happiness 

10 

4 

Sadness 

10 

10 

Surprise 

10 

4 

,=,,(O-E'f = (ZO-lO'f +(lZ-lO'f +(10-1O'f +(4-10'f +(10-10'f +(4-10'f =17.6 
X L... E 10 10 10 10 10 10 ' 

Total 

60 

60 

where E = expected frequency, 0 = obtained frequency, and for one-sample X' tests, the degrees of freedom (df) are 
computed as the total number of categories (k) minus I (Le., df = k - 1 = 5). 
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CHOOSING THE NUMBER OF 
RESPONSE ALTERNATIVES 

Another concern of researchers who are using category judgments is to decide on the 
optimal number of response alternatives in a given situation. In the case we have been 
discussing, we chose a category format of six response alternatives. However, suppose, 
for certain theoretical reasons, the design of the research required only two or three 
response categories. When the needs of the research speak clearly on the number of 
categories to use, it pays to listen. Often, however, there is no compelling reason to 
prefer any particular number of categories, and choosing the number becomes a matter 
of intuition. Multiple-choice achievement tests, for example, everything else being equal, 
tend to be more reliable when the number of response alternatives is increased (Nunnally, 
1978). In fact, when more alternatives (or judgment categories) can be used without the 
sacrifice of other desirable features of the test or task, the increase in alternatives yields 
other practical benefits as well. For example, it is easier to estimate the probability that 
any particular judge has shown accuracy greater than chance. Typically, when samples 
of judges are used, this may not be a great advantage, however. The reason is that the 
number of judges gives us the statistical power to establish that all of the judges, in the 
aggregate, can do better than chance, whatever the task. In clinical contexts or in selection 
contexts, where the clinicians or researchers are interested in evaluating the performance 
of a single patient or a job applicant, having a larger number of response alternatives is 
quite useful, however, especially when it is necessary to keep the total number of items 
or judgments fairly low. 

Table 5.3 lists for each of several numbers of response alternatives the 
minimum number of items (or judgments) required to show that a single judge is 

TABLE 5.3 

Minimum number of items required to establish individual judge's accuracy at 
various levels of statistical significance 

Significance levels (one-tailed) 

Number of Chance 
IIlternatives level .10 .05 .01 .005 .001 

2 .50 4 5 7 9 10 

3 .33 3 3 5 5 7 

4 .25 2 3 4 4 5 

5 .20 2 2 3 4 5 

6 .17 2 2 3 3 4 

7 .14 2 2 3 3 4 

8 .12 2 2 3 3 4 

9 .11 2 2 3 3 4 

10 .10 2 2 3 3 

11 .09 2 2 3 3 

12 .08 2 2 3 3 
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significantly accurate (Rosenthal, 1987). Suppose the chosen criterion of "real" 
accuracy is accuracy at p = .005 one-tailed. Table 5.3 indicates that reaching this 
criterion will require 9 items (or judgments) having 2 response alternatives, but 
only 3 items (or judgments) having 6 response alternatives. This table is also of 
use in clinical applications in which the accuracy of individual clinicians is of 
interest, or in small-N judgment studies in which the accuracy of individual par­
ticipants is of interest. This usefulness assumes, of course, that the researchers are 
interested in the statistical significance of the accuracy of individual clinicians or 
research subjects. As Table 5.3 also implies, should the researchers need to keep 
the number of items (or judgments) to a minimum, they can improve the statistical 
efficiency of the instrument or task by increasing the number of response alternatives 
for each item (or judgment). 

EFFECTS OF GUESSING AND 
OMISSIONS ON ACCURACY 

Another question that is frequently of interest is the effect of a judge's (or a 
re~earch participant's) guessing on estimates of the person's accuracy. We again 
consult Table 5.3, which shows the probability of obtaining a correct response by 
random selection of a response alternative (guessing) as a function of the number 
of alternatives. With only 2 response alternatives, there is a probability of .50 of 
guessing the correct category; with 10 response alternatives, the probability is .10. 
Thus, if we had an instrument with 100 items, we would regard a score of 50 
correct quite differently if the number of response alternatives (A) were 2 as 
opposed to 10. For example, if A = 2, the performance is no better than chance, 
but with A = 10, the performance is substantially better than chance (X2 = 178, 
df = 1, N = 100, p = 1.32-4°). Our evaluation of the effects of guessing on the 
level of a judge's accuracy therefore depends heavily on the number of response 
alternatives. 

Under many conditions, however, researchers are not concerned about the 
estimation of the judges' levels of accuracy. In studies of individual differences, 
for example, the researchers may be concerned only about the judges' relative 
positions on a distribution of accuracy scores. In such cases, the number of response 
alternatives per item are of no importance. However, in experiments in which the 
researchers do require some estimate of how well a subject, a judge, or a group of 
subjects or judges has done, it is necessary to take into account the effect of 
successful guessing as a function of the number of response alternatives. The 
standard estimate, given by Nunnally (1978), states that the number of items that 
are correct after adjustment for guessing (R-adjusted) is a function of the number 
of correct or right (R) responses, the number of incorrect or wrong (W) responses, 
and the number of alternative (A) responses for each item or judgment. The 
adjusted number correct is given by 

R-adjusted = R - A ~ 1· (5.1) 
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For example, on a true-false achievement test (i.e., two response alternatives 
per item), if a person got 50 of 100 items correct, the adjusted score we obtain from 
Equation 5.1 is 

R-adjusted = 50 - 2 5~ I = 0, 

no better than randomly choosing, or guessing, one alternative. Or suppose a person 
got 50 of 100 items correct on a multiple-choice achievement test with 4 response 
alternatives per item; the adjusted score becomes 

R-adjusted = 50 - 4 5~ I = 33.3. 

In a judgment study with 10 categories to choose among, if 50 of 100 stimuli were 
categorized correctly, the adjusted score is 

R-adjusted = 50 - 105~ 1 = 44.4 

Table 5.4 shows the adjusted accuracy scores on a sample 100-item test for 
varying numbers of response alternatives (Rosenthal, 1987). The first column lists the 
number of correctly answered items (R) in steps of five. The second column lists the 
number of incorrectly answered items (W), which is simply 100 - R for this table. 
In each column of the body of the table, a perfectly chance level of performance is 
given by an adjusted accuracy score of zero. Because Table 5.4 shows steps of five 
items correct, a nearly exact score of zero is not found in each column. Interpolation 
can be used to find the level of approximate zero or any other value located between 
adjacent entries. Alternatively, a more precise location for zero values of adjusted 
accuracy scores is given by 

R-adjusted = ~ (5.2) 

where K = total number of items (R + W), and K = 100 in the case of Table 5.4. 
Although we have defined the total number of items (K) as the sum of the 

right (R) and wrong (W) answers, this relationship holds only if we score as wrong 
any items that are omitted. However, scoring omitted items as zero gives them 
100 little credit in computing R. It seems preferable to credit omitted items with 
Ihe score that would be obtained by purely random guessing, that is, the recipro­
cal of the number of alternatives (1/ A). Thus, if there were two categories of 
response, we would credit omitted items with .5 points. Similarly, if there were 
four response alternatives, we ",ould credit omitted items with .25 points, and so 
forth (Nunnally, 1978, p. 650; Rosenthal, Hall, DiMatteo, Rogers, & Archer, 1979). 
Because judges often know more than they think they do, it seems best to do all 
one can to avoid omitted items. Judges can usually be successfully urged to "leave 
no blanks." If blanks are left and we do not credit them with (1/ A) points, we run 
Ihe risk of having individuals who do not like to guess scoring significantly below 
chance. 
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TABLE 5.4 

Estimated accuracy adjusted for guessing (100-item test) 

Number of alternatives 
Number Number 
right (R) wrong (W) 2 3 4 5 6 7 8 9 10 

100 0 100 100.0 100.0 100.0 100 100.0 100.0 100.0 100.0 

95 5 90 92.5 93.3 93.8 94 94.2 94.3 94.4 94.4 

90 10 80 85.0 86.7 87.5 88 88.3 88.6 88.8 88.9 

85 15 70 77.5 80.0 81.2 82 82.5 82.9 83.1 83.3 

80 20 60 70.0 73.3 75.0 76 76.7 77.1 77.5 77.8 

75 25 50 62.5 66.7 68.8 70 70.8 71.4 71.9 72.2 

70 30 40 55.0 60.0 62.5 64 65.0 65.7 66.2 66.7 

65 35 30 47.5 53.3 56.2 58 59.2 60.0 60.6 61.1 

60 40 20 40.0 46.7 50.0 52 53.3 54.3 55.0 55.6 

55 45 10 32.5 40.0 43.8 46 47.5 48.6 49.4 50.0 

50 50 00 25.0 33.3 37.5 40 41.7 42.9 43.8 44.4 

45 " 55 -10 17.5 26.7 31.2 34 35.8 37.1 38.1 38.9 

40 60 -20 10.0 20.0 25.0 28 30.0 31.4 32.5 33.3 

35 65 -30 2.5 13.3 18.8 22 24.2 25.7 26.9 27.8 

30 70 -40 -5.0 6.7 12.5 16 18.3 20.0 21.2 22.2 

25 75 -50 -12.5 0.0 6.2 10 12.5 14.3 15.6 16.7 

20 80 -60 -20.0 -6.7 0.0 4 6.7 8.6 10.0 11.1 

15 85 -70 -27.5 -13.3 -6.2 -2 0.8 2.9 4.4 5.6 

10 90 -80 -35.0 -20.0 -12.5 -8 -5.0 -2.9 -1.2 0.0 

5 95 -90 -42.5 -26.7 -18.8 -14 -10.8 -8.6 -6.9 -5.6 

0 100 -100 -50.0 -33.3 -25.0 -20 -16.7 -14.3 -12.5 -11.1 

INTRINSIC FACTORS AND THE LEVEL 
OF ACCURACY 

So far, we have discussed only the effect on item difficulty (or lack of "guessability") 
of an extrinsic factor of format: the number of response alternatives. Intrinsic factors also 
contribute to item or judgment difficulty, such as length of stimulus exposure time or 
quality of stimulus materials. From the point of view of developing psychometrically 
sound stimulus materials, what should be the level of accuracy of the items or judgments? 
Suppose there were two response alternatives, in which case an average accuracy rate of 
50% would clearly be undesirable because it would imply that the judges were unable 
to categorize the material better than chance. Similarly, with only two response alternatives, 
an average accuracy rate of 100% would be undesirable because no individual differences 
in accuracy can be assessed. Moreover, we would have no idea of how much more 
difficult the task might have been made without the average level of accuracy dropping 
noticeably. 
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There is no unifonnly appropriate answer to the question of a desirable level of 
average accuracy for stimulus materials of varying numbers of response alternatives. 
As an approximation, we might expect reasonably good perfonnance (e.g., discrimina­
tion power) from items with an adjusted accuracy of R-adjusted = .7. Table 5.4 can 
be used to obtain raw score accuracies (R) equivalent to the adjusted accuracies for 
each column (number of categories). For most practical applications, the raw score 
accuracies (R) equivalent to the adjusted accuracy of .7 range between .7 and .85. 
The latter value (.85) applies to the situation of only two response alternatives, and 
the former value (.7), to a larger number of response alternatives (Guilford, 1954, p. 391; 
Nunnally, 1978, p. 273). To illustrate a range of categorical judgment studies, we 
describe three further applications: trait checklists, forced-choice judgments, and 
scaling for cumulative judgments. 

APPLICATIONS OF CATEGORICAL 
JUDGMENTS 

Word Checklists 

The popular word checklist has a long history in the psychological assessment field 
(Guilford, 1954) and was used in classic research on personality impression fonnation 
(Asch, 1946). Those making judgments of others are shown a list of words that describe 
personality traits, and the instructions are to indicate (e.g., by circling, checking, or 
underlining) the traits that, in each judge's opinion, describe the person being judged. 
Thus, the categorical judgment is a simple yes (circle the trait) or no (don't circle it). 
Table 5.5 shows a list of "likable" and "unlikable" traits that Rosnow, Wainer, and Anus 
(1969) pared down from il much longer list (developed by N. H. Anderson, 1968). The 
likable traits are those indicated by a positive rating, and the unlikable traits, by a negative 
rating. Suppose all we needed was a crude index of relative likability; we can subtract 
the number of negative traits checked from the number of positive traits checked. 
Assuming that the ratings in Table 5.5 remain current, a more precise score is the median 
or mean of the ratings of traits selected by the judge. For example, if a judge circled 
"respectable" (+ 29), "wordy" (-5), and "ungrateful" (-38), the median score would be 
-5 and the mean score would be -4.7. 

In obtaining the ratings in Table 5.5, Rosnow et al. used a dimensional rating 
procedure to trim the longer list. Half the raters were asked to think of a young man 
their own age and educational level who possessed traits they found extremely favorable, 
and to assign a score of 100 to this individual. Next, they were asked to imagine another 
young man with traits they perceived as extremely urifavorable, and to assign a score 
of 0 to that person. They were then given the full list and instructed to assign a score 
from 0 to 100 to each trait, depending on how likable a young man possessing that trait 
would be perceived as by them. Other'raters were given similar instructions, except that 
"young woman" was substituted for "young man." The traits that are listed in Table 5.5 
are those for which no significant disagreement was found between the male and female 
raters regarding male and female traits (Rosnow et al., 1969). The positive and negative 
ratings listed are average overall ratings minus the constant value of 50. The higher the 
positive rating, the more likable was the trait ("good-natured" being the most likable 



TABLE 5.5 

Likableness ratings of personality traits 

Rating Adjective Rating Adjective Rating Adjective 

+37 good-natured +19 brilliant -19 moody 

+37 trustworthy +19 inoffensive -19 unpopular 

+36 honorable +18 high-spirited -22 downhearted 

+35 good-tempered +17 upright -23 egotistical 

+35 loyal +16 idealistic -24 childish 

+35 trustful +14 religious -24 inconsistent 

+34 kind +13 untiring -24 self-possessed 

+33 alert +12 humble -25 boisterous 

+33 kindhearted +11 opinionated -26 scheming 

+33 reasonable +10 excitable -26 unenterprising 

+33 unselfish +10 nonconforming -26 unindustrious 

+32 admirable +9 lucky -27 careless 

+32 adventurous +9 outspoken -27 fickle 

+31 conscientious +9 philosophical -27 irrational 

+31 good +9 sophisticated -27 resentful 

+31 helpful +8 deliberate -27 touchy 

+31 kind +8 dignified -28 disturbed 

+30 amusing +7 excited -28 gloomy 

+30 calm +7 middle-class -29 cowardly 

+30 cool-headed +6 opportunist -29 jumpy 

+30 
.. 

tolerant +6 prudent -30 short -tempered 

+29 grateful +4 daring -30 unentertaining 

+29 respectable +3 righteous -30 unsocial 

+29 well-spoken +2 argumentative -31 nosey 

+28 efficient +2 self-contented -31 wasteful 

+28 hopeful +1 impressionable -32 antisocial 

+27 confident 0 theatrical -32 petty 

+27 curious -1 discriminating -32 ungracious 

+27 realistic -2 critical -32 unsociable 

+26 ambitious -2 bashful -33 scornful 

+26 frank -2 shy -34 disrespectful 

+26 logical -3 shrewd -34 irritable 

+26 sensitive -4 cunning -34 quarrelsome 

+25 generous -4 daydreamer -35 belligerent 

+25 neat -4 painstaking -35 bossy 

+25 observant -5 extravagant -35 ill-mannered 

+25 prompt -5 meticulous -35 impolite 

+25 punctual -5 wordy -35 loudmouthed 

+25 rational -7 daredevil -37 boastful 

+24 modest -8 irreligious -37 greedy 

+23 outstanding -8 self-righteous -38 unfriendly 

+23 wholesome -9 crafty -38 ungrateful 

+22 agreeable -11 eccentric -39 irritating 

+22 orderly -11 unmethodical -40 bragging 

+21 decent -16 dissatisfied -41 insulting 

+21 gracious -17 impractical -41 untrustworthy 

+20 literary -17 unsystematic -42 dishonorable 

+20 positive -19 angry 

142 
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trait); the higher the absolute value of the negative rating, the less likable was the trait 
("dishonorable" is the least likable). 

To illustrate the use of these stimuli, social psychologist Marianne Jaeger and 
her colleagues (1994) showed the list of words in Table 5.5 to members of a service 
sorority at a large university. They were then instructed to indicate next to the name 
of each sorority sister the traits that best described that person (no minimum or 
maximum number of traits was suggested by the researchers). Jaeger et al. were 
interested in identifying various characteristics of people who gossip and those they 
gossip about. One finding in this research was that those identified as "low gossip­
ers" (i.e., they gossiped only a little, or not at all) were judged as more likable than 
those who were identified as "moderate gossipers" or "high gossipers." It was also 
found that those who were most frequently perceived as targets of gossip (i.e., high­
frequency gossipees) were judged to be less likable than those who were less 
frequently perceived as gossipees. 

Forced-Choice Judgments 

Another traditional use of categorical judgments is in forced-choice ratings, a procedure 
that was developed to overcome what was believed to be a ubiquitous response bias 
called the "halo error" by Thorndike (1920). More commonly known today as the 
halo effect, it refers to a type of response set in which the person being evaluated is 
judged not impartially, but in terms of a general impression (i.e., a "halo") surrounding 
him or her, resulting in high intercategory correlations or low intercategory variance. 
For example, a person who is athletic and good-looking might be judged as more 
popular than is actually the case. From the results of an early study by Symonds 
(1925), it was tradition~lly believed that halo effects were most prevalent when the 
traits being judged were not easily observed, not clearly defined, involved relations 
with other people, and possessed some moral importance. 

Suppose a judge is dominated by the desire to make the person being evaluated 
"look good" and to avoid making him or her "look bad." Instead of allowing the 
judges to pile up favorable traits, the forced-choice method requires them to make 
difficult choices, such as choosing between two equally favorable characteristics. An 
example would be having to choose between "X is good-natured" and "X is 
trustworthy." The judge is/orced to say whether Person X has more of one favorable 
trait than of another. From a comparison of several different forced-choice formats 
(Highland & Berkshire, 1951), the most preferable format was believed to be one in 
which judges are presented with four favorable traits and required to choose only the 
two most descriptive characteristics. Various ways of detecting and reducing halo 
effects have been described (see, e.g., W. H. Cooper, 1981; Lance & Woehr, 1986), 
although recently it has been argued that halo effects may not be as ubiquitous as 
earlier researchers believed (Murphy, Jako, & Anhalt, 1993). 

Categorical Responses and Hierarchical Effects 

A recent application of categorical judgments is in research on the ability to 
discriminate actions and intentions, called "interpersonal acumen" by Rosnow, 
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Skleder, Jaeger, and Rind (1994). This research was initially inspired by some 
earlier theoretical work of Howard Gardner (1985), who postulated that the process 
of discriminating actions and intentions begins with the bond established between 
an infant and its caregiver, usually the child's mother. The infant has a range of 
feelings but does not have the social savvy or insight to interpret them or to infer 
how or why she or he is feeling this way. As the infant seeks to maintain a positive 
feeling of well-being, the caregiver provides a clue concerning the relationship 
between certain actions and intentions. The mother responds affectionately, so the 
infant has the opportunity to learn that positive actions are often consonant with 
feelings of affection. The infant also has opportunities to respond to the cries of 
other infants or of others in pain and thereby begins to associate negative feelings 
and intentions with negative actions (e.g., crying). As children step beyond the 
family circle to forge friendships and peer relationships, they have opportunities to 
develop a keener sense of the often complex relationship between actions and 
intentions. For example, through talk, pretend play, gestures, and so on, they may 
encounter sequences in which the neutral action is a guise to mask the actor's 
positive or negative intent. In this way, people learn how not to fall prey to menac­
ing action-intention patterns and also how to manipulate situations for their own 
hidden purposes. 

lh the research of Rosnow et al. (1994), it was theorized that generic com­
binations of actions and intentions also vary in their cognitive complexity to adult 
subjects, resulting in a hierarchy of action-intention combinations from least to 
most cognitively taxing. The least cognitively taxing were presumed to be actions 
and intentions that shared the same valence (e.g., a sincerely benevolent action), 
whereas the most taxing were theorized to be positive or negative actions that were 
coincidental. As an illustration of the latter, something favorable happens, but the 
favorable event was not created to benefit a particular recipient. Thus, it is impor­
tant not to read more causal relations into situations than really exist. Rosnow et aI., 
created stimuli to represent generic combinations of actions and intentions, ranging 
on theoretical grounds from least to most cognitively taxing. Adult subjects were 
then tested on their ability to differentiate the actions and intentions in those stim­
uli; the test used a number of procedures to ensure that the observed findings were 
generalizable across different judgment methods. The premise of the research was 
that the more interpersonal acumen a person has, the better able that person is to 
differentiate complex combinations of actions and intentions. If there is indeed a 
hierarchy of such combinations, then we should find that people who demonstrate 
mastery of one generic combination will show mastery of other generic combina­
tions that are presumably less cognitively taxing. Similarly, a person who fails to 
display mastery of a particular generic combination is expected to fail to differentiate 
combinations that are presumably higher in the hierarchy. 

The results were analyzed by means of contrasts (discussed in chapter 15) 
and a traditional scaling procedure developed by L. Guttman (1994). The way the 
scaling procedure works is illustrated with the aid of Table 5.6. Suppose we have 
sets of generic action-intention stimuli in five categories (A, B, C, D, E), which 
in tum are theorized to vary in complexity from least to most cognitively taxing 
in the following sequence: A < B < C < D < E. Each time a subject displays 
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TABLE 5.6 

Hypothesized response profiles and cumulative scores for five levels 
of interpersonal acumen (IA) 

Action-intention stimuli 

Level of IA A B C D E Score 

+ 0 0 0 0 

2 + + 0 0 0 2 

3 + + + 0 0 3 

4 + + + + 0 4 

5 + + + + + 5 

Note: A plus weight indicates a correct response, and a zero weight indicates an incorrect response; the 
score is the total number of plus weights. Underlying these idealized response profiles is the assumption 
that the stimuli vary from least to most cognitive\y taxing as follows: A < B < C < D < E. 

mastery of one generic category, the subject receives a weight of 1; failure to dif­
ferentiate a category is assigned a weight of O. Thus, if all subjects respond as 
shown in Table 5.6, knowing only a subject's total score allows us to state exactly 
how the subject responded. If there are discrepancies in the way that subjects 
responded, then the total score is not a perfect indicator of individual results. There 
are virtually always going to be discrepancies; alternative procedures for scoring 
such discrepancies have been developed, as well as criteria for deciding whether 
the data support the idea of a cumulative scale (Edwards, 1957b; Torgerson, 1958). 
In the research by RosI1ow et ai., the results supported the idea of a hierarchy of 
combinations of actions and intentions that ranged from least to most complex. 
Similar results (from another set of stimuli) were reported by Aditya (1997; Aditya & 
Rosnow, 2002), who found that levels of interpersonal acumen scores were correlated 
positively with managers' upward mobility in organizations. That is, the more successful 
managers scored higher in interpersonal acumen. 

CATEGORY SCALES AND RATING SCALES 

In contrast to categorical judgments, dimensional judgments require that the 
judges make their responses on some form of more-or-Iess continuous rating scale. 
For example, they may be asked to rate the tone of voice of physicians talk­
ing about alcoholic patients (Milmoe, Rosenthal, Blane, Chafetz, & Wolf, 1967). 
The judges might be given between 2 and 20 scale points to indicate the particular 
degree of affective state (e.g., warmth or hostility) that they perceive in the 
physician's voice. Shortly, we will describe two popular types of rating scales, the 
lIumerical and the graphic, and another interesting type in which the number of 
total points is decided by the judges rather than preset by the researcher, called 
a magnitude scale. Before we turn to these three, however, we want to mention a 
relationship between category scales and rating scales that is not generally 
recognized. 
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Traditionally, the distinction between category scales and rating scales was 
based on the notion that people who worked with category scales were "classifiers" 
as opposed to "evaluators." That is, people who worked with category scales merely 
read, listened to, or watched some behavior and then simply classified it as accurately 
as possible, but no evaluation was made of whether one behavior was more appropriate 
or effective than another. Those who worked with ratings were said to be evaluators, 
who not only classified or counted but also assigned a numerical value to certain 
judgments or assessments. Our view, however, is that classifying and evaluating are 
characteristic of all judgments. A categorical format with A alternatives to choose from 
is analogous to a set of A ratings that each offer only two scale points. 

To illustrate, suppose the categorical response format offered the following 
alternatives, and the judge was instructed to check the traits that applied to Person X: 

__ good-natured 

conscientious 

scornful 

boisterous 

tolerant 

wasteful 

That instruction to select one or more traits to describe Person X is analogous to the 
dimensional response format: 

~ good-natured 

~ conscientious 

~scornful 

~ boisterous 

~ tolerant 

~ wasteful 

with the instruction to rate Person X on each of the six rating scales offered. The end 
points (0 and 1) of the rating scales might be labeled "absent = 0 and present = 1" 
or "low = 0 and high = 1" or "does not apply = 0 and does apply = 1," and so 
forth. Thus, however one may choose to label the end points, both formats will yield 
one of two possible scores for each category or each dimension. That is, 0 for the 
dimensional rating is the same as "unselected" for the categorical, and 1 for the 
dimensional is the same as "selected" for the categorical. 

NUMERICAL, GRAPHIC, AND MAGNITUDE 
RATINGS 

Numerical Formats 

There are several alternative numerical scale formats, but what they all have in 
common is that judges or raters work with a sequence of defined numbers. 
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The numbers may be quite explicit, as illustrated by the following item, which was 
taken from a behavior rating scale for adolescents (Baughman & Dahlstrom, 
1968): 

How popular is each of your classmates? 

(1) extremely popular 

(2) above average 

(3) about average 

(4) below average 

(5) not at all popular 

In the example above, there are 5 scale points. Another example of a 5-point 
numerical scale, but one in which the numbers are implicit rather than explicit, 
would be: 

Do you feel that a large-scale homeland security program will incite an enemy 
to prematurely attack this country, or do you feel that such a program will lessen 
the chances of an enemy attack? (Check one.) 

__ It would considerably increase the chance of an enemy attack. 

__ It would somewhat increase the chance of an enemy attack. 

__ It would neither increase nor decrease the chance of an enemy attack. 

__ It would somewhat decrease the chance of an enemy attack. 

__ It would considerably decrease the chance of an enemy attack. 

In both examples above, the items are written in simple, straightforward 
language. It is important that the statements not be ambiguous or complexly 
worded, for such statements ask the respondent to provide a one-dimensional 
response to a two-dimensional (or multidimensional) question-quite impossible! 
In the second item, note that the middle alternative ("neither increase nor decrease") 
represents something like indifference. Many researchers prefer to omit middle 
categories, so as to push their respondents to one or the other side (Bradburn, 
1982). 

Graphic Formats 

The graphic scale format is simply a straight line resembling a thermometer, presented 
either horizontally or vertically: 

Unpopular __________________ Popular 

Shy Outgoing 

Solitary Gregarious 

The judge or subject responds with a check mark, and the researcher then uses a ruler 
to read the position of the check mark on the scale. 
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A variation on this format is to divide the line into segments, to create a 
numerical scale or segmented rating scale. For example, a bipolar lO-point scale 
would look like this: 

Unpopular __ : __ : __ : __ : __ : __ : __ : __ : __ : __ Popular 
Shy __ : __ : __ : __ : __ : __ : __ : __ : __ : __ Outgoing 

Solitary __ : __ : __ : __ : __ : __ : __ : __ : __ : __ Gregarious 

Because this scale is divided into an equal number of segments, there is no obvious 
neutral point, unless we think of the two middle segments as representing "neutrality" 
(e.g., neither unpopular nor popular). If we divided the scale into an uneven number 
of segments, there would be a clear-cut middle point for neutrality. 

For example, Osgood, Suci, and Tannenbaum (1957) used 7-point bipolar 
segmented scales to measure what they described as the "meaning of meaning." 
Calling their scaling and association method the semantic differential, they had 
respondents judge the meaning of concepts (such as the concept of father) on certain 
relevant dimensions. We will have more to say about this procedure in the follow­
ing chapter, but in particular, Osgood et al. used the semantic differential method 
to.,operationalize and tap into three primary dimensions of meaning, which they 
named evaluation (bad-good, unpleasant-pleasant, negative-positive, ugly-beautiful, 
cruel-kind, unfair-fair, worthless-valuable), potency (weak-strong, light-heavy, small­
large, soft-hard, thin-heavy), and activity (slow-fast, passive-active, dull-sharp). In 
a classic application of this procedure, Osgood and Luria (1954) constructed three­
dimensional graphs of semantic differential results to represent Thigpen and Cleckley's 
(1954) famous case of multiple personalities, which was later depicted in the film 
The Three Faces of Eve. Interestingly, in the 1968 U.S. presidential campaign, one 
of Richard M. Nixon's first moves was the appointment of advertising researchers 
who traveled through the United States asking people to judge the candidates on 
semantic differential scales, based on which it was possible to compare Nixon's 
semantic differential profile with the plotted curves for Hubert Humphrey and 
George Wallace (McGinniss, 1969). 

Scale Points and Labels 

The advantage of the dimensional format begins to appear as the number of scale 
points or segments increases. In a computer simulation study of interrater reliability, 
a team of researchers found that the greatest benefits to reliability accrued as they went 
from 2 to 7 points, with only trivial improvements between a 7-, 8-, 9-, or lO-category 
ordinal scale and a lOa-point continuous scale (Cicchetti, Showalter, & Tyrer, 1985). 
However, there are circumstances in which it may still be beneficial to reliability 
to use up to 11 scale points (Nunnally, 1978), and as many as 20 scale points may 
prove useful in some circumstances (Guilford, 1954; Rosenthal, 1966, 1976). From a 
practical point of view, there are some advantages to using 9 or 10 scale points. This 
number is usually enough to reap most of the benefits of added reliability, but it keeps 
each judge's response at a single digit, which can effect some economies of data 



OBSERVATIONS, JUDGMENTS, AND COMPOSITE VARIABLES 149 

processing (i.e., 1-9 or 0-9, the former if a neutral midpoint is desired, the latter 
if not). 

There is no clear agreement on the optimum number of labels for rating scales. 
At a minimum, we would label the end points (e.g., not warm-warm, cold-warm, not 
cold-cold). In choosing the end labels (or anchor words), it is important to select terms 
or short statements (e.g., extremely unpopular-extremely popular) that are simple, 
straightforward, and unambiguous. The anchors also need to be clearly relevant to the 
behavior or variable being rated, and consistent with other cues. For example, in a 
9-point or lO-point rating scale of "warmth of interpersonal manner," we might label 
the end points "not at all warm" and "very warm" and distribute the three interior 
labels ("somewhat warm," "moderately warm," "quite warm") so that all five labels 
are approximately equidistant. This is an example of a uuipolar scale. An example 
of a bipolar scale might run from "very cold" on one end to "very warm" on the 
other end, with interior labels like "somewhat cold," "neither cold nor warm," and 
"somewhat warm" spaced along the rating scale. (Some special problems of bipolar 
scales will be discussed shortly.) 

It is easier to find nonredundant labels for bipolar scales, and some researchers 
may want to use more than five labels. For the scale we have been discussing, we 
might use nine labels: "very cold," "quite cold," "moderately cold," "somewhat cold, 
"neither cold nor warm," "somewhat warm," "moderately warm," "quite warm, "very 
warm." Experience suggests that judges who make ratings (e.g., college students, 
college graduates, most high school students) can do about as well with just a few 
labels on a rating scale as with many labels. Different judges tend to use different 
sections of the rating scales more often, but these biases do not ordinarily affect the 
judges' reliability. 

When designirtg rating scales for judgment studies, it is less confusing to judges 
and data processors always to place the higher numbers on the right, as most people 
learn in elementary school that numbers increase to the right. In addition, the tradition 
is to place the "good end" of bipolar rating scales (e.g., warm, friendly, empathic) on 
the right (as illustrated in the graphic and segmented scales shown previously). 
Although there may be a tendency for the grand mean ratings to increase somewhat, 
it is likely that, on average, errors of jUdging, of coding, and of interpretation will be 
reduced by this practice (Guilford, 1954). Numbers on the rating scales should be 
equidistant, and the overall format of the entire instrument should be designed to make 
it unlikely that any items will be overlooked or "skipped." If the scale is administered 
on a computer, it can be programmed to ensure that each item is rated before the 
judge can respond to the next one. 

Magnitude Scaling 

In the dimensional formats described above, the lower and upper range of scores is 
defined by the researchers. In what has come to be known as magnitude scaling-a 
method developed by experimental psychologist S. S. Stevens (1936, 1966)-the 
upper range is left to the judges. For example, Sellin and Wolfgang (1964) had juvenile 
court judges, parole officers, and college students weight the seriousness of such 
crimes as trespassing, stealing and abandoning a vehicle, arson, rape, and murder. 
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Each of the stimuli was presented to the subjects in a number of contexts, from verbal 
threats to gunpoint with different degrees of injury resulting. In one variant of this 
procedure, the subjects were told to assign a score of 10 to a person who steals a 
bicycle parked on the street, and then to score other situations in terms of their relative 
seriousness as crimes (Figlio, 1978; cited in Lodge, 1981). For example, if they 
thought of a particular situation as 20 times more serious than the bicycle theft, they 
would score it 200; if they thought a situation was half as serious as the bicycle theft, 
they would score it 5; a situation not perceived as a crime would be scored O. In 
analyzing these results, the researchers took the common log (base 10) of each person's 
score, calculated the arithmetic mean of the logs for each stimulus, and then worked 
with these values (Lodge, 1981). Magnitude scaling involving the estimation of ratios 
and magnitudes was effectively used by Stevens and Galanter (1957) to study a wide 
variety of sensory and perceptual continua. 

RATING BIASES AND THEIR CONTROL 

The use of all rating scales proceeds on the assumption that the person doing the 
rating is capable of an acceptable degree of precision and objectivity. However, there 
are potential rating biases that need to be considered by researchers who use these 
procedures. Earlier, we mentioned the halo effect; another type of rating bias that is 
similar': in a way, to the halo effect is an error of leniency (Kneeland, 1929). This 
type of bias takes its name from the idea that some observers or judges (i.e., lenient 
judges) tend to rate someone who is very familiar (or someone with whom they are 
socially involved) more positively than they should. Judges who are made aware of 
this potential bias may, however, "lean over backward" and rate the person more 
negatively than they should, producing the opposite type of error (severity error). 
In numerical and graphic scales, the traditional way to control for errors of leniency 
is to arrange the rating scale a little differently by simply stretching one end. For 
instance, we might give one unfavorable cue word ("poor") and have most of the 
range given to degrees of favorable responses ("poor," "fairly good," "good," "very 
good, "excellent"). Another solution is to ask judges to rate positive and negative 
qualities on two separate unipolar scales (as we will describe shortly). For a more 
detailed overview of leniency and halo biases, and of formulas for correcting the 
effects of such errors on estimates of means and variances, see Hoyt (2000). 

Another type of rating bias is called an error of central tendency; it occurs 
when judges hesitate to give extreme ratings and instead tend to rate in the direction 
of the mean of the total group. In the case of numerical and graphic scales, this 
problem is traditionally controlled in the way that the positive range was expanded 
in the example noted above. Thus, in a numerical or a segmented graphic scale, it is 
often a good idea to allow for 1 or 2 more points than are absolutely essential for the 
research. If we feel it is essential to have at least 5-point scales, it would be prudent 
to use 7-point rather than 5-point scales, on the assumption that some raters may be 
reluctant to use the extreme categories. 

Still another type of error is called a logical error in rating; it refers to the 
problem that many raters are likely to give similar ratings to variables or traits that 
seem logically related in their own minds (but may not be similar in the person 
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who is being evaluated or rated). This type of error is also similar to the halo 
effect, in that both types increase the intercorrelation of the variables or traits being 
rated. The difference is that the halo effect results from the observer's or judge's 
favorable attitude toward one person, whereas the logical error results from the 
rater's perception of the relatedness of certain variables or traits irrespective of 
individuals. One way to address this problem is to construct precise definitions and 
to make sure that the instructions are also clear, precise, and explicit (characteris­
tics that can be tested in a pilot study). Practice sessions followed by a discussion 
of each possible error are also used to teach judges what to watch for and how to 
be objective in their evaluations. 

BIPOLAR VERSUS UNIPOLAR SCALES 

Previously, we gave an example of a bipolar segmented scale, which is simply a scale 
that ranges from a great amount of a characteristic to a great amount of its opposite 
(e.g., cold-warm); unipolar scales run from a great amount of a characteristic to the 
absence of that characteristic (e.g., not warm to warm; not cold to cold). For many 
practical purposes, it seems not to matter much whether bipolar or unipolar scales are 
used. The correlation between judges' ratings of warmth on a scale of "cold-warm" 
and a scale of "not warm-warm" is likely to be substantial, perhaps as high as the 
retest reliability of either rating. Experience also suggests, however, that the negative 
correlation between ratings of "not warm-warm" and "not cold-cold" will not neces­
sarily be as high as we would expect it to be. This potentially low correlation between 
unipolar rating scales that would appear to be opposites has been superbly documented 
in work on masculinity-femininity (e.g., S. L. Bern, 1974; Spence & Helmreich, 1978). 
This research has shown that the ratings obtained on the unipolar scales of masculine 
and feminine are correlat~d sufficiently poorly that it is possible to identify a generous 
proportion of people who score high on both or low on both (as well as people we 
would expect to predominate, those who score high on one and low on the other). 

In their research on nonverbal communication, DePaulo and Rosenthal (1979a, 
1979b, 1982) used unipolar scales of liking and disliking. Despite substantial negative 
correlations between ratings on these unipolar scales, the researchers found it possible 
to identify encodings of nonverbal behavior in which a person being described was 
hoth liked and disliked considerably. This result has, in fact, served as an operational 
definition of an "ambivalent interpersonal affect." It was also possible to identify 
encodings in which a person being described was neither liked nor disliked, and this 
result was used as an operational definition of an "indifferent interpersonal affect." 
The lesson of these examples is that it may often be worth the effort to use more 
unipolar scales in hopes of turning up some surprises. 

FORMING COMPOSITE VARIABLES 

In many situations it is advisable to treat each variable measured individually, but it 
may also be beneficial in many situations to form composites and other redescriptions 
of variables. We have more to say in the second half of this book about the statistical 
tools described in this section (including a basic review, beginning in chapter 10). 
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However, on the assumption that the reader is familiar with standard scores (Z scores), 
correlation matrices, and so on, we will describe some procedures for recasting a set 
of dependent variables as a composite variable. To illustrate, suppose a group of 
judges have rated the nonverbal behavior of a set of psychotherapists on three dimen­
sions: warmth, empathy, and positiveness of regard. Suppose further that the retest 
reliabilities and the internal consistency reliabilities of all three variables are .70, and 
that the mean intercorrelation of each variable with the others is .70. Under these 
conditions, when the variables are so highly correlated with each other-as highly 
correlated as they are with themselves-we may find no advantage to analyzing the 
data separately for the three variables. 

To form a composite variable of all three, we might begin by standard scoring 
(Z-scoring) each of the three variables and replace each therapist's three scores by the 
mean of the three Z scores the therapist earned from the judges. A mean Z score of 
zero would tell us that the particular therapist scored as average on the new compos­
ite variable of warmth, empathy, and positiveness of regard. A very large positive Z 
score would tell us the therapist scored very high on the new composite variable, and 
a large negative Z score would tell us the therapist scored very low on the new com­
posite variable. As we will illustrate in chapter 10, the means of Z-scores are not 
themselves distributed as Z scores. Thus, if our composite variables are to be used in 
the construction of further composites, we will need to Z-score each composite variable 
befoie we take the next step in this process. 

Benefits of Forming Composite Variables 

In the example given above, and in many more complex cases as well, there are 
conceptual and practical reasons for forming composite variables. Conceptually, if 
variables cannot be discriminated from one another (because they are as highly 
correlated with each other as they are with themselves), it is hard to defend treat­
ing them as separate variables. Practically, we are able to obtain more accurate 
(and usually larger) estimates of the relationships of composites with other vari­
ables of interest than if we are working with the individual variables before they 
are combined into composites. Furthermore, reducing a larger number of variables 
to a small number of composites makes it easier to interpret appropriately any 
significance levels we may want to work with. 

Suppose we are interested in the effects of therapists' training on patients' 
behaviors on some dimension of interest (e.g., their nonverbal behaviors). We might 
use 5, or 10, or 20 variables on which patients are to be rated by judges. If we find 
the relationship between therapists' training and patients' behavior significant at .05 
for only 1 of 10 of the behaviors, it will be very difficult to interpret what the "true" 
level of significance of that result is, because 10 tests of significance have been 
performed. If our 10 patient behaviors were combined into a single meaningful 
composite, we would be able to interpret the obtained level of significance more 
appropriately. (We return to this problem of interpreting the results of numerous tests 
of significance in chapter 14, when we discuss the Bonferroni adjustment for multiple 
tests of significance.) 
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Forming Composites and Increasing Effect Sizes 

When each of the separate variables shows approximately the same magnitude of 
correlation with some other variable, and when the correlations among the various 
separate variables are also fairly homogeneous in magnitude, we can estimate the 
effects of forming composites on the magnitude of the effect size of interest. For 
reasons discussed in chapter 2, we prefer the family of correlational (r) indices as 
a generally useful group of effect size measures. Thus, suppose we had examined 
the effects of therapists' training on 10 dependent variables, and say we found the 
correlation between therapist training and each of those 10 individual dependent 
variables (symbolized as rindiVidua\) was roughly .30, and that the average intercor­
relation among the 10 dependent variables was ryy = .50. We want to estimate the 
new correlation (rcomposite) of a composite variable with the independent variable of 
therapist training. 

To obtain this estimate, we first need to calculate what we term the multiplier 
(m) factor, or the factor by which we will have to multiply the average individual r 

(i.e., rindividua\) in order to obtain the composite r (i.e., rcomposite' the effect size correlation 
based on the composite variable). The multiplier m is defined as 

m = j 1 + ryy~n - 1)' 
(5.3) 

where n = number of variables entering into the composite, and r yy mean 
intercorrelation among the variables entering into the composite. To obtain our estimate 
of the new r, we use the following equation (based on rearrangement of terms of an 
equation given by Guilford, 1954): 

rcomposite = rindividua\ X m, (SA) 

which states simply that the effect size correlation based on the composite variable is 
the product of the typical effect size based on the individual variable multiplied by a 
f~\ctor m. Substitution in Equation 5.3 gives us 

m = j 1 + ~~0(9) = 1.35, 

and thus, Equation SA yields: 

rcomposite = .30 X 1.35 = 040. 

Table 5.7 shows the values of m for varying levels of n and ryy. Only when 
individual variables are perfectly correlated with each other is there no benefit from 
forming composites. In general, the larger the number of separate variables (n) that 
lire combined into a composite, the greater will be the increase in the effect size r 
obtained (i.e., rcomposite)' Further, the lower the mean intercorrelation among the 
individual variables (i.e., ryy) , the greater will be the increase in rcomposite' It should 
be noted, however, that as ryy decreases, the effect sizes for the individual variables 
will be homogeneous more rarely. Finding that they are homogeneous means that all 
the individual variables are equivalently related to the external or criterion variable, 
but each is "predicting" an independent portion of that criterion. The values of the 



154 OPERATIONALIZATION AND MEASUREMENT OF DEPENDENT VARIABLES 

TABLE 5.7 

Factors (m) by which effect sizes (r) increase as a function 
of the number of variables in a composite, and the mean 
intercorrelation among variables 

Number of individual variables (n) 

Mean intercorrelation ryy 2 5 10 

1.00 1.00 1.00 1.00 

.90 1.03 1.04 1.05 

.75 1.07 1.12 1.14 

.50 1.15 1.29 1.35 

.25 1.26 1.58 1.75 

.10 1.35 1.89 2.29 

.00 1.41 2.24 3.16 

20 

1.00 

1.05 

1.15 

1.38 

1.87 

2.63 

4.47 

factor m shown in the body of Table 5.7 need only be multiplied by the typical effect 
size for individual variables (r. d"d I) to yield the effect size based on the composite 

1.~ In IVI ua 

vanable (rcomposite)' 

There are also situations, however, where rcomposite is known and we would like 
to find rindividual' the likely value of the typical effect size for individual variables. We 
readily find this result from the following relationship: 

rcomposite 
rindividual = m (5.5) 

which would be useful in the following type of situation. Investigator A reported a 
correlation of .70 between therapists' gender and perceived nonverbal warmth. Inves­
tigator B feels the r must be too high and tries to replicate, obtaining an r of .40. 
Because both investigators used large samples, the two rs of .70 and .40 differ very 
significantly. Investigator B wonders where A went wrong until B recalls that her own 
operational definition of warmth was based on a single item (i.e., one variable), 
whereas Investigator A used a composite variable made up of 10 variables with an 
average intercorrelation of .25. Using Table 5.7, Investigator B finds m = 1.75, and 
from Equation 5.5 she finds that 

.70 40 
l1ndividual = 1. 7 5 =. , 

a result suggesting that the data of Investigators A and B were not discrepant after 
all. In both cases, the "per single variable effect size" was rindividual = .40. 

Forming Multiple Composites 

So far, our discussion of forming composites has focused on the simple case in which 
the variables are homogeneously related to each other. In such situations, it is reasonable 
to form only a single composite. There are many situations, however, in which the 
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intercorrelations among the dependent variables are not homogeneous, so we would 
want to form two or more composite variables. Consider the intercorrelations among 
the five variables A, B, C, D, and E of Table 5.8. Variables A, B, and C are ratings of 
health care providers' warmth, friendliness, and likability, and variables D and E are 
ratings of the health care providers' self-confidence and professional demeanor. The 
mean intercorrelation of the five variables is ryy = .36 (median = .15), with a standard 
deviation (S) of .37. Closer inspection of the correlation matrix of Part A of Table 5.8, 
however, suggests that combining all five variables would make a poor composite, given 
the large variability of the intercorrelations. Part B of Table 5.8 shows the decomposition 
of the lower left triangle of the correlation matrix into three groupings. The first grouping 
shows that the three intercorrelations among variables A, B, and C range between .70 
and .90. The third grouping shows that the correlation between D and E is similarly 
high (.70). The second grouping in Part B shows that the six correlations among the 
three variables A, B, and C and the two variables D and E range only from .00 to .20. 
These correlations suggest strongly that a composite formed of variables A, B, and C 
would be relatively independent of a composite formed of variables D and E. 

TABLE 5.8 

Illustration of the formation of multiple composite 
variables 

Variables 

B 

C 

A 

B 

C 

D 

E 

A 

.80 

.70 

A. The correlation matrix 

Variables 

A B C D 

1.00 .80 .70 .10 

.80 1.00 .90 .20 

.70 .90 1.00 .10 

.10 .20 .10 1.00 

.00 .10 .00 .70 

B. Decomposition of the lower left triangle 

B 

.90 

D 

E 

A 

.10 

.00 

B 

.20 

.10 

c 

.10 

.00 

C. The intralintermatrix of mean intercorrelations 

Composites 

Composites I n 

.80 .08 

n .08 .70 

E 

.00 

.10 

.00 

.70 

1.00 

D 

E .70 
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The Intra/lntermatrix 

In Table 5.8, Part C represents the intraJintermatrix of mean intercorrelations. The 
mean r of .80 in the upper left cell of the matrix is the intracomposite average for 
Composite I. The r of .70 in the lower right cell of the matrix is the intracomposite 
average for Composite II. The off-diagonal value of .08 is the intercomposite average 
characterizing the level of relationship between the ingredient variables of composites 
with the ingredient variables of other composites. 

The value of an intraJintermatrix of mean (or median) intercorrelations is that it 
tells us at a glance how justified we are in claiming that we have formed clear, defensible 
composites (Rosenthal, 1966). For example, if our intraJintermatrix were as follows: 

I 

II 

I II 

.75 

.60 

.60 

.50 

we would not have a strong case for two composites (rather than one). The reason is 
simply that the typical (mean or median) correlation between composites (.60) is 
noticeably higher than the typical correlation within one of the composites (.50). 

In Table 5.9, Part A shows a much larger correlation matrix, namely, the intercor­
relatioos among 14 variables, which have been reduced to a set of four composite variables 
(1, II, ill, IV). Part B of this table shows the intraJintermatrix. The mean correlations within 
composites (intra) appear on the principal diagonal, and the mean correlations between 
composites (inter) appear off the principal diagonal. For simplicity, we have omitted the 
mean correlations below the diagonal, because they would simply be relistings of mean 
correlations shown above the diagonal. As the number of variables increases, we can get 
help in the construction of composites by using such procedures as clustering, principal 
components analysis, factor analysis, and dimensional analysis (Rosenthal, 1987). 

QUANTIFYING THE CLARITY 
OF COMPOSITES 

Two of the most valuable strategies for quantifying the degree of success in constructing 
clear composite variables are what we term the r method and the g method. We will 
also describe a third alternative (the range-to-midrange-ratio method), which is 
useful when the other methods cannot be used because certain basic ingredients 
required by those methods are unavailable. 

The r Method 

In this method, we compute the point-biserial correlation (i.e., the Pearson r, where 
one of the variables is continuous and the other is dichotomous) between the mean 
(or median) correlations of the intraJintermatrix (this is the continuous variable) with 
their (dichotomously coded) location on the principal diagonal (coded as 1) versus off 
the diagonal (coded as 0) of the intraJintermatrix. The more positive the correlation 
is, the higher (on average) are the intra mean correlations (i.e., those on the diagonal) 
than the inter mean correlations (those off the diagonal). 
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TABLE 5.9 

Illustration of the formation of four composite variables 

Composite I 

Composites a b c d 

a AO .60 .50 

b .50 .40 

c .60 

d 

A. The correlation matrix 

Composite II 

e f 

.30 .25 

.25 .20 

.10 .15 

.30 .20 

Variables 
g h 

.20 

.15 

.20 

.25 

.15 

.20 

.30 

.25 
--------------------------------------------

e 

II f 

.70 .60 

.50 

.30 

.30 

Composite III 

j 

.20 .20 

.25 .15 

.15 .15 

.10 .15 

.30 .25 

.25 .25 

Composite IV 

k m n 

.25 .25 .30 .25 

.10 .30 .25 .30 

.10 .20 .30 .25 

.20 .30 .20 .20 

.35 .10 .20 .25 

.30 .30 .10 .15 

oooooooooooo~ooooooooooooooooooooooooooooooooooooooooo000000000000-'--_______ -+ ____ _ .35 .25 .30 .35 .20 .10 .15 

III 

h 

j 

k 

.30 .40 .50 

.50 .40 

.30 

.15 .30 .25 

.15 .20 .30 

.10 .25 .10 

.25 .10 .15 
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000-'--____ _ 

.35 AS 

IV m .55 

n 

B. The intralintermatrix 

Composites 

I II III IV 

Q§J .21 .18 .26 

II 1·60 I .30 .17 

III IAol .19 

IV ~ 

Table 5.10 shows the 10 mean correlations of the intraiintermatrix of Table 5.9 
(Part B), now listed as "within-composite" (intra) or "between-composite" (inter) 
values. The correlation between the mean correlation and location on the diagonal 
(rather than off the diagonal) is .92. This tells us that the average internal consistency 
of the four composite variables is ~uch greater than the average correlation between 
the ingredient variables of different composites with one another. 

The g Method 

In chapter 2, we described the difference family of effect sizes. We gave as one popular 
example of this family the index known as Hedges's g, which in Equation 2.5 was 
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TABLE 5.10 

Example of rand g methods of quantifying the clarity of 
composite variables from the intraJintermatrix of Table 5.9 
(Part B) 

Mean 

Intracomposite mean (rin,r.) 

On-diagonal coded as I" 

.50 

.60 

.40 

.45 

.49 

.0073b 

Intercomposite mean (rinter) 

Off-diagonal coded as 0" 

.21 

.18 

.26 

.30 

.17 

.19 

.22 

.OO26b 

'The correlation between magnitude of mean correlations and their location on (rather than oft) 
the diagonal is .92. 

bWeight1~ value of S = .066, g = 4.1. 

defined as the difference between two means (M1 - M 2) divided by the square root 
(S) of the pooled unbiased estimate of the popUlation variance (S2). The g method for 
quantifying the clarity of composites takes its name from that index (Hedges, 1981), 
but in this case we define g as 

l1ntra - r mter 
g= 

Saggregated ' 
(5.6) 

that is, the difference between the mean of the mean rs on the diagonal (rintra) and the 
mean of the mean rs off the diagonal (rinter) divided by the weighted S combined from 
the on-diagonal (intra) and off-diagonal (inter) values of r. 

Applying Equation 5.6 to the data of Table 5.10, we find 

= .49 - .22 = 4 1 
g .066 . , 

indicating that the average relationship of variables within a composite to one another 
is just over 4 standard deviations larger than the average relationship of variables 
between composites to one another. There is no firm rule to help us decide when the 
rand g indices are large enough to suggest that our composites show clarity of 
differentiation from one another. Certainly, however, rs of .25 and gs of .50 provide 
suggestive evidence of such clarity (Cohen, 1988). 

The Range-to-Midrange Ratio 

When we have access to an intraiintermatrix, both the r method and the g method are 
extremely informative. If it should happen, however, that we know only the mean of the 



OBSERVATIONS, JUDGMENTS, AND COMPOSITE VARIABLES 159 

intracomposite (on-diagonal) mean rs (i.e., the r intra) and the mean of the intercomposite 
(off-diagonal) mean rs (the rinter)' we cannot use either the r method or the g method. An 
index that can be used in such cases is the range-to-midrange ratio (rmr), defined as 

rmr = I1ntra - I1nter 

[l1ntra ; I1nter r (5.7) 

which divides the difference between the mean of the intracomposite means (rintra) 

and the mean of the intercomposite means (rinter) by the mean of these mean rs. 
Dividing by the mean of these mean rs makes a particular raw difference between 
rintra and rinter relatively more meaningful when the mean of these rs is smaller 
rather than larger. 

Table 5.11 lists rmr values obtained for various values of rintra and rinter' Note 
that when r intra = .90 and rinter = .70, so that r intr• - rinter = .20, the value of rmr = .25. 
When r intra = .50 and rinter = .30, the difference between them is still .20, but the 
value of rmr = .50. For r intra = .30 and rinter = .10, rmr = 1.00, though the absolute 
difference (or range) between r intra and rinter is still .20. No firm guidelines are avail­
able for what value of rmr should be regarded as strong evidence for the clarity of 
differentiation of composite variables. Perhaps any value of .33 or larger (i.e., the 
difference between the intra- and intermeans of mean intercorrelations is at least one 
third of the value of the mean of the intra- and intermean intercorrelations) can be 
regarded as providing fairly good evidence for the clarity of differentiation of the 
composite variables. 

TABLE 5.11 

Range-to-midrange ratios (rmr) for values of mean intracomposite average 
correlations (rintra) and mean intercomposite average correlations (rinter) 

Values of r lDtra 

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 

Values of riDter .00 .00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

.10 .00 .67 1.00 1.20 1.33 1.43 1.50 1.56 1.60 1.64 

.20 .00 .40 .67 .S6 1.00 1.11 1.20 1.27 1.33 

.30 .00 .29 .50 .67 .SO .91 1.00 LOS 

.40 .00 .22 .40 .55 .67 .77 .S6 

.50 .00 .IS .33 .46 .57 .67 

.60 .00 .15 .29 .40 .50 

.70 .00 .13 .25 .35 

.SO .00 .12 .22 

.90 .00 .11 

1.00 .00 

Note: Values below the diagonal of .00 values are negative, indicating no support for the clarity of 
differentiation of the composite variables considered as a set. 



CHAPTER 

6 
QUESTIONNAIRES, 

INTERVIEWS, 
AND 

DIARIES 

CONCERNS ABOUT SELF-REPORT DATA 

When investigators believe that research participants have the language and experi­
ence to describe their own feelings, attitudes, thinking, and behavior, then interviews, 
questionnaires, and self-recorded diaries are frequently used to obtain self-report 
data. One case in which such data are typically encountered is where other relevant 
data exist but are too difficult or costly to obtain (Baldwin, 2000). Suppose we wanted 
to know how many children a woman has, and whether she was single, married, or 
divorced when she had each of the children. We should be able to find the information 
in an assiduous search of institutional records, assuming we know where to look and 
have permission (and the resources) to do so. It would be a lot easier to ask her 
directly. Another situation calling for self-report data is where there is no other way 
to find out something except by asking people to tell us about themselves (Baldwin, 
2000). If you go to a doctor to be treated for pain, you will be asked where it hurts 
and what the pain feels like. In research on pain, there are questionnaires we can use 
to gather specific information about symptoms, such as the duration of pain (momen­
tary, periodic, or constant) and whether it is dull and aching, pulsing and throbbing, 
sharp and stabbing, and so on (Melzack, 1975; Melzack & Katz,1992). If we want to 
know how the subjects in a psychological experiment perceived their role, or what 
they perceived as the cues about what the study was "really" about and what they 
thought we "really" wanted to find out, we might ask them detailed questions about 
their experience (Orne, 1962, 1969). 

160 
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One problem, however, is that respondents in interview and questionnaire stud­
ies may simply not know the right answers to some of the questions they are asked, 
so they can only guess the answers. Baldwin (2000) noted that most mothers can 
probably tell us exactly, or a close approximation of, the birth weight of each of their 
children but cannot tell us the length of their newborn infants with the same degree 
of accuracy. If we need precise information, we would be better advised to search the 
official records that were made at the time of each child's birth. But what if we can­
not access those original records, or if we suspect the data we have are inaccurate? 
Particularly suspect are data that depend on recalling events that were not especially 
momentous when they occurred, because subjects usually find it difficult to recon­
struct such events. In a study in which parents were interviewed as they were leaving 
an HMO immediately after their children had received one or more vaccinations, the 
parents' reports of what had occurred only a few minutes earlier were riddled with 
errors of recall (Willis, Brittingham, Lee, Tourangeau, & Ching, 1999). Furthermore, 
both adults and children can be easily led to "recollect" events that never happened, 
and to describe their "recollections" in persuasive detail (cf. Ceci & Bruck, 1995; 
E. F. Loftus, 2004). 

Another concern is that people are not always open and forthcoming when asked 
personal questions. In chapter 1 we mentioned the construct of need for social approval 
and Crowne and Marlowe's (1964) scale for detecting social desirability biases. We 
will have more to say about social desirability and its control later in this chapter. In 
a study by Esposito et al. (1984), college students were given the Marlowe-Crowne 
Social Desirability Scale (SDS) along with a popular self-report measure of trait and 
state anxiety, curiosity, and anger. Before responding, some of the students (at ran­
dom) were told that their responses would be kept strictly confidential, but other 
students (those in the control group) were not told this. All the respondents were 
essentially "captive subjects" because the questionnaires were administered to entire 
classes, and the treatments were randomly assigned in each class. The results were that 
the magnitude of the positive and negative correlations between the SDS and the self­
report subscales (positive correlations for curiosity and negative correlations for 
anxiety and anger) were noticeably lower in the confidentiality condition than in the 
control condition. Esposito et al. raised the question of whether strict confidentiality 
might sometimes "payoff' not only ethically but also methodologically, by reducing 
the biasing effects of distortions due to socially desirable responding. Interestingly, 
Ceci and Peters (1984) found that faculty advisers' letters of recommendation were 
more critical (i.e., presumably more honest and forthcoming) when the cover forms 
showed that the students had waived their right to inspect the letters. 

Other researchers have found subtle differences in how subjects respond when 
told that data are confidential. Singer, Hippler, and Schwarz (1992) studied the effects 
of confidentiality assurances in $timulating people's willingness to participate in sur­
vey studies. In two studies, both of which used convenience samples of students, the 
tindings were that the more elaborate the assurance of confidentiality was, the less 
willing the students were to agree to take part in later survey interviews. Singer et al. 
speculated that perhaps the more elaborate assurances of confidentiality may have 
raised expectations that the later survey interviews would touch on sensitive, highly 
personal information. Frey (1986) used a confidentiality reminder in a telephone survey 
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("Now, I need to know some information about you for statistical purposes only. 
Remember, your responses are confidential.") Half the people contacted were given 
both sentences above, and the others were given the first sentence but not the confi­
dentiality reminder. The confidentiality reminder was associated with higher item 
nonresponse rates, as in Singer et al. 's (1992) finding. 

A third concern was raised by R. E. Nisbett and Wilson (1977), who argued that 
people cannot dispassionately or realistically look within themselves or have a clear 
sense of themselves apart from the immediate situation. This interesting argument is 
reminiscent of an old criticism of the method of introspection, which goes back to the 
earliest days of psychology as an empirical science (Bakan, 1967; Danziger, 1988). 
As David Bakan (1967) cautioned, "A characteristic of good science is that it is ever 
alert to the possibility of the commission of systematic types of errors" (p. 101). Bakan 
added that, although one of the major criticisms of introspection (and, by implication, 
the method of self-report) is that such data are untrustworthy, it is possible for intro­
spective observations to be more trustworthy than sensory observations. Sensory data 
are subject to illusion (recall the example of "N rays" in the previous chapter), and 
sense organs may also be defective. With introspection, Bakan concluded, researchers 
are at least aware of the possible error tendencies and can take the precaution of using 
more than one method of data collection. More recently, Dunning, Heath, and Suls 
(2004) reviewed an extensive body of research on the validity of self-assessment, and 
concluded that people's self-ratings of skill and actual performance, their impressions 
about their own health, and so on are often quite flawed. 

Still another old concern about self-report data, particularly when they are based 
on the use of rating scales, has been discussed prominently by Bartoshuk (2000, 2002; 
Bartoshuk, Duffy, Fast, Green, & Prutkin, 2001). Her thesis is that one individual's 
self-reported rating of the intensity of a sensation or experience may not be equivalent 
to another person's rating even if they both give the same numerical response. Suppose 
that on a 10-point scale of appetite level, you rate yourself as 1 ("not at all hungry"). 
Is your 1 really equivalent to someone else's rating of 1 on the same scale? Defend­
ing the use of self-report data, Norwick et al. (2002) responded that when large 
numbers of subjects are randomly assigned to groups, it does not matter in the over­
all picture that one subject's rating of 1 may be different from another subject's rating 
of 1, because these random differences should cancel out. Second, as Bartoshuk stated 
in an interview (Goode, 2001), if we use the same scale to find out how the person 
may have changed over time, we have a baseline of the person's original rating in a 
repeated-measures design. Third, Bartoshuk (2000) emphasized that using multiple 
methods to converge on conclusions is another way of tempering doubts. In her own 
research, she has often used a scaling method we described in the previous chapter, 
magnitude scaling, as a way of quantifying participants' perceptions of sensory stim­
uli and identifying the special sensibilities of different individuals. 

We will return to some of these issues and concerns as we describe the use of 
interviews, questionnaires, and self-recorded diaries. Only the interview is character­
ized by a continuing oral exchange between the researcher and the subject, though a 
questionnaire is sometimes used in an interview and there is an exchange as the 
researcher explains the purpose of the questionnaire and how the subjects are to 
respond. We will also discuss variants of these popular methods. Many researchers 
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frequently combine interviews and questionnaires in the same study, For example, it 
may be useful to present some items outside an interview so that the subjects can 
read them several times. It can also be informative to use interviewing to supplement 
a questionnaire when the nature of the questions is sensitive and personal contact is 
needed to elicit a full, frank response (Gorden, 1969). On the other hand, Tourangeau 
and Smith (1998) found that women reported higher numbers of sex partners when 
self-administered questionnaires were used. Schaeffer (2002) interpreted this and other 
relevant findings as implying that it is the privacy of responding that encourages 
people to be frank and forthcoming when asked to report sensitive information. 

OPEN-ENDED VERSUS STRUCTURED ITEMS 

In the previous chapter we mentioned the use of open-ended interviews as an exam­
ple of a qualitative research method. Whether to use open-ended or structured items 
is a basic concern in interview and questionnaire work. Generally, open-ended items 
offer the respondents a chance to expand on their answers and spontaneously express 
feelings, motives, or behavior (Campbell, 1950). An example of an open-ended item 
is "Tell me, in your own words, how you felt the day you graduated from high 
school." In contrast to open-ended items, structured items (also described as fixed­
response or closed items) give clear-cut response options, like the following: 

How would you describe your study habits when you were a senior in high school 
and getting ready to graduate? 

I studied very hard. 

I studied more, than the average student. 

I studied about like the average student. 

I studied somewhat less than the average student. 

__ I didn't study at all. 

In the view of most experienced researchers, structured questions produce more 
relevant and comparable responses, whereas open-ended questions produce fuller and 
"deeper" responses (Bradburn, 1983). The researcher who uses a structured format is 
looking for responses in which subjects select a particular choice. The researcher who 
uses an open-ended format is looking for the nuances of meaning that may not be 
revealed when the response options are more limited. In a review of methodological 
studies, it was concluded that, for nonthreatening topics, one format has no overall 
superiority over another; for threatening topics, however, open-ended items tend to 
elicit higher levels of reporting by subjects (Sudman & Bradburn, 1974). That is, open­
ended questions generally produce more. self-revelations (Dohrenwend, 1965). But we 
still need some degree of standardization if we want to collect comparable data across 
all the respondents. We can accomplish that goal by using a semistructured interview, 
that is, a kind of hybrid instrument that is often used in professional survey research 
and the so-called "guided conversation of the ethnographer" (Massey, 2000, p. 148). 

Researchers who use open-ended interviews generally rely on tape- or digital­
recording devices to capture the entire reply verbatim, so the interviewer is free to 



164 OPERATIONALIZATION AND MEASUREMENT OF DEPENDENT VARIABLES 

attend to the direction of specific questions and to visual details and impressions that 
can be filled in later. If this procedure is used, permission should be asked of the 
subject to record his or her replies. Recording devices have some drawbacks, however: 
They can break, make noise, and interrupt the interview, and they make some subjects 
anxious. A further problem is that the qualitative responses obtained may be long and 
rambling, providing little information of interest to the researcher. Because it is often 
necessary to fragment the responses into thematic (codable) categories, having com­
plete records of entire responses lends itself to computer-assisted analytic strategies 
(Seale, 2002). But even if the analysis of qualitative information is done by hand, 
there are strategies and procedures for thematic analyses of personal narratives, oral 
history interviews, and so on (e.g., Czarniawska, 1997, 1998, 1999; DeVault, 1999; 
Gubrium & Holstein, 2002; Riessman, 1993). 

For some purposes the researcher may have no choice but to use a structured 
format. In large-scale interview studies that are not well funded, it would be too costly 
to employ highly experienced interviewers, but the personal prejudices of neophyte 
interviewers may bias the results (Pareek & Rao, 1980). Summarizing a number of 
studies of interviewer competence and bias, Hyman et al. (1954) concluded that more 
experienced interviewers were somewhat more competent and less likely to bias their 
results, but these authors then tempered that conclusion by noting that the interviewers' 
selective retention might also have been operating. That is, the better interviewers may 
have had greater longevity with the research organization, so experience may have 
been the dependent rather than the independent variable. Other experts disagree with 
even the modest conclusion drawn by Hyman et al. For example, Cantril (1944) con­
tended that training does not make much difference in the quality of the data obtained, 
and Eckler and Hurwitz (1958) reported that census interviewers showed no decrease 
in net errors, for at least certain types of questions, when additional training was 
provided. 

The interview is an oral exchange, and as in any two-way communication, the 
process can be improved or inhibited by human complexities. Communications are 
often guarded when the topics touch on sensitive issues, the most apprehensive research 
subjects preferring to "look good" rather than to give more revealing answers (Rosenberg, 
1969). One study found that white respondents interviewed over the phone by a black 
interviewer gave more pro-black responses than did white respondents interviewed by 
a white interviewer (Cotter, Cohen, & Coulter, 1982). Other early studies also imply 
the interactive nature of the skin color of the investigator and of the subjects. In an 
interview study during World War II, Hyman et al. (1954), found that white interviewers 
received more guarded responses from their black respondents than did black inter­
viewers. Generally, subjects provide only the information they want to share (Downs, 
Smeyak, & Martin, 1980), and neophyte interviewers may depart from the instructions 
and volunteer their own feedback to draw the sensitive material out. 

Also characteristic of an oral exchange of questions and answers is that certain 
cognitive and linguistic processes may affect the degree to which the respondents can 
figure out how some questions specifically apply to their particular situations (Graesser & 
Franklin, 1990). It is like shaking hands, Schober and Conrad (2001) suggested, in 
that one person cannot begin the handshake until the other person has extended a 
hand, and the process continues only as long as each person is engaged in just the 
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right manner. In other words, the handshake is a coordinated action in the same way 
that a successful interview requires a collaborative interaction. With this idea in mind, 
these investigators have experimented with a conversational interviewing method in 
which the language of certain questions is not rigidly standardized, and the interviewer 
is given some flexibility in rephrasing questions to ensure that they make sense to the 
respondent (Conrad & Schober, 2000; Schober, 1999). The downside is that much 
more time is required to complete flexible interviews, and the interviewers must be 
well trained and perspicacious. But the payoff is that this type of interviewing seems 
to improve the quality of the information obtained when the questions involve cognitive 
or linguistic complexities. 

CRITICAL INCIDENT TECHNIQUE 

To avoid vague, rambling, irrelevant responses in open-ended interviews, John Flanagan 
( 1954) developed a general approach to focusing questions that he called the critical 
incident technique. The idea for this approach grew out of research to identify the 
reasons that a thousand pilot candidates washed out of flight training schools in 1941. 
Information from the proceedings of a number of elimination boards revealed only 
cliches and stereotypes such as "poor judgment" or "insufficient progress." Other 
research was designed to identify specific incidents by using open-ended interviews, 
but asking very focused questions. Out of all this research, Flanagan's critical incident 
technique took root. Basically, it involves having the respondent describe an observ­
able action, the purpose of which is fairly clear to the respondent, and the conse­
quences sufficiently definite to leave little doubt about its effects. Nonetheless, the 
critical incident techni'l.ue is considered open-ended because it allows a range of 
answers not specifically limited by a given range of responses. 

As described by Flanagan (1954), a typical interview begins with the interviewer 
explaining to the respondent the purpose of the study (e.g., "We are making a study 
of [specific activity] and we believe you are especially well qualified to tell us about 
this activity") and then explaining what kind of data are desired by the interviewer 
("What would you say is the primary purpose of [specific activity]?" and "How would 
you summarize the general aim of this activity?"). Having thus established the nature 
and objective of the activity, the critical incident technique begins in earnest by having 
the respondent focus on a specific happening. Suppose we want critical incidents 
about workplace situations involving subordinates whose helpful actions have increased 
production. A series of questions used to collect effective critical incidents might look 
like this: 

Think of the last time you saw one of your subordinates do something that was very 
helpful to your group in meeting their production schedule. (The interviewer then pauses 
until the respondent indicates that he or she has such an incident in mind.) Did this 
person's action result in an increase in production of as much as one percent for that 
day?-or some similar period. (If the respondent answers "no," then the interviewer 
coaxes the respondent again by saying "I wonder if you could think of the last time that 
someone did something that did have this much of an effect in increasing production. " 
When the respondent indicates he or she has such a situation in mind, the interviewer 
continues, patiently allowing the respondent to give a complete response to each question.) 
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What circumstances led up to this incident? What exactly did this person do that was so 
helpful at that time? Why was this so helpful in getting your group's job done? When 
did this incident occur? What was the person's job? How long had he (she) been on this 
job? How old is he (she)? (Flanagan, 1954, p. 342) 

The critical incident technique was developed to serve not as a hypothesis-testing 
method, but as an exploratory tool to identify actual incidents that could then be incor­
porated into questionnaires. For example, researchers interested in developing question­
naires to study power tactics began in some cases by collecting actual tactics that were 
reportedly used by people to get their way (Falbo, 1977; Kipnis, 1976, 1984). As an 
illustration, Fung et al. (1987) used the critical incident technique in a study to identify 
specific instances in which people attempted to influence or persuade someone by act­
ing negatively or pretending to act negatively as a cover for the actor's true feelings 
(called a "synthetically malevolent action"). They also collected actual incidents in 
which people attempted to influence or persuade someone by acting positively (or 
pretending to act positively) but not according to their true feeling (called a "syn­
thetically benevolent action"). Other data were also collected concerning the nature of 
the person who was the target of the action, and the incidents were then content-analyzed 
for the particular tactics used by these subjects (threat, refusal to help, denial, flattery 
and s~pport, modeling, reasoning, etc.). The general finding was that synthetically 
benevolent power tactics tended to be targeted on higher status, more powerful others, 
whereas synthetically malevolent power tactics were targeted on lower status, less 
powerful others. Synthetically benevolent tactics involved flattery, modeling, and pre­
tending; synthetically malevolent tactics involved threat, refusal, and denial. 

More recently, Ewart and his associates have employed a variant of the critical 
incident technique in their development of a brief interview to measure stress-coping 
capabilities and vulnerabilities to stress-related illnesses (e.g., Ewart, Jorgensen, Suchday, 
Chen, & Matthews, 2002; Ewart & Kolodner, 1991). In other research in organizational 
psychology, the critical incident technique was used with company managers in the 
United States and India who were interviewed as part of an investigation of how 
organizations dealt with harmful or potentially harmful rumors (DiFonzo, Bordia, & Rosnow, 
1994). After emphasizing the confidentiality of the taped interviews, the respondents 
were asked a long list of probing questions, some of which were: 

Describe the rumor and the situation in which it occurred. (Instructions to 
the interviewer were to probe for when the rumor occurred.) 

What effects did the rumor have? (Instructions were to probe for measurable 
effects such as product sales, number of phone calls.) 

What actions precisely did you take in responding to the rumor? 

Could this rumor have been anticipated and/or prevented. If so, how? If not, 
why not? 

How would you deal with a similar rumor in the future? 

The results were used to identify the circumstances in which specific rumor-control 
strategies had worked or failed. DiFonzo et al. inferred that success in dealing with these 
particular rumors was generally consistent with recent theorizing on this question. 
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In still other work in organizational psychology, Hollander and his associates 
used the critical incident technique to sketch profiles of poor management (Elgie, 
Hollander, & Rice, 1988; Hollander, 1992; Kelly, Julian, & Hollander, 1992). 

STAGES IN DEVELOPING INTERVIEW 
PROTOCOLS 

The overall plan, specific design, and structure of an interview are sometimes referred 
to as its protocol; the set of questions and instructions is called the interview schedule. 
There are usually four steps in developing protocols and interview schedules: (a) decid­
ing on the objective, (b) outlining a plan or a design for acquiring the data, (c) structuring 
the interview schedule, and (d) testing and revising the specific questions. We will 
examine each of these in tum. 

The first step is to spell out the objectives of the interview. Are we interested 
in specific hypotheses or research questions? What kind of data will we need to 
address these hypotheses or questions? What kinds of participants should produce 
the most relevant responses? Suppose the researcher is operating on the assumption 
that certain information tends to flow from the mass media to local opinion leaders, 
and from them to the popUlation at large, or to rank-and-file members of specified 
groups or organizations. This traditional idea, called the two-step flow process in clas­
sic research in the field of communication (Katz & Lazarsfeld, 1955; Lazarsfeld, 
Berelson, & Gaudet, 1944), implies that we need to identify the opinion leaders in 
question. We must have patience, because it might not be immediately evident who 
the opinion leaders are; we may need a long series of trial interviews to find the type 
of persons we want to interview in depth. 

One pilot strategy· for developing relevant items is to interview people in a focus 
group (Morgan, 1996, 1997). This is a loosely defined procedure that takes on many 
different forms, but the general idea is to lead a group discussion that concentrates 
on particular issues or a basic question or problem. The focus group procedure got 
its impetus in marketing research, where it was used to figure out ways to brand and 
market products in highly competitive situations. Thus, instead of interviewing indi­
viduals, the focus group strategy takes a set of questions to a group as a whole so 
they can explore and dissect some general issues. The questions are posed by a skilled 
moderator, who guides the discussion, shifting interactions back and forth among the 
discussants. Depending on the composition of the focus group, the verbal abilities and 
talent of the moderator to keep the discussion on the topic, and the general question 
of interest, creative leads for items may be churned up. Because focus groups can be 
costly, and the results may not be generalizable beyond the groups interviewed, most 
researchers prefer to develop their ideas in traditional ways, that is, by simply thinking 
about the problem, reading the relevant literature, paying attention to everyday 
behavior, and consulting with colleagues or advisers. 

The second step in developing interview protocols is to devise a strategy for 
acquiring the data to address the hypotheses or research questions. This plan includes 
drafting relevant items, specifying how the responses will be coded or analyzed, and 
deciding how the interviewers will be recruited. There are ethical issues to be 
considered as well, for example, the respondents' right not to disclose information 



168 OPERATIONALIZATION AND MEASUREMENT OF DEPENDENT VARIABLES 

they would feel is too personal or private (Bersoff & Bersoff, 2000). If the interviewers 
are undergraduate students or untrained graduate students, the clinical nature of the 
information (e.g., information about sexuality or traumatic life events) raises ethical 
concerns about the potential for abuse and misinterpretation; there is also the issue of 
competence and what such an interviewer "will do if faced with the disclosure of 
conduct or a frame of mind that is potentially injurious to the participant, injurious 
to others, and/or illegal" (Bersoff & Bersoff, 2000, p. 15). If there are distinctive 
respondents-for example, children and adolescents, older people, or the ill-special 
issues must be considered (see, e.g., Gubrium & Holstein, 2002). For instance, because 
of the limited vocabulary and verbal facility of children, care must be taken to ensure 
that the questions and answers are within their cognitive and intellectual grasp. The 
use of simple, conversational language is imperative. Furthermore, children may think 
of the interview as a "test" and want to please the interviewer by responding in ways 
they feel that adults want or expect (Blair, 2000). 

There are ways of trying to improve the accuracy of self-reported information, 
which we will turn to shortly. But there is, of course, no guaranteed method of inter­
viewing children or any other special population that will ensure perfectly valid data. 
Blair (2000) described how this problem was addressed by the use of not one strategy, 
but three different interview protocols in a study of foods eaten by children. One might 
think that, instead of asking the children, we could ask their parents what the children 
ate. For example, if we wanted to know what the children ate for lunch, we could ask 
their parents what they packed for the children. The problem is that some children 
may not eat what their parents gave them, and unbeknownst to their parents, children 
frequently discover other tempting delights. Blair called his three protocols Open, 
Meals, and Locations. In the Open protocol, the questions were completely unstruc­
tured; the child was asked to report all of the foods eaten or drank on the previous 
day. In the Meals protocol, the questions were more structured, asking things like 
"What was the first meal that you had?" and "Did you eat anything prior to that 
meal?" and "What was the next meal you had?" In the Locations phase, the questions 
were structured similarly to the second phase but were asked in chronological order 
about locations and activities from the previous days. The accuracy of the responses 
was increased by convergence on the information from these different vantage points, 
and interviews with parents were a further means of triangulating the data. The over­
all design required patience to implement, but the advantage was that it provided 
checks on the reliability of the information obtained. 

The third step in developing an interview protocol is structuring the interview 
schedule, which, in turn, involves several further considerations. One of these is to 
check that each item is relevant to the working hypotheses, exploratory aims, or key 
topics of the investigation. Early in this process it may be informative to meet with 
small groups of participants and go over some of the preliminary questions with the 
objective of having these people tell us their perceptions and reactions (Singleton & 
Straits, 2002, p. 63). We want to make certain that the items address our theoretical 
objectives and also that they meet quality standards. Thus, the interview schedule may 
require an Occam's razor that cuts away superfluous or redundant items, a reworking 
of ambiguously worded questions, and assurance that the interviews will not be unnec­
essarily time-consuming. Interviews that are too long produce boredom, as concentration 
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begins to wane and the quality of the data is diminished. Pareek and Rao (1980) sug­
gested that 90 minutes is the outermost limit before boredom usually sets in, but in 
some distinct populations (children, for example), the interviews may need to be 
considerably shorter, and the format may need to be varied to maintain the interest 
of the respondents. 

One way to vary the format-which will also encourage more relevant replies 
and make it easier to code the data and analyze the results-is to provide the partici­
pants with specified ranges of responses. Suppose we are interested in having college 
students tell us the satisfaction they receive from some activities of interest to them. 
Instead of reading them a list of activities (so they must remember the list), or having 
them free-associate (a likely source of irrelevant data), we could say something like 
"I'm now going to show you a list of activities, and I'd like you to tell me in which 
single area you find your greatest satisfaction. Remember, I want the one area most 
satisfying to you as a college student." The subject is then shown a list including, for 
example, course work, self-discovery, "bull sessions," social life, organized extracur­
ricular activities, getting acquainted, and close friendships. Or suppose we are inter­
ested in salary information; instead of asking for an exact amount (which most people 
will be reluctant to tell us), we can show a list of ranges of income levels and ask 
the person to identify the range that is relevant. Even when given a range of responses, 
however, some individuals may end up making false negative reports (a failure to 
report information) because of true memory lapses or because of carelessness or 
unwillingness to tell us certain things, or because they do not want to make the effort 
to cooperate (Cannell, Miller, & Oksenberg, 1981). 

We also need to decide on the best sequence of items. The research literature 
does not provide any clear-cut or consistent answers about where to put particular 
items, but there may sometimes be a logical error (noted in the previous chapter) in 
that respondents are apt to give similar answers to related items when they are con­
tiguous (Bishop, Oldendick, & Tuchfarber, 1982). Separating them by interposing 
neutral items may help a little but may still not eliminate that effect, because the 
answers should be relatively similar (Schuman, Kalton, & Ludwig, 1983). Broadly 
speaking, it appears that specific questions are affected less than general questions by 
what preceded them (Bradburn, 1982). One point on which there is some agreement 
is that, when sensitive topics are to be discussed, they are usually better placed at the 
end of the interview. Questions about an adult's age, education, and income may seem 
like an invasion of privacy to some interviewees and, when asked at the beginning 
of an interview, may hamper the establishment of trust. But even when they are asked 
at the end of the interview, it may be beneficial to preface such items with a reassuring 
statement. In one study, the interviewer prefaced them by informing the subjects that 
the information was needed to find out how accurately the interview sample repre­
sented census estimates of the area population (which was true). As an unusually blunt 
afterthought, he added, "Some of the questions may seem like an invasion of your 
privacy, so if you'd rather not answer any of the questions, just tell me it's none of 
my business" (C. Smith, 1980). 

Another consideration at this stage is to establish the best wording of items to 
ensure that all questions will be readily understood in equivalent ways by all the 
interviewees. During the pilot stage (the next step), there will be an opportunity to 
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find out what jargon and expressions are inhibitors or facilitators of communication 
in the circumstances. Of special importance is the phrasing of the opening item, 
because variations in wording can affect how the respondents will interpret later ques­
tions (Bradburn, 1982). The opening item should be clearly connected with the expla­
nation of the interview, so that the interviewee knows immediately that the researcher 
is pursuing the stated purpose. Incidentally, research evidence suggests that disclosing 
very little about the interview in the introduction has no methodological benefits in 
reducing refusals or bias, or in improving rapport or communication (Sobal, 1982). 
This issue is probably irrelevant in many research interviews because of the require­
ments of informed consent. But the golden rule here is that we want to be open and 
honest with the subjects, just as we want them to be forthcoming in their responses. 
Interestingly, disclosing the length of the interview may have a cost in terms of 
refusals. In one study, it was found that telling the potential respondents that the 
interview would last 20 minutes resulted in more refusals than telling them it would 
last "a few minutes" (Sobal, 1982). 

The final step in this process is to pilot the interview schedule and make mod­
ifications wherever necessary. Esposito et al. (1992) suggested using a focus group or 
a questionnaire in a debriefing session when pretesting survey items. Assuming that 
pilot interviews are conducted face-to-face, it is important that the interviewers listen 
anal}!tically to the subjects' responses (Downs, Smeyak, & Martin, 1980). Skilled 
interviewers do not jump in and interrupt before an idea is sufficiently developed by 
the respondent; they are patient, get the main ideas, hear the facts, make valid infer­
ences, hear details, and demonstrate other good listening skills (Weaver, 1972). Having 
pretested and polished the interview schedule, selected the potential interviewees, and 
trained the interviewers, the researcher can begin the actual interviews. One related 
point, however, is whether the training should consist of teaching the interviewers to 
be neutral (also called nondirective) or teaching them to attempt to motivate the 
respondents. Motivational procedures (e.g., in the form of selective feedback by a 
skilled interviewer) are thought by some experienced interviewers to be an effective 
means of promoting good respondent behavior. Both positive and negative feedback, 
if properly used, can facilitate good performance. Examples of positive feedback 
would be statements such as "Uh-huh. I see. This is the kind of information we want"; 
"Thank you. You've mentioned __ things"; "Thank you. We appreciate your frank­
ness"; and "Uh-huh. We are interested in details like these." Examples of negative 
feedback are "You answered that quickly"; "Sometimes it's easy to forget all the 
things you felt you noticed here. Could you think about it again?"; and "That's only 
__ things" (Cannell, Miller, & Oksenberg, 1981). 

Recently, other innovative ideas have been put forward about some ways to 
coax out the most accurate responses when the interview questions touch on highly 
sensitive, possibly illegal, behaviors (e.g., drug using). Often, these interviews are 
conducted in the respondents' homes, and others may be present. In research by Turner 
et al. (1998), a new way to address this problem was successfully used. Instead of 
having to express their answers to sensitive questions out loud, the respondents were 
allowed to essentially interview themselves and answer by using audioenhanced com­
puter methodology. The interviewer sets up a laptop computer on which all or part 
of the intervie,w questions are presented (e.g., just the most sensitive questions); the 
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audio part is useful because of some subjects' limited literacy, so questions can be 
read to them as well as shown on the screen. This method is a way of preserving the 
privacy of the subjects' answers by depersonalizing and standardizing the interview, 
reducing the effects of an interviewer's race, gender, sex, body language, intonation, 
speed of delivery, and so on (Bloom, 1998). 

RESEARCH INTERVIEWS BY TELEPHONE 

Beginning in the 1960s, various changes in society led many survey researchers to turn 
to telephone interviews and mail questionnaires. Among the changes contributing to 
that shift were (a) the increased costs of labor-intensive face-to-face interviews; (b) a 
decrease in the pool of married women seeking part-time employment (a large source 
of interviewers); (c) rising urban crime rates and fewer people being at home during 
the daytime; (d) the development of random-digit dialing, allowing the representative 
sampling of telephone households; and (e) the invention of computer-assisted methods 
in which questions are flashed to the interviewer on a screen and the interviewer then 
keys in the responses for computer scoring (Rossi, Wright, & Anderson, 1983). As a 
consequence, telephone interviewing has swept the survey industry in recent years and 
is now the dominant approach (Shuy, 2002; Singleton & Straits, 2002). 

There is considerable speculation about the relative merits and restrictions of 
face-to-face and telephone interviewing, but few data have been collected comparing 
these two strategies. Based on the available data and conjecture, Shuy (2002) con­
cluded that among the relative advantages of the telephone interview are, generally 
speaking, that it is less expensive to implement; that the situational variables may be 
easier to control; and tlIat the data are easier to code and quantify (particularly when 
computerized methodology is used). Typically, the methodology of telephone inter­
views is more uniform and standardized than that of face-to-face interviews because 
the telephone interviewers are merely reading questions from a computer screen. What 
telephone interviews lack are the advantages of physical presence, including an oppor­
tunity for the interviewer to perceive and react to facial expressions, gestures, and 
other clues to the respondent's state of mind (confusion, reluctance to answer, dis­
comfort, etc.), which enable the interviewer to reframe a question in order to avoid a 
no-answer response (Shuy, 2002). Other limitations of telephone interviews are that 
they are restricted to households in which people answer their telephones (i.e., instead 
of having an answering machine constantly on duty), and that visual aids cannot be 
used as supplements unless they are mailed out in advance of the call. 

Generally speaking, the same procedures are followed in developing interview 
schedules and training interviewers whether telephone or face-to-face interviewing is 
used. One difference, however, is that telephone interviewers have less time to estab­
lish rapport: The person on the other end can always hang up without listening to the 
introduction. If the interviewer fails to enunciate clearly or conveys an annoying 
attitude, the interview is bound to be counterproductive. Various strategies have been 
used to impress the respondents with the seriousness of the telephone interview and 
to motivate them to cooperate. Assuming the respondent is willing to listen (and busy 
people may not want to do so), the interviewer can explain the important goal of the 
research and allude to it again at some other juncture in the interview. We will have 



172 OPERATIONALIZATION AND MEASUREMENT OF DEPENDENT VARIABLES 

more to say about response rates when we turn to survey sampling procedures in 
chapter 9, but simply getting people to respond to survey interviews is a knotty prob­
lem for researchers. Particularly as levels of responding and cooperation have declined 
in our society (e.g., T. W. Smith, 1995; Steeh, 1981), the threat to the generalizability 
of vital data looms ever larger (Dillman, Singer, Clark, & Treat, 1996). 

DEVELOPING RESEARCH 
QUESTIONNAIRES 

Questionnaires are among the most widely used self-report methods of data collection 
and may be incorporated into an interview schedule either as noted previously (i.e., 
presented on a laptop computer) or by giving the respondents a subset of questions 
in written form or a list of items to be read or checked off. As in the writing of an 
interview schedule, the initial steps in the development of a written or computer­
administered questionnaire are exploratory, such as consulting with key informants 
(Oppenheim, 1966). Pilot work is also needed in devising the final wording of items, 
which can take several forms to elicit specific responses, for example, yes-no items 
or acceptable-unacceptable items. Fill-in-the-blank is another form, useful when spe­
cific''responses are sought. Of course, these structured forms are effective only if the 
material to be covered can be simplified to this extent. 

Piloting enables the researcher to determine whether the items are worded prop­
erly, for example, whether terms like approve and like (or disapprove and dislike) are 
being used as synonyms or whether there are differences in implication. Suppose we 
want to study workers' perceptions of the quality of a manager's performance, but we 
phrase the item in the following way: "How do you feel about the manager? Do you 
like him __ , or do you dislike him __ (Check one only)?" The item is quite 
useless because it does not distinguish between liking and approving. It is possible, 
for example, for people to like someone personally without approving of the person's 
managerial ability (Bradburn, 1982). Thus, we need to have more than one item to 
zero in on these different variables, and we need to articulate the items in such a way 
that the respondents are not confused by questions that are double-edged or imprecise 
or too vague to elicit the information we seek. 

However, we must also be sure that the way we word and present the items 
does not lead the respondent to give an unrealistically narrow answer. A poor question 
produces a very narrow range of responses or is misunderstood by the respondents. 
Take the following hypothetical item from a political survey: "Do you approve of the 
way the mayor is handling his duties? __ Yes; __ No." One may approve of 
the way the mayor handled the "school crisis" but not the "snow removal crisis" or 
may disapprove of the way the mayor handled the "threat by sanitation workers to 
strike" but not the "impending tax increase." Once again, several different items are 
needed to get at the various issues on which we want an opinion, and all those issues 
need to be spelled out to prevent any misunderstanding on the part of respondents. 
Suppose the "school crisis" and the "sanitation workers' threat" both involved union 
negotiations and confrontations, but the former situation was resolved without a strike 
and the latter involved a protracted strike. We need a separate question, or set of 
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questions, regarding each situation and whether the respondent approved or disap­
proved of the mayor's handling of it. 

We must also avoid a leading question that produces a biased answer (known 
as push polling), Take the question "Do you agree that the mayor has an annoying, 
confrontational style? __ Yes; __ No," The way the question is phrased pushes 
the respondents to be overly negative or critical of the mayor. In coming up with an 
alternative way to phrase the question, we want to be sure that the new item is not 
worded so as to produce another meaningless answer: "Do you agree with the mayor's 
philosophy of government? __ Yes; __ No." If someone replied "yes" (or 
answered "no"), what would that answer really tell us? We need to do some probing 
to get the kind of information we consider meaningful. Problems like these can 
usually be identified when the questionnaire is piloted and can be easily corrected by 
a rewording of the items or by the use of a set of probing questions instead of a 
single item. 

The issue of whether to use open-ended or more structured items, or a combina­
tion of both, can also be explored in pilot work. Converse and Presser (1986, p. 52) 
suggested using the following exploratory questions to help identify trouble areas 
when pretesting the items: "What did the whole question mean to you?" "What was 
it you had in mind when you said __ ?" "Consider the same question this way, and 
tell what you think of it: __ " "You said __ , but would you feel differently if I 
said __ ?" Frank, insightful replies to exploratory questions will help the researcher 
rewrite items. 

As noted, the chief advantage of open-ended items is the flexibility they provide 
for the respondents to let their thoughts roam freely and spontaneously. However, 
although free-response questionnaires are relatively easy to construct, many subjects 
find them difficult or too time-consuming to respond to in writing (Oppenheim, 1966). 
One strategy is to use fixed-response (i.e., structured) items but add one or two open­
ended questions at the end. Not only do structured items require less time to answer, 
but the answers are also easier to code and analyze statistically. On the other hand, 
they leave no room for spontaneity and expressiveness. The respondents may feel that 
the fixed-response format forces them to choose between alternatives, none of which 
are exactly the best ones. Converse and Presser (1986) suggested that open-ended 
questions be used to measure the salience of certain behavior and to capture modes 
of expression. In the previous chapter, we mentioned the use of content analysis; 
software is available for the analysis of open-ended questionnaire and interview con­
tent (Seale, 2002). 

Another interesting strategy is the use of a funnel sequence of questions, in 
which very general questions ultimately narrow down to more specific ones. Some 
researchers like to use many open-ended questions at the start or exploratory stage of 
a research project and then, once there is a clear direction to the research and specific 
issues to be addressed, to use more focused, fixed-response items. Whatever strategy 
is adopted, it is usually prudent to ask several questions on a topic, not only for sta­
tistical reasons, but because we want to converge on the required information. Each 
item may be cause for specific concern, but the overall results should converge on a 
specific conclusion. And, of course, the instrument should be tested before it is used 
in the research. 
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It is also important that the information elicited be a reflection of what the 
respondents really feel or think, not just an expedient or impromptu response. As a 
rule, however, people have not thought very much about most issues that do not affect 
them directly, and their replies may reflect only a superficial feeling or understanding. 
In survey research, investigators often ask the respondents how they feel about such 
and such (e.g., "How deeply do you feel about it?" or "How strongly do you feel 
about the opinion you've expressed?") and, in this way, attempt to determine whether 
the respondents truly believe what they have articulated or indicated in some other 
way (Labaw, 1980). There is another side to this issue, which is related to the idea 
of response sets (discussed in the previous chapter), particularly to the control of 
social desirability and acquiescent response sets. 

DEFENSIVENESS, INCONSISTENCY, 
AND YEA-SAYING 

Faking and Inconsistency 

Earlier in this chapter we referred again to the classic research of Crowne and 
Marlowe (1964) on social desirability bias, discussed in detail in chapter 1. Other 
rese,archers have also investigated the influence of the social desirability set on the 
responses to self-report personality inventories. When appreciable correlations are 
obtained between scores on a social desirability scale and responses on another self­
report inventory, this result is often interpreted as implying a tendency on the part 
of respondents to present themselves in a more favorable light on the latter instru­
ment. We mentioned Esposito et aI.'s (1984) study using this paradigm, and in an 
earlier study by Rozynko (1959), it was found that psychiatric patients who scored 
high on a measure of social desirability produced sentence completions that were 
also high in socially desirable content. In fact, it has long been assumed that scores 
on self-report personality tests are often influenced by factors other than the manifest 
content of the items. Just because a person responds "no" to the statement "Once in 
a while I think of things too bad to talk about" does not mean that the person's 
thoughts are indeed pure. 

Previously, we mentioned the use of audioenhanced computer technology to 
encourage frank responding (Bloom 1998; Turner et aI., 1998). An earlier method 
employed successfully in survey research is the randomized response technique 
(S. L. Warner, 1965). In this approach, an attempt is made to reduce the likelihood 
of evasive or dishonest responding by guaranteeing the confidentiality of the 
responses. The technique works this way: The subject uses a randomizing method 
(such as flipping a coin) to select how to respond to a sensitive item. Suppose the 
item asks, "Have you ever used cocaine?" The subject is told to flip the coin out of 
the researcher's sight and to respond "yes" if it lands heads and to respond truthfully 
(i.e., to answer the question "yes" or "no") if it lands tails. There is no possible 
way for the researcher to know how each particular subject answered. However, by 
knowing that 50 percent of the subjects are expected to get heads to respond "yes," 
the researcher can estimate the proportion who actually said they had sampled 
cocaine. There is some evidence that the randomized response technique promotes 
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the truthful reporting of sensitive information (Boruch & Cecil, 1979; Fidler & 
Kleinknecht, 1977). 

Beginning some years ago, researchers in psychology began to develop keys 
for scoring standardized questionnaires and "lie scales," which are used to detect 
faking by the respondents (Ruch, 1942). One traditional way to construct a "fake 
key" is simply to compare the responses of subjects who are instructed to fake their 
answers with those of subjects who are instructed to respond truthfully. The differ­
ences in responding are analyzed, and a scoring key is developed from that informa­
tion (cf. Gordon & Gross, 1978; Lautenschlager, 1986). The Minnesota Multiphasic 
Personality Inventory (MMPI) provides another illustration of how "faking" is ana­
lyzed. The MMPI contains a "lie scale" (the L Scale) of 15 items to reveal the degree 
to which the respondent is projecting a falsely perfectionist impression. Respondents' 
replies to these items are interpreted as indicators of conscious deception, naive 
responding, or a highly introspective personality, the interpretation depending on the 
particular score (Groth-Marnat, 1984). 

Other scales identify responses that are made without regard to item content, also 
called a random response set (Graham, 1993). However, the reasons for the "random" 
responding may include deliberate faking, poor reading ability, a limited facility with 
English, carelessness, lack of attention, indecisiveness and vacillation, and so on. The 
MMPI-2 (the latest version of the MMPI scale) uses a matched-pair scaling procedure 
to determine whether the items have been answered consistently (Graham, 1993). 
Another significant clinical inventory used with adolescents has a built-in "index" of 
two bizarre items that should not be endorsed even by the most disturbed subjects 
(McCann, 1999). Scoring keys for the detection of response inconsistency have been 
developed for a number of clinical inventories (Pinsoneault, 1998, 2002). 

Acquiescent Response Set 

Another variation on this problem is an acquiescent response set, in which the sub­
jects tend to respond "yes" or "true"-also called yea-saying-regardless of what the 
items or questions state. In this case, the inconsistency is clear because not all the 
items endorsed should be automatically agreed with. The opposite error would be 
responding "no" or "false" regardless of the items or questions-called nay-saying 
(Couch & Keniston, 1960). Scoring keys have been designed to detect these sets (see, 
e.g., citations noted by Pinsoneault, 2002). However, in a famous case of the acqui­
escent response set, all that was apparently required to suppress the yea-saying (or 
nay-saying) bias was to vary the direction of the response alternatives, i.e., to have 
scores (on the characteristic being measured) increase half the time by saying "yes" 
and half the time by saying "no." It still serves as an object lesson for researchers to 
pay careful attention to the direction of how statements are worded. 

This classic case goes back to the 1920s, when a group of leading social 
scientists at the University of Frankfurt were engaged in interview research with 
hundreds of German citizens. The results convinced these investigators that anti-Semitic 
prejudices were rife in Germany and that the explosion of fascism was imminent. 
When Adolf Hitler came to power, the researchers left Germany and immigrated to 
the United States. Their investigation continued, but with the emphasis now on the 
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authoritarian personality of the fascist mentality. At the University of California at 
Berkeley, the researchers developed a personality inventory called the F Scale, which 
included 38 statements such as the following: 

One should avoid doing things in public that appear wrong to others, even 
though one knows that these things are really all right. 

No insult to our honor should ever go unpunished. 

It is essential for learning or effective work that our teachers or bosses outline 

in detail what is to be done and exactly how to go about it. 

Such statements were thought to go together to form a syndrome of behavior that 
renders a person receptive to antidemocratic propaganda (Adorno, Frenkel-Brunswik, 
Levinson, & Sanford, 1950). The authoritarian personality was also viewed as having 
a strong sense of nationalism, a rigid morality, definiteness, a strong tendency to 
perceive things in absolutes, and a strong need to align himself or herself with authority 
figures and protective in-groups. Other instruments, including the Rorschach, were 
brought in to flesh out the authoritarian personality. 

Although this is regarded as one of the most influential studies done in psychol­
ogy, ~! was later recognized that there was a significant problem in the wording of the 
items' making up the F Scale. They had been written in such a way that only by dis­
agreeing with a statement could a respondent obtain a completely nonauthoritarian 
score. However, some amiable, obliging souls, who had no fascist tendencies, had a 
penchant for responding "yes" to virtually every statement. In other words, the F Scale 
was confounded because it was measuring not only authoritarianism but also the 
acquiescent response set (Couch & Keniston, 1960). The obvious remedy was simply 
to vary the direction of the statements and then have positive and negative statements 
interspersed in random order. To obtain a nonauthoritarian score now required the 
subject to agree with some statements and disagree with others. 

CROSS-CULTURAL QUESTIONNAIRE 
AND INTERVIEW RESEARCH 

When self-report measures are used in cross-cultural research, a usual concern is 
that the language may mean something different in each culture. As an illustration, 
LeVine and Campbell (1972) faced such a problem when they were conducting 
fieldwork among the Gusii people of western Kenya to try out a preliminary version 
of a field manual for the cross-cultural study of ethnocentrism. Many Gusii terms 
for aggression and hostility did not have any exact equivalents in English. Further­
more, English terms carry their own connotations, which were not present in their 
Gusii equivalents. One way to deal with this problem is to minimize the verbal 
content by using pictorial items whenever possible (Shea & Jones, 1982). Of course, 
even pictorial items carry their own implications, and not all verbal items can be 
readily recast in a pictorial form. Thus, a more conventional strategy in a verbal 
measure is to use a procedure called back-translation. 
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Suppose we want to use a questionnaire or an interview originally written in 
English (the source language) in another society in which another language (the target 
language) is other than English. In back-translation, the researcher looks beyond the 
constraints of the source language to find a middle ground in which the distinctive 
meanings and blind spots of the source language and the target language are absent. To 
achieve this, the researcher has one bilingual person translate the text from the source 
language to the target language, and afterward another bilingual person independently 
translates it back into the source language. In this way, the researcher can compare the 
original with the twice-translated version (i.e., the back-translation) to see whether 
anything important has been lost in the translation. A number of back-translations may 
be needed to find a middle ground without significant discrepancies. 

ONE-DIMENSIONAL AND 
MULTIDIMENSIONAL ATTITUDE SCALES 

The methods we discuss in the following sections are in the traditional vein of using 
verbal items in attitude questionnaires. In the previous chapter we briefly mentioned 
the method known as the semantic differential, and we will begin by examining its use 
as a multidimensional measure. We then tum to three other traditional procedures in 
attitude and personality research: the Q-sort for self-reports, the Likert method of item 
analysis, and Thurstone's equal-appearing intervals method. There are, in fact, other 
useful strategies for the development of questionnaires and inventories, including a 
popular procedure and theoretical rationale for the item analysis of one-dimensional 
scales (called item response theory, or IRT), which was developed by Georg Rasch 
(1960, 1966), a Danishlesearcher. Although primarily of use in achievement testing, 
in which cumulative responses are expected to be associated with difficulty levels, 
Rasch scales have been the focus of work and much interest in psychology, sociology, 
and education (for example, see de 10ng-Gierveld & Kamphuis, 1985, for a type of 
Rasch scale they developed to measure loneliness). The technical details of this pro­
cedure go beyond the scope of this text, but researchers interested in learning about 
IRT and the nature of Rasch scales will find informative monographs and books on 
this method, particularly Nunnally and Bernstein's (1994) text, which includes a 
detailed overview of technical aspects, issues, and the relationship of IRT to other 
psychometric developments. The procedures discussed in the following sections are far 
simpler than IRT, have fewer assumptions, and thus are convenient to use in a wide 
range of situations of interest to most students and many professional researchers. 

A word of caution, however, is that using an explicit attitude or personality 
questionnaire to predict behavior has long been known to be fraught with problems 
(cf. Eagly & Chaiken, 1993; Lana, 2002; McGuire, 1985; Mischel, 1968; Triandis, 
1971). Some critics have even questioned whether it is reasonable to expect that explicit 
responses on a questionnaire should be correlated with important behaviors. On the other 
hand, some social psychologists have shown that certain behavior can be predicted 
from explicit, recently expressed intentions of respondents on attitude questionnaires 
(Fishbein, 1963; Fishbein & Azjen, 1974, 1975). More recently, an approach to measur­
ing "implicit attitudes" was developed by Greenwald, Banaji, and associates (Green­
wald & Banaji, 1995; Greenwald, Banaji, Rudman, Farnham, Nosek, & Rosier, 2000). 
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In a computer-administered test (the Implicit Association Test), these researchers mea­
sured people's automatic associations with certain target concepts and the time it took 
them to make these associations. Although this research has exposed various prejudiced 
attitudes and stereotypes that the subjects would presumably be reluctant to reveal 
explicitly, it is not yet entirely clear whether implicit attitudes predict behavior better 
than explicit attitudes can (Karpinski & Hilton, 2001). Other researchers have argued 
that using a multimethod, multidimensional strategy to measure social attitudes can be 
useful in many cases, because what a person says or does is determined not only by 
what the person would like to do, but also by what the person believes is required as 
well as by the expected consequences of behaving in a certain way (Triandis, 1971). Or 
as Eagly and Chaiken (1998) explained, "Because people express their likes and dislikes 
in many ways, all aspects of responding, including emotions, cognitions, and overt 
behavior, are infused with evaluative meaning that attitudes impart" (p. 269). 

SEMANTIC DIFFERENTIALS FOR 
ATTITUDINAL MEANING 

As conceptualized by Osgood et al. (1957), an important assumption of the semantic 
differential method was that the "meaning" of everyday stimuli can be represented by 
a spatial configuration consisting of more than one dimension. In their research, these 
investigators often found that evaluation, potency, and activity were the dominant 
dimensions in many cultures and societies. In statistical terms, the evaluation dimension 
was found to account for approximately half the extractable variance, whereas the 
potency and activity dimensions (together referred to as dynamism) each accounted 
for approximately half as much variance as the evaluation dimension. Osgood et al. 
identified other factors that accounted for increasingly less variance, including stability, 
tautness, novelty, and receptivity. Nonetheless, it is the dimensions of evaluation, 
potency, and activity that are used most often in semantic differential research 
(cf. Brinton, 1961; Oskamp, 1977; Snider & Osgood, 1969; Triandis, 1964). 

As noted in the previous chapter, in appearance a semantic differential resembles 
the segmented graphic scale. It usually consists of a set of 7-point rating scales 
anchored at each end by bipolar pairs of adjectives, such as 

bad __ : __ : __ : __ : __ : __ : __ good 

tense __ : __ : __ : __ : __ : __ : __ relaxed 

stingy __ : __ : __ : __ : __ : __ : __ generous 

The particular bipolar pairs are selected from a list made by Osgood et al. on the 
basis of the underlying dimensions of attitudinal meaning. For example, if we were 
interested in subjects' evaluative responses, any of the following bipolar pairs could 
be chosen: bad-good, unpleasant-pleasant, negative-positive, ugly-beautiful, cruel-kind, 
unfair-fair, and worthless-valuable. If it were the potency dimension we were interested 
in, any of the following pairs would suffice: weak-strong, light-heavy, small-large, 
soft-hard, and thin-heavy. For the activity dimension, we could choose from the 
following: slow-fast, passive-active, and dull-sharp. For the lesser dimensions, still 
other bipolar pairs would be considered: stability dimension (changeable-stable, intuitive­
rational, and rash-cautious), tautness dimension (rounded-angular, curved-straight, and 
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blunt-sharp), novelty dimension (old-new, usual-unusual, and mature-youthful), and 
receptivity dimension (tasteless-savory, boring-interesting, and insensitive-sensitive). 

In a given study, the scales do not always load on the same dimensions, and thus, 
many researchers check to see whether their scales do cluster in the expected way. We 
have been told by some researchers that potency and activity are often conflated; all 
they obtained was one factor (evaluation) or two factors (evaluation and a kind of con­
flated factor). In practice, however, most researchers stick with evaluation, potency, and 
activity. The instructions to the subjects are to put check marks in the appropriate posi­
tions. In scoring these responses, the researcher then assigns numbers to the subjects' 
ratings, for example, +3 extremely good, +2 quite good, + 1 slightly good, 0 equally 
good and bad or neither, -1 slightly bad, -2 quite bad, and -3 extremely bad. 

Previously, we mentioned some of the ways in which the semantic differential 
procedure has been used. As a further illustration, Figure 6.1 shows a three-dimensional 
representation of eight role concepts (self, father, mother, adult, college student, 
juvenile delinquent, adolescent, and child) that were rated by male and female college 
students using the semantic differential procedure (Friedman & Gladden, 1964). The 
instructions to the subjects were first to evaluate the concepts "as you actually think 
they are, in terms of the meanings they have to you" (the two diagrams at the top 
of Figure 6.1), and then to rate each concept "on the basis of how it should ideally 
be, the way it is supposed to be as opposed to how it actually is" (the two diagrams 
at the bottom). The subjects were told that there were no right or wrong answers, as 
this was not a test. The various diagrams reveal differences in the three-dimensional 
spatial relationships and also show certain similarities. For instance, we see (a) the 
general clustering on the left side, with the lone role number 6 ("juvenile delinquent") 
on the right; (b) the roles "self' and "college students" perceived as somewhat weaker 
in actuality by men than by women; and (c) the role of "father" perceived to be 
stronger, ideally, by men than by women. The researchers theorized that these differences 
were due to the influence of learned expectancies regarding role attitudes. 

Q-SORTS FOR SUBJECTIVITY RATINGS 

Another traditional method is the Q-sort, which was developed by William Stephenson 
(1953), a British physicist and psychologist, to study a single individual or a few 
persons at a time. It takes its name from so-called Q-methodology (a classical 
procedure in factor analysis), and some researchers now use the terms Q-sort and 
Q-methodology as synonyms. The Q-sort has been particularly useful in personality 
assessment research, for example, to arrive at an overall picture of a person's attitudes, 
strengths, and weaknesses. Although developed before the days of personal computers, 
Q-sorts can now be readily scored by computers. Researchers interested in this method 
will find a large number of references to it on the Internet, including Web sites with 
actual items used in certain Q-sorts. 

Traditionally, the Q-sort calls for the preparation of a set of stimuli (phrases, 
pictures, or statements) covering some aspect of behavior or personality. Typically, 
these stimuli differ from one study to the next, because the purpose of the studies is 
different and the stimuli are chosen according to the aspect of behavior of interest to 
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FIGURE 6.1 
Actual (top) and ideal (bottom) locations of eight role concepts on three semantic dimensions for males 
(left) and females (right). The three dimensions are the evaluative (bad-good), the potency (weak-strong), 
and the activity (passive-active). (From "Objective Measurement of Social Role Concept Via the Semantic 
Differential," by C. J. Friedman and J. W. Gladden, Psychological Reports, 1964, 14, pp. 239-247.) 

the researcher. Each stimulus appears on a separate card, and the respondent's job is 
to sort through the cards and place them in one of a number of piles to resemble a 
bell-shaped curve. Depending on the number of piles used by the researcher, the num­
ber of cards allowed in each pile is determined by a formula for the normal distribution. 
For instance, if there were 80 cards, they would be sorted into 11 piles as follows: 

Pile number 11 10 9 8 7 6 5 4 3 2 1 
Number of cards 2 4 6 9 12 14 12 9 6 4 2 

If there were 98 cards, they would be sorted into 13 piles as follows: 

Pile number 13 12 11 10 9 8 7 6 5 4 3 2 1 
Number of cards 2 4 6 8 10 12 14 12 10 8 6 4 2 
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In a representative study, Stephenson (1980) had children sort through 48 
photographs of different faces. They were told to decide which two photos they liked 
most and to put them in the extreme favorable pile, and then to decide which two they 
liked least and to put them in the extreme unfavorable pile. They then had to decide 
which four photos they liked next most and put them in the corresponding pile, and 
which four they liked next least, and so forth. In this case there were 9 piles, which 
were scored from -4 to +4: 

Pile number 9 8 

Number of photos 2 4 

Score -4 -3 

765 

5 8 10 

-2 -1 0 

4 

8 

+1 

3 

5 

+2 

2 

4 

+3 

1 

2 

+4 

Several different statistical analyses are possible. For instance, the average 
position of a specific subset of pictures (e.g., pictures of ethnic females) can be 
calculated and compared with the average positions of other subsets (e.g., pictures 
of nonethnic females). Still another method is simply to correlate Q-sorts (for exam­
ple, an idealized Q-sort portrait correlated with the Q-sort portrait of a particular 
subject), and in this way to assess the degree of similarity between them (e.g., D. J. 
Bern and Funder, 1978). There are also standardized Q-sorts consisting of descriptive 
statements about personality for use in clinical and social psychological situations, 
such as Block's (1978) California Q-Sort and Funder et al.'s (2000) Riverside Behav­
ioral Q-sort. Funder et al.'s Q-sort contains 100 statements, including things like 
"Acts irritated," "Speaks fluently and expresses ideas well," "Offers advice," "Is 
unusual or unconventional in appearance," and "Appears to be relaxed and comfort­
able." Instead of using the Q-sort as a self-report method, Funder and his colleagues 
have used it in judgment studies in which observers are asked to watch a videotaped 
social interaction and then to rate one of the individuals. The items are distributed 
into nine categories that range from (1) "negatively characteristic" to (9) "highly 
characteristic," with irrelevant items placed in the middle categories. Funder and 
Dobroth (1987) found that the most perceptible personality traits are those implying 
behaviors that would confirm or disconfirm the traits, and that are easy to imagine, 
occur often, and are subjectively easy to discern. 

LIKERT METHOD OF ITEM ANALYSIS 

The term Likert scale is among the most misused in the behavioral and social sciences. 
Many researchers call any rating instrument a Likert scale if it instructs subjects to 
indicate the degree of their agreement or disagreement on a five-step numerical scale. 
To constitute a true Likert scale, a particular method of item analysis (called the 
method of summated ratings) must be used to construct the instrument. Created by 
Rensis Likert (1932), the method results in an instrument that resembles a numerical 
rating scale in that numbers can be understood as being implicitly associated with the 
response alternatives (e.g., strongly agree, agree, undecided, disagree, strongly disagree) 
10 statements that are easily classifiable as favorable or unfavorable. 
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The first step in constructing a Likert questionnaire to measure people's attitudes 
is to gather a large number of statements on the topic of interest. These are given to 
a sample of subjects from the target population, who indicate their evaluations, usually 
by means of a 5-point numerical rating scale. The technique of item analysis used to 
sort through the data consists of calculating the extent to which the responses to 
individual statements are correlated with the total score (the sum of all the items). 
Statements that correlate well with the total score are then chosen for the final scale. 
The rationale is that statements that have low correlations with the total score will 
not be as good at discriminating between those respondents with positive attitudes 
and those with negative attitudes. 

As an older illustration of a questionnaire developed by the Likert procedure, a 
20-item scale on a topic that is still current is shown in Figure 6.2 (Mahler, 1953). 
This particular attitude scale was shown to have high internal-consistency reliability, 
and to predict the responses of a convenience sample of Stanford University students 
with positive and negative attitudes about socialized medicine (as established by inde­
pendent interviews). In scoring the answers, the pro-socialized-medicine statements 
would be weighted from 4 ("strongly agree") to 0 ("strongly disagree"). For the anti­
socialized-medicine statements (marked by an asterisk), the weighting is reversed. A 
person's score is the sum of the weighted responses, with a high score indicating an 
ac~epting attitude toward socialized medicine. 

THURSTONE EQUAL-APPEARING 
INTERVALS METHOD 

Another traditional approach is based on the method of equal-appearing intervals, 
which was proposed by L. L. Thurstone (1929), a pioneer in the early development 
of attitude research. The name of the procedure derives from the assumption that 
judges, who are asked to sort items into different piles, are presumed to be able 
to keep the piles psychologically equidistant. Other useful methods of scaling were 
also developed by Thurstone, and many of his ideas have been picked up by 
contemporary researchers and psychometricians. However, this particular method, 
also frequently called the Thurstone scale, is the one most closely associated with 
him. 

The procedure begins with a large number of statements, but this time each 
statement is typed on a separate card. Judges (not the subjects to be tested later) then 
sort the statements into 11 piles numbered from 1 ("most favorable statements") to 
11 ("most unfavorable statements"). In this respect, the equal-appearing intervals 
method resembles the Q-sort method. Unlike in the Q-sort, the judges in Thurstone's 
approach are allowed to place as many statements as they wish in any pile. A scale 
value is calculated for each statement, and by tradition it is the median of the responses 
of all judges to that particular item. In selecting items for the final Thurstone scale, 
we would choose those that are most consistently rated by the judges (i.e., have the 
smallest variabilities) and that are spread relatively evenly along the entire attitude 
range. The former criterion (consistency) refers to any particular items, and the latter 
criterion (range) refers to the whole set of items. 
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Please indicate your reaction to the following statements, using these alternatives: 

Strongly Agree = SA 

Agree = A 

Undecided = U 

Disagree = D 

Strongly Disagree = SD 

* 1 The quality of medical care under the system of private practice is superior to that under a system 
of compulsory health insurance. 

SA A U D SD 

2 A compulsory health program will produce a healthier and more productive population. 

*3 Under a compulsory health program there would be less incentive for young people to become 
doctors. 

4 A compulsory health program is necessary because it brings the greatest good to the greatest 
number of people. 

*5 Treatment under a compulsory health program would be mechanical and superficial. 

6 A compulsory health program would be a realization of one of the true aims of a democracy. 

*7 Compulsory medical care would upset the traditional relationship between the family doctor and the 
patient. 

*8 I feel that I would get better care from a doctor whom I am paying than from a doctor who is 
being paid by the government. 

9 Despite many practical objections, I feel that compulsory health insurance is a real need of the 
American people. 

10 A compulsory health program could be administered quite efficiently if the doctors would 
cooperate. 

11 There is no reason why the traditional relationship between doctors and patient cannot be continued 
under a compulsory.health program. 

*12 If a compulsory health program were enacted, politicians would have control over doctors. 

* 13 The present system of private medical practice is the one best adapted to the liberal philosophy of 
democracy. 

14 There is no reason why doctors should not be able to work just as well under a compulsory health 
program as they do now. 

IS More and better care will be obtained under a compulsory health program. 

*16 The atmosphere of a compulsory health program would destroy the initiative and the ambition of 
young doctors. 

* 17 Politicians are trying to force a compulsory health program upon the people without giving them 
the true facts. 

*18 Administrative costs under a compulsory health program would be exorbitant. 

* 19 Red tape and bureaucratic problems would make a compulsory health program grossly inefficient. 

*20 Any system of compulsory health insurance would invade the privacy of the individual. 

FIGURE 6.2 
Example of a Likert scale that was developed to measure attitudes toward socialized medicine. The 
response alternatives (SA, A, U, D, SD) would be repeated for each item. The asterisks (*) indicate 
negative items, whose weights must be reversed for purposes of scoring. (From "Attitudes Toward 
Socialized Medicine," by I. Mahler, Journal of Social Psychology, 1953, 38, pp. 273-282.) 
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The following statements express opinions about divorce. Please indicate your agreement or 
disagreement with each of the statements by marking them as follows: 

Scale 
Value 

(01") Mark with a check if you agree with the statement. 

(X) Mark with a cross if you disagree with the statement. 

3.7 Divorce is justifiable only after all efforts to mend the union have failed. 

6.6 2 Present divorce conditions are not as discreditable as they appear. 

8.5 3 If marriage is to be based on mutual affection, divorce must be easy to obtain. 

1.6 4 Divorce lowers the standards of morality . 

.5 5 Divorce is disgraceful. 

8.4 6 Divorce is desirable for adjusting errors in marriage. 

4.8 7 Divorce is a necessary evil. 

9.8 8 Divorce should be granted for the asking. 

6.2 9 A divorce is justifiable or not, depending on the wants of the persons involved. 

10.1 10 A person should have the right to marry and divorce as often as he or she chooses . 

. 5 II Divorce is never justifiable. 

8.8 12 Easy divorce leads to a more intelligent understanding of marriage. 

3.3 13 Divorce should be discouraged in order to stabilize society. 

5.8 14 The evils of divorce should not prevent us from seeing its benefits. 

9.4 15 The marriage contract should be as easily broken as made . 

. 8 16 The best solution of the divorce problem is never to grant divorce. 

1.2 17 Lenient divorce is equivalent to polygamy. 

7.1 18 Divorce should be permitted so long as the rights of all parties are insured. 

4.2 19 Divorce should be discouraged but not forbidden . 

. 8 20 Divorce is legalized adultery. 

3.8 21 Long and careful investigation should precede the granting of every divorce. 

8.1 22 Permanence in marriage is unnecessary for social stability. 

FIGURE 6.3 
Example of a questionnaire, based on Thurstone's equal-appearing interval scaling, to measure attitudes 
toward divorce. In actual practice the scale values noted would not be shown on the questionnaire 
administered to the subjects. (After Shaw & Wright, 1967; The Measurement of Social Attitudes, by L. L. 
Thurstone, Chicago: University of Chicago Press, © 1931.) 

Illustrative of an attitude scale developed by this procedure, Figure 6.3 shows 
a 22-item questionnaire with reportedly high test-retest reliability. Although this early 
scale of attitudes toward divorce contains items relevant to the issue today, with the 
passage of time the original scale values might be expected to change (Thurstone, 
1929-1934). Thus, the scale values noted in this figure were subsequently obtained 
from a small sample of graduate students (Shaw & Wright, 1967). These values may 
need to be updated if used currently, in which case the same procedures could be used 
(see Edwards, 1957b). 
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Incidentally, a classic variant on Thurstone's equal-appearing intervals method 
is called the method ofsuccessive intervals. It was developed by Edwards (1952) to 
provide a check on the assumption of equal intervals. The data collection is similar 
to that used in the equal-appearing intervals scaling of items, but the scaling is a 
little more complex, although it can be done easily by hand. Edwards's gem of a book, 
Techniques of Attitude Scale Construction (1957b), contains easy-to-follow, detailed 
illustrations of the Likert, Thurstone, Edwards, and some other traditional scaling 
procedures. 

MEMORY AND THE USE OF 
SELF-RECORDED DIARIES 

Whatever interview or questionnaire procedures are used, autobiographical items can 
run into problems when the respondents must rely on memory (e.g., how often they 
have done something or how much of something they bought or consumed). Some 
examples would be "How many weeks have you been looking for work?" and "How 
much did you pay for car repair expenses over the previous year?" As mentioned 
before, there may even be memory errors about the nature of events that have just 
occurred. Among the sources of forgetting are problems in encoding, storage, retrieval, 
and reconstruction errors (Schacter, 1999; Tourangeau, 2000; Tourangeau, Rips, & 
Rasinski, 2000). For example, aspects of the event may never have been noticed in 
the first place or, if noticed, then only casually observed (an encoding problem). 
Assuming the event was encoded, it still might not stand out in memory. On the other 
hand, cognitive rese¥chers (Brown & Kulik, 1977) speak of "flashbulb memories" 
that appear to be immediately and forever imprinted in our minds, such as viewing 
the destruction of the World Trade Center in New York City when terrorists crashed 
two hijacked airplanes into the Twin Towers on September 11, 2001. Retrieval errors 
occur because of forgetting, or because a question is phrased differently from the way 
the answer is stored in our minds (Norman, 1973). Reconstruction errors happen when 
people mistakenly associate events that were not connected when they occurred, or 
when they make faulty assumptions based on the wording of items, or when there are 
too many facts and people fill in the gaps of what they cannot retrieve (Bernard & 
Killworth,1970, 1980; Bradburn, Rips, & Shevell, 1987; Cicourel, 1982; S. K. Reed, 
1988; Webber, 1970; Zechmeister & Nyberg, 1982). 

For example, it is often especially difficult to remember names and exact 
dates, whereas most people recognize faces easily (Tourangeau, 2000). Bradburn 
(2000) summarized a number of empirically supported generalizations. First, the 
better an event is remembered, the easier it is to date. Second, when dating errors 
occur, they are usually off by some calendar-related factor, such as a week, a month, 
or a year. Third, the longer the time that has elapsed, the more numbers tend to be 
rounded, so 9 days might become a week, and 3 weeks a month. Fourth, there is a 
tendency to remember events as having occurred more recently than they really did 
occur. Fifth, important events that occurred only once are generally easier to date 
than recurring events on different dates. Sixth, pleasant events are frequently easier 
to date than unpleasant ones, but there are obvious exceptions (e.g., the 9/11 tragedy 
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or the death of a loved one). Seventh, women remember dates better than men do. 
Eighth, events at the beginning or end of a meaningful period, cycle, or term are 
generally easier to date than events in the middle. For a more detailed discussion 
of the fallibility of human memory, and how and why memory errors can get peo­
ple into trouble, see Schacter's (1999) fascinating article, and for a comprehensive 
discussion of every aspect of memory, see his absorbing book Searching for Memory 
(Schacter, 1996). 

An alternative that is less dependent on recall for collecting autobiographical 
data is the self-recorded diary (e.g., Conrath, 1973; Wickesberg, 1968). For example, 
Csikszentmihalyi and Larson (1984) used this approach in their investigation of teen­
agers' day-to-day lives. The 75 teenagers who participated in this study were given 
beepers and were then signaled at random by the researchers. When the beeper went 
off, the teenager recorded his or her thoughts and feelings at that moment, and this 
information was collated with what the teenager was doing (e.g., viewing TV, eating 
dinner, being in class). As another illustration, DePaulo, Kashy, and their coworkers 
used self-recorded diaries in studies in which college students were asked to keep 
records of their lying behavior (DePaulo & Kashy, 1998; DePaulo, Kashy, Kirkendol, 
Wyer, & Epstein, 1996; Kashy & DePaulo, 1996). Among the findings were that 
students who indicated they told more lies were also more manipulative and more 
conq;rned with self-presentation and, not surprisingly, told more self-serving lies. 

Investigations of autobiographical data obtained in this way have supported the 
accuracy of the information (Tourangeau, Rips, & Rasinski, 2000). For example, 
Mingay et al. (1994) found that diary reports about the frequencies of everyday 
events were more accurate than the retrospective memories of the diary keepers' 
partners, who had experienced the same events. A. F. Smith et al. (1991) observed 
that diary reports about the foods that diary keepers had consumed were more accu­
rate than information obtained in survey reports. In another study, Conrath et al. 
(1983) collected data from managers and staff personnel in three organizations. Each 
participant was instructed to keep a diary of 100 consecutive interactions, commenc­
ing on a specific date and at a specific time. The instructions were to indicate the 
other party, the initiator of the activity, the mode of interaction, the elapsed time, 
and the process involved. The diary was constructed in such a way that the partici­
pant could record all this information with no more than four to eight check marks 
next to a particular item. At a later time, each participant answered a questionnaire 
in which similar estimates had to be made. For all the participants the data from the 
self-recorded diary and the standard questionnaire were compared afterward. If a 
person noted talking to particular others, the responses of those others were investi­
gated by the researchers to see whether they had also reported that activity. In this 
way, a measure of reliability was obtained for the self-recorded diary and the 
questionnaire data separately (i.e., concerning the reporting of specific events at the 
time of the events as opposed to a later time). The results were that the questionnaire 
data (the recalls from autobiographical memory) were less reliable than the diary 
data. Thus, given ample preparation, and assuming the willingness of people to keep 
precise records, the self-recorded diary can be an informative and reliable source of 
autobiographical information. 
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In chapter 1 we said that the orientation of experimental research is the search for 
causes, and in this chapter we begin by describing typical experimental designs that 
use the principle of randomization to assign the sampling units to groups or condi­
tions. Next, after noting several features and limitations of randomization, we tum to 
the philosophical puzzle of causality. As one author commented, "Though it is basic 
to human thought, causality is a notion shrouded in mystery, controversy, and caution, 
because scientists and philosophers have had difficulties defining when one event truly 
causes another" (Pearl, 2000, p. 331). We review the justification for the use of con­
trol groups in randomized experiments, and after a brief discussion of a historically 
significant contribution to control group design by Richard L. Solomon, we tum to 
the work of Donald Campbell and his associates that has focused on an assortment 
of threats to the validity of causal inferences. We conclude this chapter with a discus­
sion of subject-related and experimenter-related artifacts and the strategies used to 
control for them. 

Although the primary emphasis of this chapter is on randomized controlled 
experiments, we generally use the term experimentation in a broad sense rather than 
restricting it only to randomized experiments; this broad usage is also frequent in 
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science. Shadish, Cook, and Campbell (2002) recommended that experimentation be 
understood as referring "to a systematic study design to examine the consequences of 
deliberately varying a potential causal agent" (p. xvii). Four features that Shadish et al. 
thought representative of all experiments are "(1) variation in the treatment, 
(2) posttreatment measures of outcomes, (3) at least one unit on which observation is 
made, and (4) a mechanism for inferring what the outcome would have been without 
treatment" (p. xvii). As an illustration of this broad conception, students who have 
taken a course in chemistry know that the typical experiment consists of mixing 
reagents in test tubes. How does this process fit in with Shadish et al. 's four features 
of experiments? The variation in treatment is analogous to an implicit comparison 
with other combinations of reagents; the posttreatment measure is the resulting com­
pound; the observations typically require calibrated measurements; and the outcome 
without treatment is analogous to the status of the reagents before they were com­
bined. As another illustration of nonrandomized experiments, an article in Physics 
World invited readers to nominate the "most beautiful experiments of all time" 
(G. Johnson, 2002). None of the top ten involved randomization. The experiment 
ranked first was not even an empirical demonstration, but a classic thought experiment 
(by Thomas Young) to demonstrate that light consists of particles that act like waves. 
The second-ranked experiment was Galileo's revelation, in the late 1500s, that because 
all bodies necessarily fall with the same velocity in the same medium, it follows that 
objects of different weights dropped from the Leaning Tower of Pisa would land at 
the same time. 

It is not hard to find many fascinating examples of nonrandomized experiments 
in psychology as well. For instance, Jose M. R. Delgado (1963) showed that the 
electrical stimulation of various brain regions resulted in decreased aggressive behav­
ior. In one study, the boss monkey (named Ali) in a colony of monkeys that lived 
together had an electrode inserted in his caudate nucleus. The switch that turned on 
the current to Ali's electrode (via a tiny radio transmitter) was available to the other 
monkeys. They learned to approach and press the switch whenever Ali began to get 
nasty, causing him to become less aggressive immediately. In a more dramatic dem­
onstration, Delgado got into a ring with a fierce bull whose brain had been implanted 
with electrodes. Just as the bull was charging toward him, Delgado turned on radio­
controlled brain stimulation, causing the bull to stop in midcharge and become pas­
sive. Few experimenters have opportunities to demonstrate such confidence in their 
causal generalizations. In the next chapter we will have more to say about experiments 
that focus on only one unit (called a case), or on only a few units, and in which 
randomization is seldom used (called single-case experiments). 

RANDOMIZED EXPERIMENTAL DESIGNS 

By far the most common randomized controlled experiments are those in which the 
sampling units are assigned to receive one condition each, called a between-subjects 
design (or a nested design, as the units are "nested" within their own groups or con­
ditions). In biomedical research, these experiments are regarded as the "gold standard," 
such as randomly assigning the subjects to receive an experimental drug or a placebo 
(a substance without any pharmacological benefit that is given as a pseudomedicine to 
subjects in a control group). This particular design is shown in Table 7.1, in which the 
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TABLE 7.1 

Simplest between-subjects 
design 

New drug Placebo 

Subject 1 Subject 2 

Subject 3 Subject 4 

Subject 5 Subject 6 

Subject 7 Subject 8 

Subject 9 Subject 10 

randomly assigned subjects of the experimental group are arbitrarily labeled I, 3, 5, 
7,9, and the randomly assigned subjects of the control group are arbitrarily labeled 2, 
4, 6, 8, 10. Suppose, however, that the drug in question is intended to treat a terminal 
illness. Assigning some of the subjects to receive only a placebo would deny them 
access to a potentially life-extending treatment. According to an international declara­
tion adopted in Helsinki in October 2000 by the general assembly of the World Med­
ical Association, placebos may be used only when there are no other drugs or therapies 
available for comparison with a test procedure. Thus, one option is to give control 
subjects not a placebo, but the best currently available treatment, so that the compari­
son is between the experimental drug and the best available option. Another declara­
tion, issued in 2002 by the Council of International Organizations of Medical Sciences 
(CIOMS), stated that the only ethical exception to not using an effective treatment as 
the control condition is if there is no such treatment available and it is unlikely to 
become available in the foreseeable future (Levine, Carpenter, & Appelbaum, 2003). 

Our earlier discussion of the ethics of placebo control groups (chapter 3) noted 
that another possibility in some situations is to use a wait-list control group­
assuming, of course, that the design has been approved by an ethical review commit­
tee. For example, there might be an alternative treatment, that is unavailable for 
logistic or cost reasons, thus leaving the placebo condition as our only viable option. 
The simplest randomized wait-list design using a placebo control consists of two 
conditions: 

Group 1 R o x o o 
Group 2 R o o x o 

where R denotes random assignment, 0 denotes observation (i.e., measurement or testing), 
and X denotes the experimental treatment. In this example, the participants randomly 
assigned to Group I are given the drug (X) over a specified period, during which the 
participants assigned to Group 2 (the wait-list control group) receive not the drug or any 
alternative medicine, but a placebo. Once it becomes clear that the new drug is effective, 
the trial is terminated, and the wait-list group is given the new drug. 

If there are a sufficient number of participants in the wait-list control condition, 
and if it would not violate the international declarations or be hazardous to the subjects' 
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health to wait to receive the new beneficial drug, another possibility is to introduce 
different periods of delay before the new drug is administered to these subjects: 

Group 1 R x 
Group 2 R x 

Group 3 R x 

Group 4 R x 

Groups 2, 3, and 4 are subgroups of the wait-list control condition. Once it is clear 
that the experimental drug (X) is effective, Groups 2, 3, and 4 receive the drug at 
different intervals. Repeated measurements (0) allow us to gain further information 
about the temporal effects of the drug by comparing 02' 03' 04' and Os in Group 1 
with the same set of observations in the wait-listed controls. 

In between-subjects studies in which the participants are asked to make subjec­
tive judgments, their implicit ranges may be different if they are not operating from 
the same emotional, psychological, or experiential adaptation levels or baselines 
(Helson, 1959; cf. Birnbaum, 1999). Consequently, we might wish to have the subjects 
make :epeated judgments based on different conditions, called a within-subjects 
design because each participant receives more than one condition (also called a crossed 
design because the subjects are thought of as "crossed" by conditions). A problem with 
within-subjects designs, however, is that the order in which the conditions are admin­
istered to the subjects may be confounded with the condition effect. Suppose there are 
four conditions (A, B, C, and D) to be administered to young children who are to be 
measured following each condition. The children may be nervous when first measured, 
and they may respond poorly. Later, they may be less nervous, and they may respond 
better. To address the problem of systematic differences between successive conditions, 
the experimenter can use counterbalancing, that is, rotating the sequences of the 
conditions (as illustrated in Table 7.2) in what is called a Latin square. Notice that it 
is a square array of letters (representing the conditions) in which each letter appears 
once and only once in each row and in each column. In this illustration, all four 

TABLE 7.2 

Latin square design 

Order of administration 

1 2 3 4 

Sequence 1 A B C D 

Sequence 2 B C D A 

Sequence 3 C D A B 

Sequence 4 D A B C 
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TABLE 7.3 

2 X 2 Factorial design 

AI. Experimental treatment A2. Placebo control 

Bl. Women B2. Men Bl. Women B2. Men 

Subject I Subject 11 Subject 2 Subject 12 

Subject 3 Subject 13 Subject 4 Subject 14 

Subject 5 Subject 15 Subject 6 Subject 16 

Subject 7 Subject 17 Subject 8 Subject 18 

Subject 9 Subject 19 Subject 10 Subject 20 

conditions are administered to the children in a counterbalanced pattern, so that the 
children randomly assigned to Sequence 1 receive conditions in the sequence A, then 
B, then C, and finally D. In Sequences 2 through 4, the conditions are administered in 
different sequences, BCDA, CDAB, and DABC, respectively. 

Another popular arrangement of conditions in experimental research is called a 
factorial design because there is more than one variable (or factor) and more than 
one level of each factor. Suppose that women and men are randomly assigned to a 
drug or a placebo group. We have a two-factor design with two levels of the factor 
of gender (women vs. men) and two levels of the manipulated variable (drug vs. 
placebo), with the assignment of the subjects illustrated in Table 7.3. This arrangement 
is described as a 2 X 2 factorial design (2 X 2 is read as "two by two") or 22 fac­
torial design. Of course, factorial designs are not limited to only two factors or to 
only two levels of each- factor. We will have much more to say about the analysis of 
factorial designs in chapters 16-18, but one common procedure in the case of the 
design shown in Table 7.3 is to compute a 2 X 2 analysis of variance in which we 
analyze the between-group variation of the drug versus the placebo condition (AI vs. 
A2), the between-group variation of women versus men (BI vs. B2), and the interac­
tion of factors A and B. However, if we are primarily interested in some predicted 
pattern of all four condition means, we might prefer to address this prediction by 
means of a I X 4 contrast, as described in chapter 15. 

Other variations include fractional factorial designs, also called fractional rep­
lications (Winer, et al., 1991), which use only some combinations of factor levels (rather 
than using all combinations of all factor levels, also known as full factorials), and 
mixed factorial designs, consisting of both between- and within-subjects factors. An 
experiment in which women and men (a between-subjects factor) both received a 
sequence of treatments (and were measured after each one, so that "treatments" is now 
operationalized as a within-subjects (actor) is an example of a mixed factorial design. 

CHARACTERISTICS OF RANDOMIZATION 

In their classic statistics text, George W. Snedecor and William G. Cochran (1989) 
made the point that "randomization gives each treatment an equal chance of being 
allotted to any subject that happens to give an unusually good or unusually poor 
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response, exactly as assumed in the theory of probability on which the statistical 
analysis, tests of significance, and confidence intervals are based" (p. 95). Earlier, in 
another classic text, R. A. Fisher (1971) had noted that by the use of "the full proce­
dure of randomisation . . . the validity of the test of significance may be guaranteed 
against corruption by the causes of disturbance which have not been eliminated" 
(p. 19). That is, randomization is a way of dealing with unsuspected sources of bias, 
though, of course, it cannot guarantee that all important natural differences among the 
subjects will be exactly balanced out. Suppose we were working with pairs of subjects, 
one of whom in each pair is to be randomly assigned to the experimental condition 
by the flip of a coin. Snedecor and Cochran (1989, p. 95) noted that, with n pairs, 
the probability that anyone treatment will be assigned to the superior member in 
every one of the n pairs was 1/2n-l. Thus, with 5 pairs, the probability is .06, with 
10 pairs it is .002, and with 15 pairs it is .00006. In other words, as sample sizes 
increase, it becomes less and less likely that the treatment condition subjects will be 
very different from the control condition subjects even before the subjects receive the 
treatment condition. Those relatively rare instances in which very large differences 
between conditions existed even before the treatments were administered are sometimes 
referred to as failures of randomization. 

Instead of flipping a coin, most researchers prefer using a computer, a scientific 
calculator, or a table of random digits to generate the random numbers they need. To 
u~e Table B.9 (in Appendix B), we start by blindly choosing a place in the table and 
then simply reading across the row or down the column. We must decide in advance 
which numbers will determine the units to be assigned to different conditions. Suppose 
we decide that odd numbers will determine the units to be assigned to the experimen­
tal group and that even numbers (including zero) will determine those to be assigned 
to the control group. Say we want to assign 20 subjects, and the 20 digits that we 
randomly select are 10097, 32533, 76520, and 13586. We number our subjects from 
1 to 20 and align all subjects with their random digits, for example: 

Random digit 
Subject number 

1 009 7 
2 345 

3 2 5 3 3 
678910 

76520 
11 12 13 14 15 

3 5 8 6 
16 17 18 19 20 

Then, because we want to assign 10 subjects to the treatment and 10 to the control, 
Subjects 1, 4, 5, 6, 8, 9, 10, 11, 13, and 16 are assigned to the treatment condition 
(their associated random digits are odd), and the remaining subjects are assigned to 
the control condition. If there are fewer than 10 odd numbers in our series of 20 
random digits, we simply select the first 10 even-numbered subjects to be our control 
sample, and the remaining subjects become the treatment sample. Another procedure 
for the random assignment of subjects, or other sampling units, is simply to number 
the units from 1 to 20, write the numbers on slips of paper, put them in a bag, shake 
the bag well, and then blindly draw a slip for each participant. 

In chapter 15 we will discuss the allocation of different numbers of units to the 
samples, usually because of cost factors and because only one or two specific patterns 
of effects are of primary interest. This approach is traditionally known as optimal 
design in statistics, and the goal of the differential allocation of sample sizes is to 
increase statistical precision (Kuhfield, Tobias, & Garratt, 1994; McClelland, 1997). 
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Although we may sometimes want to use this procedure, it may also limit our options 
to discover something new and interesting from a "non optimal" design. We will 
illustrate all these ideas in the later chapter. 

Although randomization is also intended to avoid the problem that experiment­
ers might, even if unconsciously, let their feelings influence their decisions about 
which subjects will be placed in different conditions (Gigerenzer, Swijtink, Porter, 
Daston, Beatty, & KrUger, 1989), perfect experimental control is an ideal that can be 
elusive. Suppose the problem is not that experimenters' feelings are suspected of hav­
ing gotten in the way, but that the sample sizes are small and it simply happens that 
the experimental and control groups are not comparable to begin with. Say that the 
mean pretest scores in the experimental and control groups are 50 and 40, respectively, 
and the mean posttest scores in these same groups are 52 and 48. Concentrating our 
attention only on the posttest scores, we would conclude that the experimental group 
showed a positive effect. However, when we take into account the mean baseline 
differences, we see that the positive effect was an illusion; the mean pre-to-post gain 
in the experimental group was one quarter the size of that in the control group. Thus, 
another variation on the randomized designs noted before is to use pretest measure­
ments to establish baseline scores for all subjects. For example, in a drug trial of a 
pharmaceutical that treats high blood pressure, the researchers would want to know 
what the subjects' blood pressures were before they received the drug. For a detailed 
discussion of pretest-posttest designs (particularly those used in pharmaceutical trials), 
including many of the advantages and limitations of the common statistical procedures 
that are used to analyze these designs, see Bonate (2000). Incidentally, in randomized 
drug trials, one concern is that the participants, fearing that they have been placed in 
the placebo group, may surreptitiously arrange to split and then share with other 
participants the pills they've received; the result may be an underestimation of the 
true effectiveness of the pharmaceutical treatment. Another issue is that potential 
subjects may be reluctant to volunteer in the first place because they are concerned 
about being assigned to the group that will not receive the experimental drug; their 
reluctance reduces the pool of available subjects and thus could seriously jeopardize 
the generalizability of the observed results (Kramer & Shapiro, 1984). 

Before leaving this section we should also mention that, although we have used 
the term random we have not actually defined it. Dictionaries frequently propose "aim­
lessness" or the "lack of purpose" as synonyms of randomness, or they note that the 
"equal probability of being chosen" is a statistical characteristic of randomness. We 
will have more to say about probability and randomness in chapter 9, but it is impor­
tant not to confuse randomness with aimlessness, or "hit-or-miss" sampling, which can 
seldom be accurately described as random in the scientific sense. We can illustrate by 
asking someone to write down "at random" several hundred one-digit numbers from 
o to 9. When we tabulate the 08\ Is, 2s, and so on, we will see obvious sequences and 
that some numbers clearly occur more often than others; these patterns would not occur 
if each digit had an equal probability (10%) of being listed (Wallis & Roberts, 1956). 
Interestingly, psychologist Allen Neuringer (1992), using a single-case experimental 
strategy, was able to reinforce the behavior of pigeons to make left-right choices that 
looked pretty random, and he then used feedback to reinforce some individual Reed 
College students to generate sequences of numbers that also looked like random 
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sequences (Neuringer, 1996; Neuringer & Voss, 1993). As Kolata (1986) mentioned 
in Science magazine, randomness is a difficult concept even for statisticians and phi­
losophers to define, one reason that "books on probability do not even attempt to define 
it" (p. 231). The problem, as one leading scholar, Persi Diaconis, observed, is that "if 
you look hard, things aren't as random as everyone assumes" (Kolata, p. 1069). How­
ever, Diaconis noted that some outcomes at least tum out to be "almost random," such 
as flipping an ordinary coin millions of times to discover any bias. 

THE PHILOSOPHICAL PUZZLE 
OF CAUSALITY 

Turning the key in a car's ignition gets the motor going; taking an aspirin when you 
are running a fever will usually lower your temperature; studying for an exam is bet­
ter than not studying for it; pulling a sleeping dog's tail usually evokes an aggressive 
response; smoking cigarettes over a long period of time can cause emphysema, lung 
cancer, and heart disease; aesthetically applying paint to a canvas produces a painting. 
All these are examples of causal relations. That is to say, they imply a relation 
between a cause, which may be a responsible human or physical agent or force, and 
an effect, which may be an event, a state, or an object. They also emphasize what 
Aristotle called "efficient causation" (more about this below), which developmental 
psycl1blogists now believe is perceptible even in infants (Schlottmann, 2001). Interest­
ingly, some historians and others have argued that, for thousands of years, well before 
the Golden Age of Greece, the idea of effects caused by objects or physical forces 
was hardly of much interest. The reason, they say, is that events and personal ordeals 
were presumed to be either under the control of a divine will (physical catastrophes 
were expressions of angry gods, and felicitous events were expressions of benevolent 
gods) or attributed to human or animal agents (e.g., a hunter or a forager gathering 
food, or an animal trampling a person to death). 

By the fifth century B.C., Greek philosophers (such as Parmenides, Anaxagoras, 
and Empedoc1es) had begun to explore the problem of causality more deeply, particularly 
with reference to the elemental origin of the universe and the nature of change, on the 
assumption that change requires a cause of some kind. A century later, a major con­
ceptual advance occurred when Aristotle differentiated four types of causation: mate­
rial, formal, efficient, and final (Wheelwright, 1951). The material cause refers to the 
elementary composition of things. The formal cause is the outline, conception, or vision 
of the perfected thing. The efficient cause is the agent or moving force that brings 
about the change. The final cause (or teleological explanation) refers to the purpose, 
goal, or ultimate function of the completed thing. For Aristotle, the ultimate teleo­
logical explanation for everything that undergoes change was divine will and, thus, 
God's final plan. To recast the four causes in a modem context, we might ask, "What 
causes a skyscraper to be built?" The material cause would be the concrete, bricks, 
and steel; the formal cause, the architect's blueprint; the efficient cause, the physical 
work of the architect, the contractor, and the laborers and their tools; and the final 
cause (i.e., the ultimate objective), a building for people to occupy. 

By the 13th and 14th centuries A.D., we find a symbiosis of the emerging idea 
of causal inference and the empirical method of "experimentation," that is, in its 
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broadest interpretation (Rosnow, 1981). It is during this period that we see a further 
emphasis on efficient causation. For example, Robert Grosseteste, at Oxford University, 
proposed that the forces or agents (the efficient causes) accountable for the nature of 
light are subject to manipulability and critical observation, thereby establishing optics 
as both an empirical and an experimental science (Wallace, 1972). Grosseteste's vision­
ary idea was subsequently embraced by his student, Roger Bacon, who stressed the 
"very necessity" of empirical experimentation and the essential role of quantification. 
In his Opus Maius, published in 1267, Bacon stated that "if ... we are to arrive at 
certainty without doubt and at truth without error, we must set foundations of knowledge 
on mathematics, insofar as disposed through it we can attain to certainty in the other 
sciences, and to truth through the exclusion of error" (Sambursky, 1975, p. 155). Of 
two ways of acquiring knowledge of efficient causation, by reason and by experimen­
tation (or experience in Bacon's words), he argued that it was only by experimentation 
that we can demonstrate what reason teaches us. For example, a person who has never 
seen fire may be persuaded by a well-reasoned argument that fire bums and injures 
things and destroys them, but until he has witnessed an experimental demonstration 
of combustion, he cannot accept what he learned as an indisputable fact, for "reasoning 
does not suffice, but experience does" (W. S. Fowler, 1962, p. 36). 

Although medieval science seemed to explain everything, it was nonetheless a 
tangle of unwieldy, interlaced, cumbersome theories. Revolutionary developments 
occurred from the 16th to the 17th century that changed all this by undermining 
ancient intellectual foundations and replacing them with a theoretical foundation of 
mechanics that explained the action of forces on bodies. In his biography of Isaac 
Newton, James Gleick (2003) likened the scientific revolution that began in the 
16th century with Nicolaus Copernicus, the Polish astronomer, and "staggered under 
the assaults of Galileo imd Descartes and finally expired in 1687, when Newton pub­
lished a book" (p. 49) to an "epidemic spreading across the continent of Europe 
during two centuries" (p. 48). Galileo Galilei, by virtue not only of his empirical 
methodology but also of his mathematical formulations of causal experimental effects, 
was a seminal figure in the development of the experimental method of science. In 
1609, he made his first observations with the use of a telescope, constructed by 
"inserting spectacle makers' lenses into a hollow tube" (Gleick, p. 49), providing 
powerful evidence to support Copernicus's heliocentric theory of the universe (which 
in the 17th century was still at odds with ecclesiastical doctrine on the incorruptibil­
ity of the heavens). Galileo's mathematical definitions of velocity and acceleration 
and their dependence on time, his kinematic laws, and his laws concerning the oscil­
lation of the pendulum-all these and other insights inspired the development of an 
experimental science of mechanics, emphasizing efficient causation. In particular, 
Galileo's Dialogo of 1632 and his Discorsi of 1638 were a reservoir of ideas that 
were tested experimentally by himself and others. 

Nearly coinciding with Galileo's work were the contributions of the French 
philosopher Rene Descartes and his profoundly mechanistic view of nature, which, 
he argued, provided logical proof of the existence of God. In his Principia Philoso­
phia, published in 1644, Descartes argued that everything that exists requires a cause, 
and thus, the physical world can be likened to a complex machine and its parts. "As 
regards the general cause," he argued, "it seems clear to me that it can be none other 
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than God himself. He created matter along with motion and rest in the beginning; and 
now, merely by his ordinary co-operation, he preserves just the quantity of motion 
and rest in the material world that he put there in the beginning" (Sambursky, 1975, 
p. 246). Thus, Descartes reasoned, in the same way that the complexity inherent in 
the design and working parts of a complicated machine confronts us with wonder 
about the nature of its human creator, the machinery that constitutes the universe 
demands that we consider the majesty of its divine creator, God. 

Isaac Newton, born in the year of Galileo's death, extended the mechanistic 
conception by his own powerful theories on the mechanics of motion while passion­
ately championing the experimental method of science. Like Galileo and Descartes, 
Newton believed in the uniformity of nature, an idea he developed in detail in 
Philosophiae Naturalis Principia Mathematica (cited as Principia), published by the 
Royal Society in 1687. Proceeding on the premise that "space is absolute," his three 
axiomatic laws of motion replaced the clutter of Aristotelian and medieval science 
with a compact mechanical theory that stood unchallenged for over 200 years. His 
love of the experimental method of science was no less intense than Galileo's, and 
in Principia, Newton wrote, 

For since the qualities of bodies are only known to us by experiments, we are to hold 
for universal all such as universally agree with experiments; and such as are not liable 

I' to diminution can never be quite taken away. We are certainly not to relinquish the 
evidence of experiments for the sake of dreams and vain fictions of our own devising; 
nor are we to recede from the analogy of Nature, which is wont to be simple, and always 
consonant to itself. (longer passage in Sambursky, 1975, p. 303) 

In his second great work, Opticks-or, a Treatise on the Reflections, Refractions, 
Inflexions and Colours of Light, published in 1706, Newton described his famous 
Experimentum Crucis on light and color. He directed a sunbeam of white light through 
a triangular prism to produce a rainbow of colors (an old, but inexplicable, 
phenomenon) and then sent a single colored beam through another prism to show 
unequivocally that "white light is a mixture, but the colored beams are pure" (quoted 
in Gleick, 2003, p. 80). 

CONTIGUITY, PRIORITY, AND CONSTANT 
CONJUNCTION 

As word of the Principia spread, Newton's monumental formulation was embraced 
by philosophers who contended that the "new philosophy of mechanism" was also 
quite adequate to comprehend purposive human behavior (cf. Lowry, 1971; Wilkes, 
1978). Inspired by bold extrapolations, arguments began to be made that almost every­
thing in the panoply of natural and human phenomena could be understood by means 
of "Newtonianism" and the laws of motion. Humans, after all, are merely the product 
of biological and social engineering, a complex piece of machinery that efficiently 
modifies force or energy (cf. Aleksander, 1971). However, it was David Hume, the great 
18th-century Scottish philosopher, who, in the words of Judea Pearl (2000), "shook up 
causation so thoroughly that it has not recovered to this day," for, according to Hume, 
the sensation of causation was "almost as fictional as optical illusions and as transitory 
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as Pavlov's conditioning" (p. 336). Hume reasoned that, because it is intrinsic in human 
nature to expect the future to be like the past, the mind is essentially programmed to 
perceive causal links even though they are mere illusions "deriv'd from nothing but 
custom" (Hume, 1978, p. 183). Motion is lawful, but causality is in the mind's eye, 
conditioned by sensory repetitions and the mechanics of the association of ideas. 

In his Treatise of Human Nature (subtitled An Attempt to Introduce the Experi­
mental Method of Reasoning Into Moral Subjects), Hume listed a set of "rules" for 
defining causality. Eight years later, in his Inquiry Concerning Human Understand­
ing, he argued that the appropriate method of adducing causality was Newton's, 
because it is by the experimental method that we "discover, at least in some degree, 
the secret springs and principles by which the human mind is actuated in its opera­
tion" (Hume, 1955, p. 24). Hume's eight "rules by which to judge of causes and 
effects" (Hume, 1978, pp. 173-175) could be boiled down to three essentials: First, 
"the cause and effect must be contiguous in space and time" (called contiguity). 
Second, "the cause must be prior to the effect" (called priority). Third, "there must 
be a constant union betwixt the cause and effect" so that "the same causes always 
produce the same effect, and the same effect never arises but from the same cause" 
(called a constant conjunction). 

To illustrate, Hume (1978, p. 148) gave the example of a man who is hung 
from a high tower in a cage of iron. Even though he is aware that he is secure from 
falling, he nevertheless trembles from fear. The reason he trembles has to do with 
his "custom" of associating contiguous events in a causal sequence (the ideas of "fall 
and descent" and "harm and death")-which modern psychologists would call an 
illusory correlation of events (Fiedler, 2000). Another favorite example of Hume's 
was of a billiard bal! lying on a table with another ball rapidly moving toward it; 
they strike, and the ball that was previously at rest is set in motion. This, he stated, 
"is as perfect an instance of the relation of cause and effect as any which we know, 
either by sensation or reflection" (Hume, 1978, p. 649). And yet, all that can be 
confidently said, he argued, is that 

the two balls touched one another before the motion was communicated, and that 
there was no interval betwixt the shock and the motion. . . . Beyond these three 
circumstances of contiguity, priority, and constant conjunction, I can discover nothing 
in this cause. . . . In whatever shape I turn this matter, and however I examine it, 
I can find nothing farther. (pp. 649-650). 

Of course, merely because a physically or temporally contiguous event invari­
ably precedes another event-and thus predicts the event well--does not automatically 
implicate one as the cause of the other. The barometer falls before it rains, but a fall­
ing barometer does not cause the rain (Pearl, 2000, p. 42). Another example (discussed 
by Edmonds & Eidinow, 2001) that consumed Cambridge University philosophers in 
the 1940s involved the idea of two factories in two towns in England, one in the south 
and the other in the north, but both in the same time zone. Each factory has a hooter 
that signals the end of the morning shift at exactly twelve noon, and every time the 
northern hooter sounds, the southern workers lay down their tools and exit. Although 
we see, as Hume might have said, contiguity, priority, and a constant conjunction of 
events, the northern hooter is obviously not the cause of the southern workers' stopping 
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work. It appears that what baffled the Cambridge philosophers was how to clarify, 
unequivocally, the essential difference between coincidentally and causally linked 
events. Monday precedes Tuesday, just as night precedes day; these are not coinci­
dental linkages, but it would be equally absurd to say that Monday causes Tuesday 
or that night causes day. Some psychologists say the missing ingredient that explains 
the perception of causality is simply the ability to connect events by some plausible 
mechanism, whereas others argue that mere prediction is the necessary mechanism. 
Neither is a particularly satisfying answer, however. As Schlottmann (2001) observed, 
"Even infants have perceptual sensitivity to the causal structure of the world" and "if 
we always relied on mechanisms we would be locked into prejudice, having no way 
to go beyond what we already know" (pp. Ill, 115). Edmonds and Eidinow (2001) 
concluded by asking: What is causality, then, merely "a furtive, cloak-and-dagger 
agent, never seen or touched?" or is it "a chimera, a trick played on us by our 
imagination" (p. 65)? 

FOUR TYPES OF EXPERIMENTAL CONTROL 

To make this long story a little shorter, we skip to the 19th century and British 
philosopher John Stuart Mill. Like Hume, Mill was skeptical about ever removing all 
possibility of doubt when speaking of causality. However, he reasoned that demonstrat­
ing ~mpirically that there are both necessary and sufficient conditions of a presumed 
causal relation would produce by far the most convincing evidence of efficient causa­
tion. Mill's methods for demonstrating these necessary and sufficient conditions became 
the basis of an important empirical strategy of causal explanation in science, the use 
of control conditions. Before we explore this particular application, we pause briefly to 
note three other uses of the term control in experimental research. In this discussion 
we draw on the writing of Edwin G. Boring (1954, 1969), who was well known for 
his classic texts on the history of experimental psychology (Boring, 1942, 1957). 

Boring (1954) noted that the original meaning of control was "check," because 
the word control was the diminutive of counterroll (contre-rolle), the term for a 
"duplicate register or account made to verify an official or first-made account and 
thus a check by a later roll upon the earlier" (p. 573). Apparently, the idea of a check 
(or test observation) to verify something first came into scientific parlance during the 
last half of the 19th century, and by 1893, control also was used to refer to "a standard 
of comparison" (p. 574). A variation on the idea of a check or restraint is implicit in 
the idea of control referring to the "constancy of conditions" in an experimental 
research situation. For example, unless a scientist wants to study the effect of extreme 
temperature variation, it would not be advisable to allow the temperature in a labora­
tory to vary capriciously from very chilly to very hot. If such variation occurs, the 
scientist will be unable to claim the constancy of conditions that allows certain state­
ments of cause-and-effect relations to be made. To avoid this problem, the scientist 
controls (i.e., holds in check) the laboratory temperature by keeping it constant, 
removing the possibility of systematic error variability leading to spurious correlations 
and errant conclusions. 

Two other contemporary uses of the term control can be found in psycho­
physical research and in single-case research on behavioral learning principles. In 
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psychophysical research, experimenters use the term control series. To illustrate, 
suppose that blindfolded subjects are asked to judge whether their skin is being 
touched by one or two fine compass points. When two points are very close to one 
another, they should be perceived as only one point. A control series of psycho­
physical trials would consist of varying the distance between the two points and 
presenting one point on a certain percentage of trials. In this way, it is possible to 
identify the smallest detectable distance between two points while controlling for 
suggestibility. That is, if the subjects believe they are always being touched by two 
points, they might never report being stimulated by only one point. In single-case 
experimental research (discussed in the next chapter), the term behavior control is 
often used; it refers to the shaping of learned behavior based on a particular schedule 
of reinforcement designed to elicit the behavior in question. 

As Boring (1954) noted, although the use of the term control to refer to "a 
standard of comparison" is of relatively recent origin in the history of science, the 
idea can be deduced from John Stuart Mill's work and is also implicit in much earlier 
work (e.g., F. P. Jones, 1964; Ramul, 1963). For example, F. P. Jones (1964) mentioned 
an example going back to the Greek philosopher Athenaeus in the second century 
A.D., in which he described how a magistrate in ancient Egypt had discovered citron 
to be an antidote for poison. According to the story, the magistrate had sentenced a 
group of criminals to be executed by being exposed to poisonous snakes. Although 
the sentence was carried out with due diligence, it was reported back to him that none 
of the prisoners had died. What apparently had happened was that, while they were 
on their way to the place where they were to be executed, a market woman took pity 
on them and gave them some citron to eat. The next day, on the hypothesis that it 
must have been the citron that had saved their lives, the magistrate had citron fed to 
one of each pair of ciiminals and nothing to the others. Exposed to poisonous snakes 
a second time, those prisoners who had eaten the citron survived and those not given 
it died instantly. This story not only illustrates the early use of a control group but 
also provides another example of serendipity as well as the early use of replication, 
for Athenaeus noted that the experiment was repeated many times to firmly establish 
that citron was indeed an antidote for poison. 

MILL'S METHODS OF AGREEMENT 
AND DIFFERENCE 

John Stuart Mill proposed four methods of experimental inquiry in his 1843 classic, 
A System of Logic, Ratiocinative and Inductive, but it was his methods of agreement 
and difference that best provide the logical basis of the use of a control group or 
comparison condition in simple randomized controlled experiments. The method of 
agreement states, "If X, then Y,"'X symbolizing the presumed cause and Y the pre­
sumed effect. The statement means that if we find two or more instances in which Y 
occurs, and if only X is present on each occasion, X is implied as a sufficient condition 
of Y. In other words, X is adequate (i.e., capable or competent enough) to bring about 
the effect (Y). In baseball, for example, we would say there are several sufficient 
conditions for scoring runs, such as hitting a home run (XI)' stealing home (X2) , a 
wild pitch with the bases loaded (X3), a hit that moves a runner home (X4) , and so 
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forth. Another example would be sufficient conditions for starting a fire (Y), which 
include striking a match (Xl)' using a flint to create a spark that ignites dry leaves 
(X2), turning on a gas stove (X3), or just waiting in a storm for lightning to strike (X4 ). 

In social psychology, an example of sufficient conditions might be those that are 
adequate to cause a person to pass a rumor, for example, seeking confirmation of 
information (Xl)' manipulating a situation by sending up a trial balloon (X2), impress­
ing someone with one's privileged position (X3), trying to convince people to conform 
to a set of group or societal norms (X4), or trying to manipulate stock prices (Xs)' 

The method of difference states, "If not-x, then not-Y." It means that, if the 
presumed effect (Y) does not occur when X is absent, then we suspect X is not just a 
sufficient condition of Y, but a necessary condition for Y to occur In other words, X is 
indispensable, or absolutely essential in order for Y to occur. For example, to win in 
baseball (y), it is necessary to score more runs (X) than the other team. Though we 
noted that there were several (sufficient) ways of scoring runs, the fact is that not scoring 
any runs (not-X) will inevitably result in not winning (not-Y). Similarly, we all know 
that oxygen is a necessary condition of fire, for without oxygen (not-X) the fire goes out 
(not-Y). The necessary condition for rumor generation appears to involve an optimum 
combination of uncertainty and anxiety, as rumors are essentially suppositions intended 
to make sense of ambiguous events or situations that make us feel apprehensive or 
nervous about what to believe and how to behave appropriately (Rosnow, 2(01). 

'fable 7.4 illustrates the idea of necessary and sufficient conditions in still 
another situation. Suppose we are told that five people have been diagnosed with 
food poisoning. After some probing, we discover that all five people reported 

TABLE 7.4 

Illustration of agreement and difference methods 

Ate tuna Drank Got food 
Persons Ate burger sandwich Ate fries Ate salad shake poisoning 

Mimi Yes No Yes No No Yes 

Gail No No No Yes Yes No 

Connie No No Yes No No No 

Jerry No Yes No Yes No No 

Greg No Yes No No Yes No 

Dwight No No No Yes No No 

Nancy Yes No Yes Yes No Yes 

Richard No Yes Yes Yes No No 

Kerry No No No Yes No No 

Michele Yes No Yes Yes Yes Yes 

John Yes No Yes Yes No Yes 

Sheila Yes No No No No Yes 

Note: Based on a similar example in Logic and Philosophy: A Modern Introduction (6th ed.), by H. Kahane, 1989, 
Belmont, CA: Wadsworth. Used by pennission of Howard Kahane and Wadsworth Publishing Co. 
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having eaten in a fast-food restaurant; seven others, who also ate at the same place 
around the same time, did not get sick. This table lists the foods consumed by each 
of them. Notice that the burger appears in each case of food poisoning, but no 
other food was consistently present in each case of food poisoning. This evidence 
suggests that the burger was the necessary and sufficient causal agent. However, 
the manager tells us that one of the waiters left early on the day in question, after 
complaining of dizziness and nausea. Thus, we have an alternative hypothesis to 
the burger hypothesis, which is that the waiter was the necessary condition and the 
foods he touched were the sufficient conditions. Going through the checks given 
to customers that day, the manager thinks that some of those identified as having 
food poisoning were probably not served by this waiter, and others who did not 
become ill were probably served by him. If correct, this assessment rules out the 
waiter hypothesis and leaves us with only the burger hypothesis. Because the 
burger was present (X) in every case in which food poisoning (Y) occurred, and 
the burger was absent (not-X) in every case in which food poisoning did not occur 
(not-y), we conclude that the burger was necessary and sufficient to produce the 
outbreak of food poisoning. 

BETWEEN-GROUP DESIGNS AND MILL'S 
JOINT METHOD 

To understand the application of Mill's two methods to the logic of causal inference 
in a randomized controlled experiment, imagine that X represents a tranquilizer that 
can be obtained without prescription, and Y represents a reduction in measured ten­
sion. Say we give a gn:JUp of people who complain of tension a certain dosage of the 
drug, and they show a reduction in measured tension. Can we now conclude from 
this observation that it was the tranquilizer that led to the reduction in tension? Not 
yet, because what we require is a control condition (a not-X condition) with which to 
compare the reaction in the drug group. In other words, we need a group of similar 
subjects to whom we do not give drug X. On the assumption that these subjects are, 
in fact, similar to those in the drug group in all respects except for the absence of X, 
then finding no reduction of tension (i.e., not-Y) in the control condition would lead 
us to conclude that taking drug X is an effective tension reducer and that not taking 
it (or an equivalent drug) will result in no observable reduction in tension. 

Notice that the group given the drug, the experimental condition, resembles Mill's 
"If X, then Y" method of agreement, whereas the group not given the drug (the control 
condition) resembles his "If not-X, then not-Y" method of difference. When viewed 
together in this way, Mill's two methods are collectively referred to as the joint method 
of agreement and difference. Mill believed the joint method could be generalized to 
many different situations in which we use empirical observation and reason to rule out 
some hypotheses and argue for others. He realized, however, that other logical stipula­
tions may be required to make the most solid case for causation. In the example we 
have been discussing, although we are on safer grounds to conclude that taking the drug 
(X) is what led to tension reduction (Y), it is necessary to stipulate that "taking the drug" 
means something different from just getting a chemical into people's bloodstreams. 
"Taking the drug" means, among other things, (a) having someone give people a pill, 
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(b) having someone give them the attention that goes with pill giving, (c) having them 
believe that a relevant medication has been administered, and (d) having the ingredients 
of the drug find their way to the subjects' bloodstreams. 

Usually, when testing a new medication, the researcher is interested only in the 
subjects' physical reactions to the active ingredients of the medication. The researcher 
does not care to leam that the subjects will get to feel better if they believe they are 
being helped, because this fact (i.e., the power of suggestion) is already established. But 
if the researcher knows this, then how is she or he to separate the effects of the chemical 
ingredients of the drug from the effects of pill giving, subjects' expectations of help, and 
other psychological variables that may also be sufficient conditions of Y? The answer is 
by the choice of a different (or an additional) control condition. For example, in Table 7.1 
we showed a between-groups design in which the control group was given a placebo 
rather than given nothing. If there were an appropriate drug already on the market, then 
the Helsinki declaration (mentioned earlier in this chapter) stipulates that the controls 
must receive the appropriate alternative treatment. Nonetheless, it has long been a con­
vention in drug research that biomedical experimenters routinely use placebo control 
conditions. The general finding, incidentally, is that placebos are often effective, and 
sometimes even as effective as the far more expensive drugs for which they serve as the 
controls. Of course, in order to tease out the effect of the placebo, we would also need 
to control for the power of suggestion implicit in being given a placebo and thinking it 
is rur~active pharmaceutical. For example, when an individual has received the therapeutic 
drug in the past, the person may be conditioned to make "drug-anticipatory responses" 
to the placebo (Ramsay & Woods, 2001, p.785). Thus, a model randomized drug 
experiment might have more than one control group (Dennenberg, 2002; Ross, Krugman, 
Lyerly, & Clyde, 1962) as well as stipulations concerning the prior treatment status of 
the participants. 

INDEPENDEN~DEPENDEN~AND 
MODERATOR VARIABLES 

Frequently it is clear what kind of control condition is needed, but sometimes it 
is not immediately apparent what kind of control group (or groups) to use. Thus, 
researchers rely on the wisdom of experience to decide how to frame the control 
condition. In the research described above, we first used a no-pill control group 
and then a placebo control. When there is a choice of control groups, how can the 
researcher decide on the most appropriate variables to control for? Two important 
considerations are what the particular question (or questions) of interest are and 
what is already known about the research area. However, even an experienced 
experimenter may go astray in choosing control groups when he or she makes a 
major shift of research areas or draws analogies that lead to faulty inferences or 
spurious assumptions (cf. Lieberman & Dunlap, 1979; Peek, 1977; Rosenthal, 
1985a; Shapiro & Morris, 1978; Wilkins, 1984). We will have more to say shortly 
about teasing out causal connections in an experimental design where there is more 
than one control condition, but there are other considerations as well. 

Hume's idea was of a "constant conjunction" between causes and effects. In 
actuality, there is hardly ever a perfect (or even a near-perfect) association between 
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the presence and absence of causes and effects. We return to this idea in chapter 11 
when we give a number of examples of quite meaningful, but very small, effect size 
correlations in drug trials (similar to the small effect sizes in the aspirin study noted 
in Table 2.5 of chapter 2). Indeed, effect size correlations smaller than .10 are quite 
common in this area, but effect size correlations in any area may vary considerably 
even when similar cause-and-effect variables are observed over a period of time or in 
different situations. One reason for all this variability is that other factors (called 
moderator variables) may alter the relationships between cause-and-effect variables. 
For example, rewarding a child while she or he is in the presence of a group of other 
children may influence the child's attitude toward the group (A. J. Lott & B. E. Lott, 
1968; B. E. Lott & A. J. Lott, 1960), but it is conceivable that variables such as the 
child's state of mind, personality, and degree of familiarity with the group may mod­
erate (alter) that relationship. Similarly, it is also generally true that attributing a 
persuasive communication to a highly respected (as opposed to a less respected) 
source will improve its effectiveness in influencing attitudes, but it is also true that 
respectability is in the eye of the beholder. Moderator variables in this situation include 
idiosyncratic factors related to how each individual perceives the trustworthiness of 
the particular source of the communication. As another case in point, there is research 
that shows that the positive or negative mood people are in when subjected to 
persuasive communications may moderate their receptivity or resistance to those com­
munications (Rosnow, 1968). Incidentally, it is important not to confuse moderator 
variables with mediator variables; the latter are defined as conditions, states, or other 
factors that intervene between the independent variable and the outcome variable in 
a causal chain (R. M. Baron and Kenny, 1986). 

Although we have used the terms cause and effect, the terms independent vari­
able and dependent variable are perhaps more commonly used by behavioral and 
social researchers. With the rise of positivism, it became unfashionable for a time to 
speak of causal relations. Instead, terms like functional relations (discussed in the next 
chapter) and functional correlations became fashionable (Gigerenzer, 1987; Wallace, 
1972). Researchers might refer to the "effects of X on Y," but not to causal effects. 
By X and Y, they generally meant whatever were conceived to be the stimulus (X) 
and outcome (Y) conditions in a study. The term variable became popular because it 
implied that the factors of interest were subject to variation. However, as psychologist 
David Bakan (1967) commented, "Variables, whatever they may be in re, do not exist 
there as variables. For variables are, by definition, sets of categories; and categories 
are the result of someone's delineation, abstraction, and identification" (p. 54). Though 
the idea of a variable is further qualified by means of a distinction between the depen­
dent variable (Y) and the independent variable (X), it should be understood that any 
condition or factor can be conceived of as either an independent or a dependent vari­
able, depending on how we frame the situation or conceptualize the particular context 
of defined antecedents and consequences. Operationally, the dependent variable is 
the status of a measurable consequence (e.g., its presence or absence, or an increase 
or a decrease in a measured outcome) that presumably depends on the status of an 
antecedent condition, or independent variable. 

Another reason for the use of the terms independent variable and dependent 
variable is that they are broad enough to encompass suspected causal agents or 
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conditions that are not subject to manipulation. Suppose we found a relationship 
between gender and height and wanted to call one an independent variable and the 
other a dependent variable. Common sense leads us to conclude that gender is more 
likely to determine height than that height is likely to determine gender, because 
we know that a person's gender is biologically established at conception. By changing 
the context, however, we can view gender as a dependent variable; for example, 
we can say that gender is determined by genetic factors, so the independent variable 
now is "genetic factors." To provide another illustration, we can also conceive of 
rumors as independent or dependent variables, depending on the context. For 
example, we know that rumors can trigger needs that instigate new rumors, which 
can then trigger new needs, and so on (Rosnow, 1980). Without getting drawn into 
murky metaphysics, suffice it to say that, as Bakan implied, all definitions of inde­
pendent and dependent variables are always influenced by someone's "delineation, 
abstraction, and identification." 

SOLOMON'S EXTENDED CONTROL 
GROUP DESIGN 

We turn shortly to the influential ideas of Campbell and Stanley, but first, we want 
to mention some earlier work of experimental psychologist Richard L. Solomon. As 
Campbell and Stanley (1966) reminded readers, it was psychological and educational 
researchers between 1900 and 1920 who created the orthodox control-group design 
in which a pretested experimental group was compared with a control group. Designs 
like these were used with some frequency, usually "without need of explanation," 
Campbell and Stanley noted (p. 13; see also Dehue, 2000). Solomon's work repre­
sents a cutting-edge transition in thinking about control group designs in behavioral 
and social experimentation. In an article published in 1949, he raised the question 
of whether pretesting subjects in pre-post designs might have a sensitizing effect 
on their reactions to the experimental treatment, and he argued that orthodox two­
group designs were unable to address this problem. Solomon also anticipated some 
ideas that were later developed in more depth by Campbell and Stanley, and though 
we would not endorse the specific details of all of his recommendations, we 
nevertheless want to recognize the historical sequence of Solomon's forward-looking 
work. 

To put the pretest sensitization problem in context, Solomon described a popular 
design strategy in the field of attitude change research. The participants received a pretest 
that, if not identical to the posttest, was similar in terms of the scale units on the posttest. 
Typically there was an experimental group and a control group, and either the groups 
were matched on some criterion or the subjects were randomly assigned to the groups. 
Solomon's position was that the two-group design was deficient because of its failure to 
control for the possibility that merely taking the pretest could affect how the subjects 
responded to the experimental treatment. For example, the pretest might change their 
attitudinal "set" or influence some other attentional factor so that they perceived the 
experimental treatment differently than if they had not been pretested, and their responses 
to the treatment were affected accordingly. To control for this problem, Solomon cautioned 
researchers to use either a three-group or, preferably, a four-group design. 
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TABLE 7.5 

Solomon's (1949) three-group design 

Conditions 

Pretest 

Treatment 

Posttest 

Results 

Pretest means 

Posttest means 

Improvement means 

A. Basic three-group design 

Experimental group 

Yes 

Yes 

Yes 

Control Group I 

Yes 

No 

Yes 

B. Results of an experiment in spelling (n = 10) 

Experimental group 

3.2 

9.9 

6.7 

Control Group I 

2.8 

3.5 

0.7 

'Estimated from (3.2 + 2.8)/2. the average of the two available pretest means. 

Control Group II 

No 

Yes 

Yes 

Control Group II 

3.0 (est.)' 

11.2 

8.2 

Note: Control Group I is easily recognized as a control for the treatment in the experimental group. but Control Group II 
receives the treatment and yet is called a "control group" because it controls for the presence of the pretest in the 
experimental group. 

The three-group design that Solomon proposed appears in Part A of Table 7.5, 
and Part B shows the results of a spelling experiment in which 30 students in two 
grammar school classes were assigned to the three groups (n = 10). Pupils in the 
experimental group and in Control Group I were pretested on a list of words of 
equal difficulty (Control Group II was out of the room at the time). Then the 
experimental group and Control Group II were given a standard spelling lesson 
covering some general rules of spelling (Control Group I was out of the room), 
and afterward all the children were posttested on the same words as in the pretest. 
The (unobserved) pretest mean of Control Group II was estimated from an average 
of the pretest means of the experimental group and Control Group I. Solomon 
believed that, in order to tease out pretest sensitization, it was necessary simply 
to remove the combined improvement effects of Control Groups I and II from the 
experimental condition improvement effect, so that what remained would be either 
a positive or a negative effect of pretest sensitization. Solomon concentrated on 
the posttest means in his later work, but in this early paper (Solomon, 1949), he 
focused on the improvement means in Table 7.5. Then he computed 6.7 - (0.7 + 
8.2) = -2.2 and concluded. that, in light of this "interaction," the "taking of the 
pre-test somehow diminishecl the effectiveness of the training in spelling" (p. 145). 
It was not clear why the negative effect occurred, but one possibility that he raised 
was that taking the pretest might have been emotionally disturbing to the children. 
What was clear, he concluded, was that if he had used only the experimental group 
and Control Group I, he would have erroneously underrated the teaching procedure, 
as the pretest apparently "vitiated some of the effectiveness of the teaching method" 
(p. 145). 
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TABLE 7.6 

Solomon's (1949) four-group design 

A. Basic four-group design 

Conditions Experimental group Control Group I Control Group II Control Group m 

Pretest 

Treatment 

Posttest 

Yes Yes No No 

Yes No Yes No 

Yes Yes Yes Yes 

B. Numerical values needed 

Results Experimental group Control Group I Control Group II Control Group m 

Pretest means AI A2 A3 (est.)' A4 (est.)' 

Posttest means BI B2 B3 B4 

Change means DI = BI - AI 02 = B2 - ~ 03 = B3 - ~ 04 = B4 - A4 

'Estimated from (AI + A,)/2. 

Continuing to follow the train of Solomon's thinking, Table 7.6 shows his four­
group design. The additional group (Control Group III) is a control for what Campbell 
and Stanley subsequently called "history," or the effects of uncontrolled events that 
may be associated with the passage of time. Solomon (1949) mentioned certain field 
studies on attitude change that had been conducted during World War II; some of that 
research had experimented with propaganda effects. It was possible, he argued, that 
uncontrolled events taking place in the time between the pretest and the posttest might 
have impinged on all the subjects. Notice that there are two estimated pretest means 
(Control Groups II and III); Solomon gave them identical values based on averaging 
the pretest means of the experimental group and Control Group I. The value noted as 
D 4 is the change from the estimated pretest to the observed posttest for Control Group 
III that can be attributed to outside, uncontrolled events (i.e., history), he reasoned. 
The value of I is the difference between differences. Because there is no within-error 
term for the difference scores in Control Groups II and III, the ANOVA option would 
be to compute a 2 X 2 analysis on the posttest scores (with treatment vs. no treatment 
as one factor, and pretest vs. no pretest as the other factor), or simply to impute an 
error term for difference scores from error terms of the experimental group and 
Control Group I. Interestingly, Solomon's definition of I anticipated the most frugal 
way of operationalizing the 2 X 2 interaction, but calling the difference score of -2.2 
for the results in Table 7.5 an "interaction" was simply wrong (cf. Rosnow & 
Rosenthal, 1989a, 1995)-we have much more to say in chapter 17 about statistical 
interactions in the context of analysis of variance. 

Before leaving this discussion, we should note that other research has uncovered 
both positive and negative effects of pretesting. Solomon (1949) mentioned in a footnote 
that he had "preliminary evidence that the pre-test may operate to reduce post-test 
variance in studies of attitude change" (p. 148). In another investigation, Lessac and 
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Solomon (1969) used a four-group Solomon design to study the effects of sensory 
isolation on beagle pups. In this way they were able to estimate pretest mean scores of 
unpretested animals before they were placed in isolation and pretest means of their 
corresponding unpretested controls. Lessac and Solomon concluded that "the behavioral 
deficiencies found in the isolated subjects ... must represent an active, destructive, atro­
phic process produced by the isolation experience" (p. 23; see Solomon & Lessac, 1968, 
for implications of the extended control-group design in developmental research). Using 
the Solomon design in an investigation of children's ability to learn state locations of 
large U.S. cities, Entwisle (1961), found that pretesting aided recall for the high-IQ sub­
jects and was "mildly hindering" for the average-IQ subjects. In an attitude change study, 
Rosnow and Suls (1970) found that pretesting enhanced the volunteer subjects' receptivity 
to the experimental treatment (which involved a persuasive communication) and reduced 
receptivity in nonvolunteer subjects. Thus, it would appear that when a pre-post design 
is used in some fields (such as educational training, inducing changes in attitudes, transfer 
of training, performance skills) it might be prudent, as Solomon (1949) recommended, 
to control for the possibility of moderating effects of the pretest measurements. 

THREATS TO INTERNAL VALIDITY 

In chapter 4 we examined uses and definitions of the term validity in the context of 
measurement, and we now describe some additional, specialized uses of the term in 
the context of experimental and other research designs. In a 1963 chapter that, after 
the authors were inundated with hundreds of reprint requests, was published in a 
slightly revised version as a separate little book, Experimental and Quasi-Experimental 
Designs for Research, Campbell and Stanley introduced the terms internal validity 
and external validity (Campbell & Stanley, 1963, 1966). The book also stimulated 
considerable debate, and specific issues that Campbell and Stanley labeled one way 
were perceived and labeled differently by some others (Albright & Malloy, 2000). 
The next version of the book was greatly expanded (Cook and Campbell, 1979), in 
which these authors expounded on two further validity distinctions, termed statistical 
conclusion validity and construct validity. The most recent version of this seminal 
work appeared in a book coauthored by William R. Shadish, Cook, and Campbell 
(2002), which has continued the tradition begun by Campbell and Stanley by specify­
ing variables and circumstances that may threaten the four types of validity not only 
in experimental studies but in other research as well. In this section and the two that 
follow, we will try to communicate a sense of this work. We should note, however, 
that the Shadish et al. book is encyclopedic in its coverage, reaching well beyond our 
abilty to summarize it in this brief discussion. 

We alluded to the concept of internal validity in chapter 4 when we spoke of the 
idea of trying to rule out plausible rival hypotheses that undermine causal interpretations. 
That strategy is understood to be as elemental to causal inference in science as are evi­
dence of temporal precedence and covariation. Causal inference, in other words, depends 
(a) not only on operationalizing a reliable relationship between an event and its presumed 
cause (covariation), as well as (b) providing some proof that the cause preceded the effect 
(temporal precedence), but also on (c) ruling out plausible rival explanations (internal 
validity). Stated still another way, the concept of internal validity is now said to imply 
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"the validity of inferences about whether observed covariation between A (the presumed 
treatment) and B (the presumed outcome) reflects a causal relationship from A to B as 
those variables were manipulated or measured" (Shadish et al., 2002, p. 38). Among 
several threats to internal invalidity are what Campbell and Stanley (1966) referred to as 
history, maturation, instrumentation, and selection. We will describe each of these in 
turn, but we begin with another threat to internal validity, called regression (a shorthand 
expression for "regression toward the mean"), a subject on which Campbell and Kenny 
(1999) wrote an entire volume. 

Regression toward the mean has to do not with the actual (or raw) scores of a 
measure, but with the standard (or predicted) scores (Campbell & Kenny, 1999; Cohen & 
Cohen, 1983; Cohen, Cohen, West, & Aiken, 2003). We review standard scores 
(Z scores) in chapter 10, but they are raw scores from which the sample mean has been 
subtracted and the difference is then divided by the standard deviation. The regression 
equation, stated in standard score units, is Zy = rxlx' where the standard score of Y is 
predicted from the product of the XY correlation (rxy) times the standard score of X. Given 
a perfect correlation between X and Y (i.e., r xy = 1), it follows that Zy is equivalent to 
Zx' However, if r xy < 1, then Zy cannot be equivalent to Zx' For example, if rxy = .4, 
then Zy can be only 0.4 as large as Zx' Regression toward the mean occurs when pre and 
post variables (X and Y) consist of the same measure taken at two points in time, and 
rxy < 1. Therefore, it can be understood as a mathematical necessity whenever two 
variables are correlated less than perfectly. For example, finding that overweight people 
appear to lose weight, or that low-IQ children seem to become brighter, or that rich 
people appear to become poorer is a common observation in longitudinal research, but 
the findings might be evidence of a regression toward the mean. 

Table 7.7 helps to explain how history, maturation, instrumentation, and selec­
tion affect internal validity. The table lists two of what Campbell and Stanley (1966) 
called "preexperimental designs" because of their relatively primitive nature. One is 
described in the table as a "one-shot case study" and the other, as a "one-group pre­
post." One-shot case studies can be symbolized as X-O, where X denotes the exposure 
of a group to a variable, and 0 is an observation or measurement. An example of an 
X -0 study would be introducing an educational intervention to improve reading skills 
and then testing the students exposed to the intervention on their reading skills. 
One-group pre-post studies can be symbolized as O-X-O, which means the subjects 

TABLE 7.7 

Four threats to internal validity in two preexperimental designs and the 
Solomon design of Table 7.6 

Design 

One-shot case study 

One-group pre-post 

Solomon design 

History 

+ 

Threats to internal validity 

Maturation Instrumentation 

Not relevant 

+ + 

Note: A minus (-) indicates a definite weakness; a plus (+) that the source of invalidity is controlled for. 

Selection 

+ 
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would be measured both before and after exposure to the teaching intervention. In 
neither preexperimental design, however, is an allowance made for a comparison with 
the reactions of subjects not exposed to the intervention. The minus signs in Table 7.7 
imply that both preexperimental designs are totally deficient in terms of history, 
maturation, and selection. Only the one-group pre-post is deficient in terms of instru­
mentation, which is not relevant to the one-shot case study because there is no pre­
measurement instrument with which the postmeasurement can be compared. Also 
implied in Table 7.7 is that the Solomon design of Table 7.6 controls for all four 
threats to internal validity, as would any other randomized experiment. Now let us 
see how history, maturation, instrumentation, and selection are defined. 

First, the term history implies a plausible source of error attributable to an 
uncontrolled event that occurs between the premeasurement (the pretest) and the post­
measurement (the posttest) and can bias the postmeasurement. History becomes a 
threat to internal validity when the inferred causal relationship is confounded by the 
irrelevant, uncontrolled event. Suppose a sudden snowstorm results in an unexpected 
cancellation of classes. Neither preexperimental design allows us to isolate the effects 
on motivation of a school closing, or to assess that variable apart from the effects of 
the new educational intervention designed to improve concentration. In the case of 
the Solomon design, there are two pretested and posttested groups, one with and the 
other without a treatment, so we can assess the factor of history in the treated groups 
apart from the untreated groups. 

Second, maturation refers to intrinsic changes in the subjects, such as their 
growing older, wiser, stronger, or more experienced between the pre measurement and 
the postmeasurement. Maturation is a threat to internal validity when it is not the 
variable of interest and the causal relationship is confounded by the presence of these 
changes. Imagine a 'study in which the posttest is given 1 year after the pretest. If the 
students' concentration improved as a result of getting older, so they have became better 
at the task, neither preexperimental design could tell us whether those gains were due 
to students' maturing or to their being subjected to the educational innovation. The use 
of the Solomon design gives us an opportunity to find out how the subjects improved 
as a function of growing older (i.e., during the period of the experiment), as we have 
pre-post data on a group that did not receive the experimental treatment. 

Third, instrumentation refers to intrinsic changes in the measuring instruments. 
Instrumentation is a threat to internal validity when an effect might be due to unsus­
pected changes in the instruments over time. In the case of the new educational 
innovation, we might ask whether the observed effect was due to instability 
(i.e., deterioration) in the achievement test or to changes in the students that were 
caused by the treatment. Or suppose the "instruments" were actually judges who were 
asked to rate the subjects. Over time, the judges might have become better raters of 
student concentration, so that the confounding is due not to instrument deterioration 
but to instrument improvement. Instrumentation bias is not a relevant issue in the 
one-shot case study design because the instrument is administered only once. However, 
it is both relevant and uncontrolled in the one-group pre-post design. It is also relevant, 
but specifically controlled for (i.e., identifiable), in the Solomon design, because there 
are two pretested groups with which we can compare the groups that were not 
pretested. 
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Finally, selection is a potential threat to internal validity when there are unsus­
pected differences between the participants in each condition. In the one-shot case study, 
we simply do not know beforehand anything about the state of the subjects because they 
are observed or measured only after the treatment has been administered. The addition 
of an observation before the treatment in the one-group pre-post design is a slight 
improvement in that it enables us to assess the prior state of the participants. The Solomon 
design and all other randomized experiments control for selection bias by randomly 
allocating participants to the groups. However, as noted earlier, random allocation is not 
a guarantee of comparability between groups, particularly in small-sample experiments. 

THREATS TO EXTERNAL VALIDITY 

The concept of external validity, which some argue was originally confounded with 
other types of validity, is currently defined as the "validity of inferences about whether 
the cause-effect relationship holds over variation in persons, settings, treatment variables, 
and measurement variables" (Shadish et al., 2002, p. 38). Nonetheless, external validity 
is often used by researchers as a synonym for generalizability or representativeness. 
Lynch (1982) identified three issues that are frequently conflated in this broader use 
of the term. First, there is statistical generalizability, which refers to the representative­
ness of the results to a wider population of interest. Second is conceptual replicability 
or robustness, which Lynch believed to be closest to Campbell and Stanley's (1966) 
conception of external validity. Third is realism, which is also similar to what Aronson 
and Carlsmith (1968) referred to as mundane realism, or the extent to which an 
experimental treatment is apt to be encountered in an analogous form in a natural 
setting. Incidentally, Aronson and Carlsmith made a further distinction between mun­
dane and experimental realism, the latter referring to the psychological impact of the 
experimental manipulation on the participants. As if external validity were not already 
elusive enough, Lynch (1982) also argued that it "cannot be evaluated either a priori 
or a posteriori (e.g., on the basis of sampling practices or realism) in the absence of a 
fairly deep understanding of the structural determinants of the behavior under study" 
(p. 239). Lynch's position is that we must have an implicit or explicit model of the 
behavior we are investigating, or else we leave judgments of the external validity of 
experiments to experts in the substantive area who have a sense of the behavior under 
investigation (i.e., as opposed to mere specialists in methodology). 

If external validity seems a mercurial concept and not easy to pin down, another 
issue is that a number of psychological experimenters have questioned the importance 
of external validity as a criterion of a sound experimental design. Douglas Mook 
(1983) contended that the insistence on external validity is often misguided. The point 
of many laboratory simulations, he argued, is not to generalize to the real world, but 
instead to try to make predictions about the real world from the laboratory. Mook noted 
the monkey love studies of Harlow (discussed in chapter 1) as an example of exper­
iments that are lacking in external validity (because using baby monkeys, and wire 
mesh or cloth-covered mother surrogates, to study human babies falls far short of the 
ideal) but that nevertheless tell us something theoretically valuable about personality 
development. Mook cautioned that, before condemning any experiment as lacking 
in external validity, it would be far more instructive to ask: (a) Is the investigator 
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really trying to estimate from sample characteristics the characteristics of a population, 
or is the purpose of the study instead to draw conclusions about a theory that predicts 
what these subjects will do? And (b) Is the purpose of the study to predict what would 
happen in a real-life situation, or is its purpose to test under very controlled conditions 
a predicted causal relationship that is purported to be a universal principle of behavior 
(and that should therefore operate in the laboratory as well as in real life)? More 
recently, Anderson, Lindsay, and Bushman (1999) reexamined the issue addressed by 
Mook, this time by asking whether there is actually a correspondence between lab 
and field experimental findings that have addressed similar questions. They inspected 
the effect sizes in a range of studies (including studies of aggression, helping, leadership 
style, social loafing, self-efficacy, depression, and memory) and concluded that there 
was considerable similarity in the pooled effect sizes of laboratory and field studies 
using conceptually similar independent and dependent variables. 

Some years before the terms external validity and internal validity were coined 
by Campbell and Stanley, another noted experimentalist, Egon Brunswik (1947), had 
addressed the issue of representativeness in a way that now seems conceptually related 
to both external and internal validity. If we want to generalize the results of a psy­
chological experiment to a population of subjects and a population of stimuli, then 
we must sample from both populations, Brunswik argued (see also discussion by 
Maher, 1978). Brunswik used the expression representative research design to 
describe an idealized experimental model in which both the subjects and the experi­
mental stimuli are representative of specified populations. Experiments that satisfy 
this criterion were called ecologically valid. Suppose we wanted to test the hypoth­
esis that male and female patients respond quite differently to a certain psychothera­
peutic treatment when the clinician is male or female. A convenient experimental 
design would consist of randomly assigning patients of both genders to either a male 
or a female clinician. Though it might be claimed that the design is representative in 
terms of the selection of patients (assuming they were properly sampled), it could not 
be claimed that the design is representative as regards the stimulus (i.e., the clinicians 
presenting the treatments). Because the experimenter did not sample from among 
populations of male and female clinicians, we would be hard-pressed to conclude that 
there is a generalizable relationship of the type hypothesized. Thus, Brunswik might 
say that, inasmuch as the use of other male or female clinicians might produce quite 
different results, the design of the study is deficient in ecological validity (Hammond, 
1954)-and by implication, we might add, deficient in external validity as well. 

What does this also have to do with internal validity? The argument is that our 
use of only one clinician of each sex as a stimulus does not preclude the possibility that 
some other characteristics of this person may have stimulus values that are unknown 
and uncontrolled for. In other words, there are two major limitations in this so-called 
"single stimulus design" (Maher, 1978). First, it is possible that differences among the 
patients who are exposed to th~ male clinician and those exposed to the female clinician 
may be due to the effects of uncontrolled stimulus variables. On the basis only of the 
information available from our data, we cannot conclude whether the obtained differences 
are due to the validity of the tested hypothesis or to the effects of another uncontrolled 
variable (i.e., clearly a threat to internal validity). Second, the failure to find differences 
between those subjects exposed to the male clinician and those exposed to the female 
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clinician might also be due to the presence of an uncontrolled stimulus variable operating 
either (a) to counteract the effect of the intended independent variable or (b) to increase 
that effect artificially to a ceiling value (i.e., a top limit) in the different groups. We have 
no way of distinguishing between this explanation and the possibility that the lack of 
difference is due to the invalidity of the tested hypothesis. 

Earlier we mentioned the idea of moderator variables that affect relationships 
between independent and dependent variables. Presumably, given an adequate theory, 
we can formulate a model on which to predicate the carving out of moderator variables. 
For example, Alice H. Eagly (1978) was intrigued by the claim that, generally speaking, 
women are more conforming and more easily influenced than men. The explanation 
proposed for this idea was that socialization processes taught men to be independent 
thinkers, a cultural value not as frequently thought to be suitable for women. The 
empirical findings, however, were inconsistent. Some failed to find gender differences 
in influenceability. Using a historical model in which she reasoned that the era in which 
the empirical data were collected was a plausible moderator of the association between 
gender and influenceability, Eagly meta-analyzed all the relevant studies she could find. 
Just as her model predicted, there was a pronounced difference in the correlation between 
gender and influenceability in studies published before 1970 and those published during 
the era of the women's movement in the 1970s. In contrast to the older research studies, 
which had found greater influenceability among females than among males, the later 
studies identified few gender differences in influenceability. 

Brinberg et al. (1992) cautioned that when researchers know little about the mod­
erator variables lurking beneath the surface of their aggregated variables, they may 
unwittingly misrepresent the external validity Of their causal inferences and recommen­
dations based on those inferences. It is quite possible, for example, that critical patterns 
that hold true in the aggregate may not hold for only a small number of individuals 
(Hutchinson, Kamakura, & Lynch, 2000; Yule, 1903), and thus, it is always prudent to 
explore the individual data. In biomedical research, standard moderator variables include 
demographic descriptors like age, sex, ethnic group, and prior pathology. Suppose that 
research shows a particular treatment of flu is effective. Still, we want to break down 
the aggregate scores so that we can state with more precision when the treatment can 
be expected to be most (and least) effective. We might find that Caucasian men do bet­
ter on certain dosages of the treatment than non-Caucasian men, or that both men and 
women with prior pathology do the poorest, or that younger people do better than older 
people in some ethnic groups. In the field of experimental psychology it is quite common 
for researchers to rely on what are called convenience samples, which simply means 
samples made up of people who are readily accessible, usually sophomores in introduc­
tory psychology courses. As a way of exploring for possible moderator variables, it is 
standard practice in many psychology departments to request that students in introduc­
tory psychology classes complete a battery of psychological instruments (typically 
including some measure of major factors of individual personality; cf. Goldberg, 1993; 
McCrae & Costa, 1997; Wiggins, 1996), as well as provide demographic information 
that can then be correlated with the students' total scores or with residuals about the 
mean in the research in which they participate. 

Frequently, the problem with convenience samples is that researchers seem 
oblivious even to the possibility that their subject samples may not be representative 
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of the population they are presumed to be theorizing about, as if all humans were the 
same, or all rats were the same. We return to this issue in chapter 9, but the latter 
problem was illustrated some years ago by Marshall B. Jones and Robert S. Fennell, III 
(1965). In the 1 940s, there was a controversy between two leading psychological 
researchers, Clark L. Hull and Edward C. Tolman, over the nature of learning. Hull, 
inspired by Pavlov's research on conditioned reflexes, developed a systematic behavior 
theory that asserted that animals learned stimulus-response connections and that the 
strength of these connections accumulated in small increments from trial to trial. In 
contrast, Tolman's model (known as purposive behaviorism, sign gestalt theory, or 
expectancy theory) emphasized the cognitive nature of learning, arguing that animals 
learned "what leads to what" by acquiring expectations and forming "cognitive maps." 
Learning is not an automatic, mechanical process, but a discontinuous process that 
largely depends on exploratory behaviors, the Tolmanians argued. 

Not only were there distinct theoretical and methodological differences between 
those two camps, but they also used different strains of rats. The Tolmanians, cen­
tered at the University of California, used rats that had been selectively descended 
from crossed matings of wild males and laboratory albino females. The Hullians, at 
Yale University under Hull's direction and a second camp at Iowa University under 
Kenneth W. Spence, used descendents of a "nonemotional" strain of rats that had 
descended from very different crossed matings. That the two strains of rats had been 
separated for over thirty years, during which time they had been differently and 
selectively bred, raised the question of whether genetic differences were involved in 
the clearly different results of the Hullians and the Tolmanians. So Jones and Fennell 
(1965) obtained a sample of rats from each strain, placed them on a 23-hour food 
or water deprivatiQn schedule and, beginning on the fourth day, subjected them to 
three learning trials daily in a U-maze for ten consecutive days. There were notice­
able differences in the performance of the two strains, differences that were also 
entirely consistent with the nature of the theoretical differences that separated the 
two schools of learning. The Tolman rats "spent long periods of time in exploratory 
behaviors, sniffing along the walls, in the air, along the runway" (p. 294). In contrast, 
the Hull-Spence rats "popped out of the start box, ambled down the runway, around 
the tum, and into the goal box" (p. 294). Findings like these would not necessarily 
lead us to question either the logic or the internal consistency of Hull's or Tolman's 
theory of learning, but they do raise a serious question about the external validity of 
the empirically based causal generalizations that "were involved in the great debate 
over the nature of learning" (p. 295). 

STATISTICAL CONCLUSION AND 
CONSTRUCT VALIDITY: 

Besides internal and external validity, there is statistical conclusion validity and construct 
validity. As defined by Shadish et al. (2002), statistical conclusion validity is concerned 
with "inferences about the correlation (covariation) between treatment and outcome" 
(p. 38), in other words, Hume's "contiguity of events." If we are interested in effect sizes, 
for example, the question of interest is whether a statement about the association between 
membership in the treatment or control group and the dependent variable can be made 
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with a reasonable degree of confidence. If we are using a significance test, was there 
enough statistical power to detect a likely relation between the treatment and outcome 
and to rule out the possibility that the observed association was due to chance? In the 
second half of this book we have more to say about statistical power, assumptions of 
particular tests of statistical significance, and related issues. Among the threats to statistical 
conclusion validity discussed by Shadish et al. are low statistical power (in which case 
we are apt to make Type II errors), violations of assumptions of statistical tests (which 
lead to spurious estimates of p values), "fishing" for statistically significant effects with­
out making proper adjustments of p values, unreliable tests and measurements, and 
spurious or uninterpretable or ambiguous estimates of effect sizes. 

Turning finally to construct validity, recall our discussion in chapter 4, where we 
defined construct validity as referring to the degree to which a test or questionnaire 
measures the characteristic that it is presumed to measure. We also noted that, as Popper's 
falsificationist view implies, constructs can never be completely verified or proved, because 
it is impossible to complete every conceivable check on the construct (Cronbach & Quirk, 
1971). Shadish et al. (2002) define construct validity as referring to "higher order 
constructs that represent sampling particulars" (p. 38). In research in which causal gen­
eralizations are the prime objective, construct validity is the soundness or logical tenability 
of the hypothetical idea linking the independent (X) and dependent (Y) variables, but it 
also r&ers to the conceptualization of X and Y. One way to distinguish between construct 
validity and internal validity is to recall that internal validity is the ability to logically 
rule out competing explanations for the observed covariation between the presumed 
independent variable (X) and its effect on the dependent variable (Y). Construct validity, 
on the other hand, is the validity of the theoretical concepts we use in our measure­
ments and causal explanations. Thus, whenever we ask what is really being measured 
(e.g., "What does this test really measure?"), we are asking about construct validity rather 
than internal validity. 

Put another way, construct validity is based on the proper identification of the 
concepts being measured or manipulated (i.e., "Do we have a clear conception of what 
we are measuring or manipulating?"), and internal validity is based on whether a vari­
able other than X (the causal variable we think we are studying) may have caused Y to 
occur. Hall (1984a) proposed a further distinction among the four kinds of validity in 
experimental research. Poor construct or internal validity has the potential to actively 
mislead researchers because they are apt to make causal inferences that are plain 
"wrong." Poor statistical-conclusion or external validity puts the researchers in a "weak 
position" to make any causal inferences or broad generalizations, because it limits what 
can be learned or what can be generalized to other situations. Thus, according to Hall's 
argument, the distinction comes down to being wide of the mark (i.e., poor construct 
or internal invalidity) or being in a vulnerable position on statistical or sampling grounds 
(statistical-conclusion and external validity). 

SUBJECT AND EXPERIMENTER ARTIFACTS 

We tum now to a class of threats to the construct, internal, and external validity of 
experiments (as well as threats to the valid interpretation and generalization of 
nonexperimental results) that we have studied and written about for many years 
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(e.g., Rosenthal, 1966, 1976; Rosenthal & Rosnow, 1969a; Rosnow & Rosenthal, 
1997). The term artifacts is used, generally, to refer to research findings that result 
from factors other than the ones intended by the researchers, usually factors that are 
quite extraneous to the purpose of their investigations (e.g., Orne, 1959; Rosenthal & 
Rosnow, 1969a; Rosnow, Strohmetz, & Aditya, 2002). By subject and experimenter 
artifacts, we mean that systematic errors are attributed to uncontrolled subject- or 
experimenter-related variables (Rosnow, 2002). The term experimenter is understood 
to embrace not only researchers who perform laboratory or field experiments, but 
those working in any area of empirical research, including human and animal 
experimental and observational studies. The sociologist Herbert H. Hyman and his 
colleagues (1954) wisely cautioned researchers not to equate ignorance of error with 
lack of error, because all scientific investigation is subject to both random and 
systematic error. It is particularly important, they advised, not only to expose the 
sources of systematic error in order to control for them, but also to estimate the 
direction (and, if possible, the magnitude) of this error when it occurs. The more 
researchers know about the nature of subject and experimenter artifacts, the better 
able they should be to isolate and quantify these errors, take them into account when 
interpreting their results, and eliminate them when possible. 

Though the term artifact (used in this way) is of modern vintage, the suspicion 
that uncontrolled sources of subject and experimenter artifacts might be lurking in 
investigative procedures goes back almost to the very beginning of modern psychology 
(Suls & Rosnow, 1988). A famous case around the turn of the twentieth century 
involved not human subjects, but a horse called Clever Hans, which was reputed to 
perform remarkable "intellectual" feats. There were earlier reports of learned animals, 
going all the way b~ck to the Byzantine Empire when it was ruled by Justinian 
(A.D. 483-565), but no animal intelligence captured the imagination of the European 
public and scholars alike as that attributed to Hans (Rosenthal, in Pfungst, 1965). 
Hans gave every evidence that he could tap out the answers to mathematical problems 
or the date of any day mentioned, aided ostensibly by a code table in front of him 
based on a code taught to him by his owner. It seemed unlikely that his owner had 
any fraudulent intent because he allowed visitors (even in his absence) to question 
Hans, and he did not profit financially from the horse's talents. Thus, it was possible 
to rule out intentional cues as the reason for the horse's cleverness. One visitor, the 
German psychologist Oskar Pfungst, discovered in an elegant series of experiments 
that Hans's accuracy diminished when he was fitted with blinders so he could not see 
his questioners, when the distance between Hans and his questioners was increased, 
or when the questioner did not know the answer. These results implied that the horse's 
apparent talents were due to something other than his capacity to reason. Pfungst 
found that Hans was responding to subtle cues given by his questioners, not just 
intentional cues, but unwitting movements and mannerisms (Pfungst, 1911). For 
instance, someone who asked Hans a question that required a long tapping response 
would lean forward as if settling in for a long wait. The horse responded to the 
questioner'S forward movement, not to the actual question, and kept tapping away 
until the questioner unconsciously communicated the expectancy that Hans would stop 
tapping. This the questioner might do by beginning to straighten up in anticipation 
that Hans was about to reach the correct number of taps. 
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Pfungst's unraveling of the mystery of Clever Hans provided an object lesson 
in the susceptibility of behavior (even animal behavior) to unconscious suggestion. 
Given the influence on animal subjects, might not the same phenomenon hold for 
human subjects who are interacting with researchers oriented by their own hypotheses, 
theories, hunches, and expectations? Although Pfungst's discovery was duly cited and 
circulated, its wider methodological implications did not strike a resonant chord in 
behavioral science during that period. To be sure, a number of leading experimenters, 
including Hermann Ebbinghaus (1885, 1913), voiced their suspicions that researchers 
might unwittingly influence their subjects. However, their concerns, along with the 
wider methodological implications of Pfungst's discovery, went largely unheeded 
until, several decades later, another influential development fostered the idea that 
human subjects behave in special ways because they know they are "subjects" of an 
investigation. This principle, which came to be known as the Hawthorne effect, grew 
out of a series of human factors experiments between 1924 and 1932 by a group of 
industrial researchers at the Hawthorne works of the Western Electric Company in 
Cicero, Illinois (Roethlisberger & Dickson, 1939). One set of studies examined the 
impact of higher levels of electric lighting, increased rest periods, and other conditions 
on the work productivity of young women who inspected parts, assembled relays, or 
wound coils (Gillespie, 1988). According to news reports and a Western Electric 
memorandum, one study revealed that any improvement in working conditions resulted 
in gieater worker satisfaction and increased productivity. When the improvements 
were removed, however, the productivity did not decline; the efficiency actually 
continued to increase, according to the reports. On interviewing the team of six 
workers who had participated in that study, the researchers concluded that the workers' 
productivity increases had derived from their feeling flattered by being subjects of 
investigation. That is, they had been motivated to increase their output because of 
their special status as research participants. Not only had their opinions been solicited 
by management, but they had been singled out for free morning tea, rest periods, and 
shorter hours of work. 

The term Hawthorne effect was coined by the contributor of a chapter to a 
popular textbook in the 1950s (French, 1953). Subsequently, however, the original 
reports and secondary accounts of this study were subjected to critical analysis by other 
investigators (cf. Adair, 1984; Bramel & Friend, 1981; Franke & Kaul, 1978; Gillespie, 
1988; Sch1aifer, 1980), who argued, among other things, that the historical record was 
tainted by sweeping generalizations embroidered by overzealous, and possibly biased, 
authors. In another fascinating piece of detective work, H. McIlvaine Parsons, a 
specialist in human factors research, described his discovery of a long-ignored 
confounding variable that also explained the Hawthorne effect (Parsons, 1978, 1992). 
The assembly-line workers in the Hawthorne studies had been told their output rates, 
and the higher the rates, the more they were paid, Parsons learned. Putting those facts 
together, he theorized that the increased productivity had been reinforced by the feed­
back the workers had received about their output rates. Like some projective test into 
which people read their own meanings, the Hawthorne effect was a mixture of fantasy 
and reality into which textbook authors had read their own meaning, Parsons argued. 
Nevertheless, the principle of the Hawthorne effect entered into the vocabulary of 
behavioral research as implying a kind of "placebo effect" in psychological research 
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with human subjects (Sommer, 1968). That is, it implies that subjects responded not 
just to the experimental treatment, but also to uncontrolled factors, including the belief 
that they were being administered a treatment designed to have a particular effect. A 
generation of researchers was warned to be wary of unleashing a Hawthorne effect by 
their manipulations, observations, or measurements. 

In 1933, another important development (which went largely unnoticed for 
many years) involved a conceptual advance. Saul Rosenzweig, a clinical psychologist 
fresh out of graduate school, published an insightful critique in a leading psychology 
journal, in which he examined various aspects of the psychology experiment and 
identified three distinct sources of artifacts. For example, he described how artifacts 
might result from, first, the "observational attitude" of the experimenter. Using 
chemistry as his prototype of scientific experimentation, he noted how chemists 
take into account the ambient temperature, possibly even their own body heat, 
when running certain lab experiments. Experimenting psychologists, Rosenzweig 
said, needed to consider their own attitudes toward their research subjects and the 
subjects' beliefs about and attitudes toward the experiment. His second point was 
that, of course, "chemicals have no power of self-determination" (p. 338), whereas 
experimenting psychologists usually work with people who may try to outguess 
the experimenter and to figure out how their behavior will be evaluated. Rosenzweig 
called this the "motivational attitude" problem, and he claimed that it could creep 
into any experiment and bias the results. Third were what he called "errors of 
personality influence," for example, the warmth or coolness of the experimenter, 
his or her unguarded gestures or words, and the experimenter's sex and race-all 
possible confounding factors that might affect the attitudes and reactions of the 
research subjects, quite apart from the experimental treatment. Rosenzweig sketched 
some procedures that he thought would prevent some of these problems, including 
the use of deceptions to prevent errors of motivational attitude. Nonetheless, he 
also cautioned that it was frequently unclear whether the experimenter or the 
subject was the "true deceiver"-a concern voiced again by other writers in the 
1960s (e.g., Stricker, 1967). 

Beginning in the 1960s and throughout the 1970s, increased attention was paid 
to concerns about subject and experimenter artifacts. There are several possible reasons 
for that development, one of which has to do with the rise of cognitive psychology. 
First, many earlier behavioral psychologists had been fixed on a dustbowl-empiricist 
view that emphasized only observable responses as acceptable data in science, but 
renewed interest in the cognitive dimension and the neobehaviorist reshaping of the 
empiricist view made it respectable to talk about cognition as a variable of scientific 
relevance (Toulmin & Leary, 1985). A second reason was that scientific psychology 
was coming into its own; its identity crisis seemed virtually over (Silverman, 
1977, pp. 18-19). Following World War II, there had been a tremendous growth in 
psychology departments and an increased role for research psychologists in the 
government, the military, and industry as a result of optimism about the likely benefits 
of psychological science. Those who voiced concern over artifacts were seen as 
undermining the empirical foundations of the scientific facts and theories that were 
proliferating in psychological science. By the 1960s and 1970s, increasing numbers 
of researchers felt secure enough to, as Hyman (1954, quoted earlier) put it, accept 
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that ignorance of error was not synonymous with lack of error, but that it merely 
signaled a primitive understanding and thus a less advanced stage of scientific devel­
opment. For these, and probably other good reasons, the stage was set for program­
matic investigations of subject and experimenter artifacts by researchers working 
independently in different institutions. 

DEMAND CHARACTERISTICS AND 
THEIR CONTROL 

Among those in the first wave of contemporary artifact researchers was Martin T. Orne, 
an eminent psychiatrist, social psychologist, and clinical psychologist at the University 
of Pennsylvania. Starting in the late 1950s, Orne had begun to explore the role of 
uncontrolled task-orienting cues in experimental research. He was primarily interested 
in the complex nature of hypnosis when he began this program of investigation and 
had observed that, at the conclusion of many of his hypnosis experiments, the subjects 
asked questions such as "Did I ruin the study?" By the use of sensitive postexperimen­
tal interviewing, he learned that what the subjects were asking was "Did I perform 
well in my role as experimental subject?" or "Did my behavior demonstrate what the 
study was designed to show?" That is, it appeared that the subjects were responding, 
at least in part, to what they interpreted as cues about what the experiment was "really" 
abobt and what the experimenter "wanted" to find out. Borrowing a concept from the 
theoretical work of Kurt Lewin (1935)-Aufforderungscharakter (or "demand value")­
Orne (1959) coined the term demand characteristics to denote the subtle, uncontrolled 
task-orienting cues in an experimental situation. In an earlier paper, Sarbin (1944) had 
drawn an analogy with the Heisenberg effect in atomic physics to argue that the obser­
vation or measurement of behavior could alter the behavior observed. In fact, a similar 
idea had been anticipated by Rosenzweig (1933), whose work we discussed above, 
particularly his "motivational attitude" idea. Orne and his associates advanced this idea 
a giant step by demonstrating, in a series of ingenious studies, how demand characteristics 
could produce artifacts in the research. 

In one early study, using college students in an introductory psychology course 
as the participants, Orne (1959) conducted a demonstration of hypnosis on several 
subjects. The demonstration subjects in one section of students were given the 
suggestion that upon entering a hypnotic trance, they would manifest "catalepsy of 
the dominant hand." All the students in this section were told that catalepsy of the 
dominant hand was a standard reaction of the hypnotized person, and the group's 
attention was called to the fact that the right-handed subject had catalepsy of the right 
hand and the left-handed subject had catalepsy of the left hand. In another section 
(the control group), the demonstration of hypnosis was carried out, but without a 
display of Orne's concocted "catalepsy" reaction. In the next phase of the study, Orne 
asked for volunteers for hypnosis from each section and, after they had been hypno­
tized, had them tested in such a way that the experimenter could not tell which lecture 
they had attended until after the completion of the experiment. Of the nine volunteers 
from the first section (the one in which catalepsy of the dominant hand had been 
demonstrated), five of them showed catalepsy of the dominant hand, two showed 
catalepsy of both hands, and two showed no catalepsy. None of the nine control 
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subjects showed catalepsy of the dominant hand, but three of them showed catalepsy 
of both hands. Because catalepsy of the dominant hand (the reaction that Orne had 
invented) was known not to occur spontaneously, its occurrence in the first group but 
not in the second was interpreted by Orne as support for his demand characteristics 
theory. That three of the nine subjects in the control group spontaneously displayed 
catalepsy of both hands was explained by him in terms of the experimenters' repeated 
testing for this reaction, which Orne thought may have introduced its own set of 
implicit demand cues. 

Orne referred to this cooperative behavior as the good subject effect, and he 
argued that subjects would often go to remarkable lengths to comply with demand 
characteristics. For example, at one point in his research on hypnosis he tried to devise 
a set of dull, meaningless tasks that participants who were not hypnotized would 
refuse to do or would try for only a short time and then abandon. One task consisted 
of adding hundreds of thousands of two-digit numbers. Five and a half hours after 
the subjects began, Orne gave up! Even when the subjects were told to tear each 
worksheet into a minimum of 32 pieces before going on to the next, they persisted 
in adding up the digits. Orne explained this behavior as the role enactment of volunteer 
subjects who reason that, no matter how trivial and inane the experimental task seems 
to them, it must surely have some important scientific purpose or they would not have 
been asked to participate in the first place. Thus, he theorized, they complied with the 
demand characteristics of the experiment in order to "further the cause of science" 
(Orne, 1962). 

Orne gained another insight into the good subject effect when he asked a num­
ber of casual acquaintances to do an experimenter a favor and, on their acquiescence, 
asked them to do five push-ups. They seemed amazed and incredulous, and all 
responded "Why?'~ When he asked a similar group of individuals whether they would 
take part in an experiment and, on their acquiescence, asked them to do five push-ups, 
their typical response was "Where?" (Orne, 1962). What could account for the dra­
matic difference in responses? Orne theorized that people who agree to participate in 
an experiment implicitly agree to comply with whatever demand cues seem implicit 
in the experimental situation. Subjects are concerned about the outcome of the exper­
iment in which they have agreed to participate. Consequently, they are motivated to 
play the role of the good subject who responds to overt and implicit cues in ways 
designed to validate the experimenter's hypothesis. Other researchers obtained similar 
kinds of effects, all suggesting compliance with demand characteristics. The phenom­
enon also seemed wide-ranging, as it was demonstrated in attitude change research, 
prisoners' dilemma games, verbal operant conditioning, testing, and on and on (for 
further discussion and citations, see Rosnow & Rosenthal, 1997, p. 68). Furthermore, 
Orne surmised, it is not possible to control for the good subject effect in the classic 
sense; what is needed is a means of ferreting out the demand characteristics in each 
experimental situation. In theory, he thought, having this information should allow 
researchers to interpret their data more accurately and, sometimes, even to circumvent 
the demand artifact in question. 

Guided by this vision, Orne proposed that researchers use the subjects them­
selves to assist in the detection and interpretation of demand characteristics. It is 
important, he argued, not to attribute to demand characteristics even more potency 
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than they possess, for that will surely lead to "a nihilistic view at least as naIve as 
that which denies the potential importance of these factors" (Orne, 1970, p. 260). In 
science, the proof of the pudding is in confronting a problem empirically, and thus, 
Orne showed that it was no longer necessary merely to speculate on the role of "errors 
of motivational attitude." In what he called a quasi-control strategy, his idea was to 
have some of the research subjects step out of the good subject role and act as 
"coinvestigators" in the search for truth. Orne proposed several techniques for having 
quasi-control subjects reflect on the experiment and tell how their behavior might be 
compromised or influenced by uncontrolled factors rather than by the controlled inde­
pendent variable. One technique was to have subjects serve as their own quasi controls 
in postexperimental interviews. In these interviews, they were asked to disclose the 
factors that were important in determining their reactions in the experiment and to 
reveal their beliefs about, and perceptions of, the experiment and the experimenter. 
These subjects must be convinced that the study is over and that they are now playing 
the role of coinvestigators (or aides), or the data they provide should also be suspect 
as biased by demand characteristics. 

In another use of quasi controls, called preinquiry by Orne, some of the prospec­
tive subjects are sampled and afterward are separated from the subject pool. The 
experimental procedures are then carefully described to these quasi controls, and they 
are asked to speculate on how they would be likely to behave in the experiment. 
Comnarisons are later made between their projected role responses and the actual 
responses of the participating subjects. In this way, Orne theorized, it should be possible 
to get an insight into how the experimental outcome might be affected by the real 
subjects' guesses and role responses to how they should behave. Still another alternative 
used what Orne called a "sacrifice group" of quasi controls. These are people who are 
pulled out of the experiment at different points and questioned about their perceptions 
of the experiment up to that point. Another option discussed by others is to have the 
preinquiry individuals tell how they think they would react to different deception treat­
ments. The idea here is that, if no differences are apparent between different intensities 
of deception, the least intense deception should be as effective as the most intense 
deception (Fisher & Fyrberg, 1994; Suls & Rosnow, 1981). 

Orne noted the volunteer status of his research subjects, as well as the fact that 
they seemed to be remarkably cooperative. Insights like these inspired other research­
ers to compare volunteer subjects and nonvolunteer subjects (e.g., coerced participants 
or captive participants) on a range of tasks (Rosenthal & Rosnow, 1975), using 
volunteer status as a proxy for the "good subject." Horowitz (1969) observed that 
volunteers responded differently from nonvolunteers to fear-arousing communications 
in an attitude change experiment. In our earlier discussion of the Solomon design, we 
mentioned the finding that the volunteer status of subjects was also associated with 
reversals in pretest-treatment interactions in an attitude change experiment, the volunteers 
again being the more compliant participants (Rosnow & Suls, 1970). Kotses, Glaus, 
and Fisher (1974) reported volunteer biases in a study of physiological responses to 
random bursts of white noise, and Black, Schumpert, and Welch (1972) observed that 
perceptual-motor responses were also associated with subjects' volunteer status. In 
another study, the volunteer status of the participants in a verbal operant-conditioning 
study was associated with a greater degree of compliance with demand cues (Goldstein, 
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Rosnow, Goodstadt, & Suls, 1972). Volunteer bias has also been found in clinical and 
counseling studies (King & King, 1991; Strohmetz, Alterman, & Walter, 1990). We 
will have more to say about volunteer subjects and strategies for predicting the direc­
tion of the response bias in chapter 9, but it appears that volunteers for research 
participation tend to be more sensitive and accommodating to demand cues than are 
coerced subjects or captive nonvolunteers. 

Interestingly, not all artifact researchers agreed with Orne's conception of the 
good subject effect. For example, Milton 1. Rosenberg got into a spat with some lead­
ing cognitive dissonance theorists when he argued that an experimental design used 
in an important cognitive dissonance study had produced spurious effects resulting 
from the participants' anxieties about how they would be evaluated-which Rosenberg 
(1965) called evaluation apprehension. Based on a series of other experiments of 
his own, he found that when subjects worry that the experimenter plans to evaluate 
an aspect of their performance, they behave in ways designed to win the experimenter's 
approval or to avoid disapproval. Experiments in which some evaluation apprehension 
appeared likely were those containing an element of surprise or having an aura of 
mystery to them. The more explicit the cues, the more control the experimenter has 
in granting positive evaluation, and the less effortful the subjects' responses, the 
greater may be the resulting response bias due to the subjects' feelings of evaluation 
apprehension. One solution to this problem may be to ensure the confidentiality of 
the subjects' responses, on the assumption that individual subjects will then be less 
apprehensive and more forthcoming in their responses (e.g., Esposito, Agard, & 
Rosnow, 1984). However, in some research-for example, research on sensitive topics 
(such as sexual behavior and AIDS)-it may be exceedingly difficult to control for 
evaluation apprehension and related problems (e.g., Catania, Gibson, Chitwood, & 
Coates, 1990). It is also conceivable that in some (probably rare) experimental situ­
ations some subjects may feel a conflict between evaluation apprehension and the 
good subject effect (e.g., Rosnow, Goodstadt, Suls, & Gitter, 1973; Sigall, Aronson, & 
Van Hoose, 1970), in which case the evidence suggests that "looking good" may 
emerge as the predominant motivation of many subjects, as opposed to helping the 
cause of science (i.e., "doing good"). 

INTERACTIONAL EXPERIMENTER EFFECTS 

In chapter 5 we spoke of noninteractional artifacts, that is, artifacts that are not directly 
associated with the interaction between the experimenter and the research subjects. 
Two general classes discussed in that chapter were interpreter and observer biases. 
The other side of this coin comprises five general classes of artifacts called 
interactional experimenter effects (Rosenthal, 1966, 1976). These artifacts are rec­
ognized by being attributable to some aspect of the interaction between experimenters 
and their subjects. We first briefly describe all five of these classes (i.e., biosocial 
attributes, psychosocial attributes, situational factors, modeling effects, and expec­
tancy effects) and then discuss the fifth type and its control in greater detail. Research­
ers interested in learning more about the nature and control of subject and experi­
menter artifacts will find a fully detailed discussion of experimenter effects in 
Rosenthal's (1966, 1976) Experimenter Effects in Behavioral Research and a more 



224 THE LOGIC OF RESEARCH DESIGNS 

recent theoretical and ethical overview in our book entitled People Studying People 
(Rosnow & Rosenthal, 1997). 

First, biosocial attributes include the biological and social characteristics of 
experimenters, such as gender, age, and race. For example, a good deal of research 
has been reported showing that male and female experimenters sometimes obtain 
significantly different data from their subjects. It is not always possible to predict 
for any given type of experiment just how subjects' responses will be affected by 
the experimenter's gender, if indeed there is any effect at all. However, when such 
effects have occurred, it seems that the male and female experimenters behaved 
differently toward their subjects, thereby eliciting different responses because the 
experimenters had altered the experimental situation for the subjects (e.g., Barnes & 
Rosenthal, 1985). In one study, the male experimenters were found to be friendlier 
than the female experimenters. It was also found that 12% of the experimenters, 
overall, smiled at their male subjects, whereas 70% smiled at their female subjects 
(Rosenthal, 1967, 1976). A further finding was that smiling by the experimenters 
predicted the results. The lesson is that before we claim a gender difference in the 
results of behavioral research, we must make sure that male and female subjects 
were treated identically. If they were not, then gender differences in the results 
might be due not to constitutional or socialization variables, but to the fact that 
male and female subjects did not participate in the "same" experiment (i.e., they 
were treated differently). 

l' Whereas biosocial attributes are usually readily accessible by inspection, the 
second class, termed psychosocial attributes, are readily accessible but not simply by 
inspection. These attributes include factors such as personality and temperament, 
which are often assessed more indirectly, frequently by the use of standard psycho­
logical tests or trained observers' judgments. For example, experimenters who differ 
in anxiety, approval need, hostility, authoritarianism, status, or warmth also tend to 
obtain different responses from their subjects. Experimenters higher in status generally 
have a tendency to elicit more conforming but less pleasant responses from their 
subjects, and experimenters who are warmer in their interactions with the subjects 
often obtain more competent and more pleasant responses. Examiners who act more 
warmly to people being administered a test of intelligence are apt to elicit better intel­
lectual performance than are cooler examiners or examiners who are perceived as 
threatening. In simple tasks with ostensibly little meaning, the subjects' expectations 
may assume increasingly greater importance. The subjects who view experimenters 
more favorably may view the tasks more favorably, thus transforming a compellingly 
inane procedure into one that simply "must" have more value. An experimenter per­
ceived as threatening might arouse feelings of evaluation apprehension, leading to a 
more defensive posture or simply distracting the subjects from the task and thus 
eliciting less-than-ideal performance. 

Third are situational effects. More than experimenters' scores on a psychological 
test of anxiety or approval need, their status and warmth are defined and determined 
in part by the nature of the experimental situation and the particular subject being 
contacted. Experimenters who are acquainted with their subjects may behave differently 
toward them than toward unfamiliar subjects. Experimenters who are more experienced 
in conducting a given experiment often obtain different responses from subjects than 
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do less experienced experimenters. Things that happen to experimenters during the 
course of their experiments, including the responses they obtain from their first few 
subjects, may also influence the experimenters' behavior, and in turn, those changes 
may lead to further changes in subjects' responses. When the first few subjects respond 
as they are expected to respond, the behavior of the experimenter may change in such 
a way as to influence the subsequent subjects to respond too often in the direction of 
the experimenter's hypothesis (Rosenthal, 1976). Thus, when subjects are run one at 
a time, we may want to block on (subdivide by) time periods, to see whether the 
results are similar at the beginning, middle, and end of the experimental trials. 

A fourth type of interactional experimenter artifact is a modeling effect. It 
sometimes happens that before the experimenters conduct their studies, they try out 
the tasks that they will later have their subjects engage in. Although the evidence on 
this point is not all that clear, it would seem that, at least sometimes, the investigator's 
own performance becomes a factor in the subjects' performance. When the experi­
mental stimuli are ambiguous, subjects' interpretations of their meaning may too often 
agree with the investigator's interpretations of the stimuli. The problem is that the 
experimenter's behavior, rather than the hypothesized psychological processes, may 
have produced the results (Rosenthal, 1976). In survey research, there is evidence that 
the interviewer's own opinion, attitude, or ideology may affect the responses obtained 
from the respondents. If a modeling effect occurs, it is most likely to be patterned on 
the interviewer's opinion or attitude, but in a minority of cases the subjects may 
respond in a direction opposite to that favored by the interviewer (Rosenthal, 1976). 
In laboratory studies, it appears there is a tendency for happier, affable, less tense 
experimenters to model their subjects negatively, and for less pleasant, more tense 
experimenters to model their subjects positively. Why this should be so is unclear, but 
one methodological- implication may be to use more naturally "neutral" experimenters 
in order to reduce the possibility of modeling effects. 

Generally speaking, the most critical control for all four classes of interactional 
artifacts above is woven into the fabric of science by the tradition of replication. 
This is also true of a fifth type of artifact, experimenter expectancy, but there are 
other ways of addressing this particular problem (which we discuss in the next 
section). The term experimenter expectancy takes its name from the idea that some 
expectation of how the research will turn out is virtually a constant in science. In 
the same way that the questioners of Clever Hans unintentionally altered their own 
behavior and that in turn affected the horse's responses, so can hypotheses, theories, 
or expectations that are held by experimenters lead them unintentionally to alter their 
behavior toward their subjects. We are speaking, then, of the investigator's hypothesis 
or expectancy as a self-fnlfilling prophecy, but not exactly in the way this term was 
conceived of by its originator, Robert Merton (1948), who defined it as a ''false 
definition of the situation evoking a new behavior which makes the originally false 
conception come true" (p. 195). By experimenter expectancy effect, we mean that 
the experimenter's expectation (true or false) may come to serve as a self-fulfilling 
prophecy, which can be conceived of as a type of interpersonal expectancy effect. 
That is, someone acting in accordance with a personal set of expectations treats 
another individual in such a manner as to increase the likelihood of eliciting behavior 
that conforms to the first person's expectations (e.g., Blanck, 1993). An example 
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would be a teacher who believes certain pupils are especially bright and then acts 
toward these pupils more warmly, teaches them more material, and spends more time 
with them, behavior that, over time, results in greater gains in achievement for these 
students than would have occurred in the absence of the interpersonal expectation 
(Rosenthal & Jacobson, 1968). 

EXPERIMENTER EXPECTANCY EFFECTS 
AND THEIR CONTROL 

In one early study designed to demonstrate the effects of experimenters' expectancies 
on the results of their research, the experimenters were given rats that were to be 
taught to run a maze with the aid of visual cues (Rosenthal & Fode, 1963). Half 
the experimenters were told their rats had been specifically bred for maze brightness, 
and the remaining experimenters were told their rats had been bred for maze dull­
ness. Actually, there were no differences between the rats assigned at random to 
each of the two groups. At the end of the experiment the results were clear. The 
rats run by the experimenters expecting brighter behavior showed learning signifi­
cantly superior to that of the rats run by the experimenters expecting dull behavior. 
The study was later repeated, this time using a series of learning trials, each con­
ducted in Skinner boxes (Rosenthal & Lawson, 1964). Half the experimenters were 
led tQ believe their rats were "Skinner box bright"; the other experimenters were 
led t~ believe their animals were "Skinner box dull." Once again, there were not 
really any differences in the two groups of rats, at least not until the results were 
analyzed at the end of the study. Then, the allegedly brighter rats really did perform 
better, and the alleged dullards really did perform more poorly. Neither of the animal 
studies showed any evidence that the student experimenters might have been 
falsifying their results. Thus, it could be concluded that the experimenters' expecta­
tions had acted not on the experimenters' evaluation of the animals' performance, 
but on the actual performance of the rats. 

In the period since those two studies were conducted, literally hundreds of 
additional studies have examined the possible occurrence of expectancy effects 
both inside and outside the experimental lab (e.g., Harris & Rosenthal, 1985; 
Rosenthal & Rubin, 1978). By the beginning of the 1990s, there were over 450 
studies. In a meta-analysis of 345 studies in the 1970s (Rosenthal & Rubin, 1978), 
the probability of no relation between experimenters' expectations and their subjects' 
subsequent behavior was smaller than .00000001. One analysis was designed to 
determine how many of the predicted results were significant at p equal to or less 
than .05 within each of eight different research areas. The results are shown in Table 
7.8. The assumption was that, if the 345 had been a randomly selected sample of 
studies from a population of all possible studies for which the null hypothesis were 
true, we would expect 5% of the studies to achieve .05 significance by chance alone. 
The first column of numbers in Table 7.8 shows that all the proportions exceeded 
the expected value and that the median proportion of .39 is almost eight times larger 
than the expected value. Still, some unknown factors might have kept any negative 
results out of sight so that only these 345 studies were accessible. However, from a 
file-drawer analysis (the procedure is described in chapter 21), it was calculated that 
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TABLE 7.8 

Expectancy effects in eight areas 

Research area 

Lab interviews 

Reaction time 

Learning and ability 

Person perception 

Inkblot tests 

Everyday situations 

Psychophysical judgments 

Animal learning 

Median 

Proportion of results 
that reached p < .05 in 
the predicted direction 

.38 

.22 

.29 

.27 

.44 

.40 

.43 

.73 

.39 

Mean effect size Mean effect size 
in Cohen's d in Pearson r 

0.14 .07 

0.17 .08 

0.54 .26 

0.55 .27 

0.84 .39 

0.88 .40 

1.05 .46 

1.73 .65 

0.70 .33 

it would take over 65,000 studies with null results to move the overall associated p 
to a barely acceptable .05. Other analyses concentrated on the size of the expectancy 
effect in each area, and those results are also listed in Table 7.8 as Cohen's d 
(Equation 2.4) and the Pearson r (described in detail in chapter 11). 

Table 7.9 lists several strategies for controlling the effects of experimenters' 
expectancies and also notes one or more consequences of adopting these strategies 
(Rosenthal, 1979b; Rosenthal, Hall, DiMatteo, Rogers, & Archer, 1979). First, assume 

TABLE 7.9 

Strategies for the reduction of experimenter expectancy effects 

I. Increasing the number of experimenters 
• Decreases learning of influence techniques 
• Helps to maintain "blindness" 
• Randomizes expectancies 
• Increases generality of results 

2. Monitoring the behavior of experimenters 
• Sometimes reduces expectancy effects 
• Permits correction for unprogrammed behavior 
• Facilitates greater standardization of experimenter behavior 

3. Analyzing experiments for order effects 
• Permits inference about changes in experimenter behavior 
• Permits correction for expectancy' effects 

4. Maintaining "blind" contact 
• Minimizes expectancy effects 

"5. Minimizing experimenter-subject contact 
• Minimizes expectancy effects 

6. Employing expectancy control groups 
• Permits assessment of expectancy effects 
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that the experimenter unwittingly learns from the participants' responses how to 
influence them unintentionally. This learning takes time, and with fewer participants 
from whom to learn the unintentional communication system, the experimenter may 
learn less of the system. Therefore, by increasing the number of experimenters so that 
each experimenter works with fewer subjects, it may be possible to reduce the 
likelihood of expectancy effects. Having more experimenters also helps to maintain 
blind contact between the experimenters and the subjects (i.e., the experimenters are 
unaware of which of the subjects are receiving the experimental and control treatments). 
The fewer the participants contacted by an experimenter, the less the chance of an 
unwitting breakdown in the blind procedure. A further advantage of increasing the 
number of experimenters is that the positive and negative expectancies may act like 
random errors that cancel one another. And finally, even beyond expectancy bias, we 
can be more confident of a result obtained by a larger number of experimenters than 
of a result obtained by only one experimenter. 

Second, monitoring the behavior of experimenters may not by itself eliminate 
expectancy biases, but it may help in identifying unprogrammed expectancy behaviors. 
If we make our observations during a preexperimental phase, we may be able to use 
this information to select good experimenters. The problem is that this selection 
procedure may be unintentionally biased, and therefore, it may be preferable simply 
to assign experimenters to experiments randomly. Nevertheless, monitoring may alle­
viate some of the other biasing effects of experimenters noted previously, and it should 
fatilitate greater standardization among the experimenters. 

Third, analyzing experiments for order effects enables us to compare early 
results with later results. We can do a median split of the participants seen by each 
experimenter and compare the behavior of the participants in each half. Are the 
means of the groups the same? Is the amount of variability in the performance of 
the participants the same in both halves? We may also be able to correct for 
expectancy effects. In some cases, for example, we will find expectancies distributed 
only dichotomously; either a result is expected or it is not. At other times, we will 
have an ordering of expectancies in terms of ranks or absolute values. In any of 
these cases, we can correlate the results obtained by the experimenters with their 
expectancies. If the correlation is trivial in size, we are reassured that expectancy 
effects were probably not operating. If the correlation is substantial, we conclude 
that expectancy effects did occur. These can be "corrected for" or at least analyzed 
by such statistical methods as partial correlation (chapter 11) or blocking strategies 
(chapter 16). 

The fourth strategy is based on the idea that, if the experimenter does not know 
whether the subject is in the experimental or the control group, the experimenter can 
have no validly based expectancy about how the person should respond. In drug trials, 
for example, in a single-blind study the participants do not know the group or condition 
(e.g., drug vs. placebo) to which they have been randomly assigned. In a double-blind 
study, both the experimenters and the subjects are kept from knowing what drug has 
been administered. Psychologists have been slow to adopt the double-blind method for 
other than drug trials, but when it is feasible, it is more than warranted to minimize 
the possibility of expectancy effects. A problem, however, is that single-blind and 
double-blind methods are not very easy to implement. Imagine a study in which anxiety 
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TABLE 7.10 

Basic expectancy control design 

Expectancy conditions 

Treatment conditions 

Experimental 

Control 

Experimental treatment 

Group A 

Group C 

Control treatment 

Group B 

Group D 

is the independent variable. People who have just been through an anxiety-arousing 
event, or who have scored high on a test of anxiety, may behave in an identifiable way 
in an experiment. The "blind" experimenters may then covertly "diagnose" the level 
of anxiety. If they know the hypothesis, they may unwittingly bias the results of the 
experiment in the expected direction or, by bending over backward to avoid bias, 
"spoil" the study. A score of subtle signs (the subject's arrival time, fidgeting behavior, 
and so on) may break down the most carefully arranged double-blind study. 

A fifth strategy is to minimize the experimenter-subject contact, perhaps easier 
than trying to maintain blind contact. The day may come when the elimination of the 
experimenter, in person, will be a widespread, well-accepted practice. By computer, 
we can generate hypotheses, sample hypotheses, sample the experimental treatment 
conditions from a population of potential manipulations, select our participants ran­
domly, invite their participation, schedule them, instruct them, record and analyze their 
responses, and even partially interpret and report the results. In experiments that 
require human interaction, it may still be possible to minimize the contact. For exam­
ple, we might use an ordinary tape recorder and have a screen interposed between the 
experimenter and the participants. 

The final strategy is the use of expectancy control groups. Although expensive 
to implement if many experimenters are randomly assigned to conditions, the advantage 
of this method is that we can compare the effects of experimenter expectancies with 
the effects of some other behavioral variable. Table 7.10 shows the most basic expectancy 
control design, in which there are two row levels of the behavioral research variable 
and two column levels of the experimenter expectancy variable. Group A is the condition 
in which the experimental treatment is administered to the subjects by a data collector 
who expects the occurrence of the treatment effect. In Group D, the absence of the 
experimental treatment is associated with a data collector who expects the nonoccurrence 
of the treatment effect. Group B is the condition in which subjects receiving the 
experimental treatment are contacted by an experimenter who does not expect a treatment 
effect. Subjects in Group C do not receive the experimental treatment and are contacted 
by an experimenter who expects a treatment effect. 

Table 7.11 shows the ~sults of a study by 1. R. Burnham (1966) that used the 
expectancy design in Table 7.10. Burnham had 23 experimenters each run one rat in 
a T-maze discrimination problem. About half the rats had been lesioned by the removal 
of portions of the brain; the remaining animals had received only sham surgery, which 
involved cutting through the skull but no damage to the brain tissue. The purpose of 
the study was explained to the experimenters as an attempt to learn the effects of 
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TABLE 7.11 

Expectancy control design used by Burnham (1966) to study 
discrimination learning in rats 

Expectancy conditions 

Treatment conditions "Lesioned" "Nonlesioned" 

Lesioning of brain 46.5 49.0 

No lesioning of brain 48.2 58.3 

Sum 94.7 107.3 

Sum 

95.5 

106.5 

Note: Cell values in this table are transfonnations of ranks to nonnal deviates. using a procedure 
described by Walker and Lev (1953, pp. 424-425), on the assumption that the underlying metric is 
nonnally distributed. The reason the cell values do not resemble Z scores (discussed in chapter 10) is 
that the transfonnation of ranks is based on a mean of 50 and standard deviation of 10. The range will 
vary, depending on the number of ranked scores. In Burnham's study, the sample size was 23; the 
top-ranked rat having a standard score of 70 and the bottom ranked rat, a standard score of 30. Thus, 
higher cell values in this table imply better perfonnance in the T-maze discrintination problem. 

lesions on discrimination learning. The design manipulated the expectancies by label­
ing each rat as lesioned or nonlesioned. Some of the really lesioned rats were labeled 
aCj;urately as "lesioned" (the upper-left cell), and some were falsely labeled as "non­
lesioned" (the upper-right cell). Some nonlesioned rats were labeled accurately (the 
lower-right cell), and some were falsely labeled as "lesioned" (the lower-left cell). 
Table 7 .11 shows the standard scores of the ranks of performance in each of the four 
conditions (higher scores denote superior performance). Animals that had been lesioned 
did not perform as well as those that had not been lesioned, and animals that were 
believed to be lesioned did not perform as well as those that were thought to be 
nonlesioned. What makes this experiment of special interest is that the effects of 
expectancy were similar to those of the actual removal of brain tissue. Thus, it empha­
sizes the value of separating expectancy effects from the effects of the independent 
variable of interest, to avoid misrepresenting the causal impact of either variable. 

CONCLUDING COMMENTARY 

We do not want to end this chapter by leaving readers with a princess-and-the-pea 
image of human subjects as overly sensitive and overly responsive to the slightest 
experimental variations. It is possible for even the most outrageous manipulation to 
have no effect, and it is not easy to foresee when biasing effects will actually emerge 
(Sommer, 1968). In 1928, H. B. Hovey described administering an intelligence test 
to 171 people divided into two groups. One group took the test in a quiet room, and 
the other group took it in a second room with seven bells, five buzzers, a 550-watt 
spotlight, a 90,OOO-volt rotary-spark gap, a phonograph, two organ pipes of varying 
pitch, three metal whistles, a 55-pound circular saw mounted on a wooden frame, a 
photographer taking pictures, and four students doing acrobatics! Events in the second 
room were choreographed so that a number of distractions sometimes occurred con­
currently and at other times the room was quiet. The remarkable result reported by 
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Hovey was that the group in the second room scored as well as the group in the first. 
Although we do not know whether anyone ever replicated Hovey's finding, we assume 
that it was accurately reported. Nonetheless, one major purpose of this chapter was 
to sensitize researchers to the kinds of threats to validity of the causal inferences 
discussed here. When we act as though we are oblivious to those threats, our science 
and the society that supports it both suffer. 

As another poignant illustration, the physicist Richard Feynman (1999) described 
an incident in a psychology department in which an experimenter was running rats 
through mazes consisting of a long corridor with doors along one side where the rat 
entered, and doors along the other side in which the food was placed. The experi­
menter was trying to condition rats to enter the third door down from wherever they 
started, but try as he might, the rats invariably went immediately to the door where 
the food had been on the previous trial. The experimenter suspected that an uncon­
trolled variable of some kind was cueing the rats, so he painted the doors, making 
sure they appeared exactly alike. That did not work, so he then used chemicals to 
change the smell after each trial, and when that still did not work, he tried altering 
the lighting and the arrangement in the laboratory. It was maddening, until he finally 
figured out that the rats could tell which door they had previously entered by the 
way the floor sounded to them. The way he was finally able to fool them was to 
cover the corridor in sand, so the rats had to go in the third door if they wanted 
the food. Feynman told how, years later, he looked into the history of this research 
and learned that the control criteria developed by that experimenter were never 
absorbed by colleagues of the experimenter. They just went right on running rats in 
the same old way, oblivious to the methodological insights because the experimenter 
had not seemed to discover anything about rats. However, as Feynman (p.215) 
noted, the experimenter had discovered things you have to do to find out something 
about rats. 

In the 1970s, many psychological researchers expressed being overwhelmed by 
all the plausible sources of subject- and experimenter-related artifacts. We once com­
pared this situation with a juggler's trying to balance dozens of spinning plates on 
the ends of sticks. The juggler has to keep running back and forth to keep them all 
balanced, just as the researchers in the 1970s felt they had to concentrate on one 
source of artifacts after another in order to keep everything properly balanced. What 
was needed, it seemed, was a conceptual pulling together of what was known about 
demand cues and artifacts within the framework of a workable, comprehensive model. 
Such a model has evolved in a collaboration by Rosnow successively with Leona Aiken, 
Daniel J. Davis, and David Strohmetz (Rosnow & Aiken, 1973; Rosnow & Davis, 
1977; Strohmetz & Rosnow, 1994). Instead of focusing on specific artifact-producing 
variables, this "mediational model" concentrates on intervening (or mediational) steps 
in a theorized causal chain from the sources of uncontrolled task-orienting cues to 
their resulting artifacts. Readers interested in learning about the model will find a 
general description in Rosnow and Rosenthal (1997, ch. 4) and an operationalization 
and elegant series of studies in C. T. Allen (2004). 

Another intriguing aspect of the artifact work was mentioned by McGuire 
(1969), who described the three stages in the life of an artifact as ignorance, coping, 
and exploitation. At first, most researchers seem unaware of the artifact and deny 
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its existence even when it is pointed out. Next, they view it as a nuisance variable 
and look for ways to isolate, eliminate, or control it. Finally, they realize that it 
can also be exploited as an independent variable of substantive interest. For exam­
ple, we mentioned how the role of demand characteristics has evolved, so that what 
were once regarded as mere nuisance variables are now perceived as powerful sub­
stantive agents with practical implications in their own right. Demand characteristics 
are now conceived of as a potent source of behavioral change and accommodation in 
a wide variety of circumstances, including not only the experimenter-subject interac­
tion in psychological research but also therapeutic change in the clinical situation 
(Orne & Bauer-Manley, 1991; Orne & Whitehouse, 2000). As Orne wisely noted 
many years ago, to understand the meaning of any social interaction, it is vital to take 
into consideration the role of demand characteristics in each and every situation. The 
same lesson applies to empirical research on the role of interpersonal expectations, 
which took root in the work on experimenter expectancy effects and has stimulated 
the burgeoning growth of interpersonal insights. In fact, the awareness of sources of 
artifacts has enhanced our understanding not only of the experimental setting but also 
of the nature of behavior and of the limitations of understanding. 

Finally, we want to return to a point made in chapter 2: Most researchers would 
agree that it is simply impossible to design an experiment that will forever be free of 
plausible rival explanations. Probative experiments are designed to test hypotheses, 
theories, and models anchored in the experimenter's experiential world; their concep­
tuablimits can never be exactly known because it is only by the discovery of experi­
ences outside their jurisdiction that their boundaries are revealed. In spite of this 
uncertainty, our hypotheses, theories, and models form a constituency of intellectual 
assumptions about the world in which we live. Furthermore, our hypotheses, theories, 
and models are idealizations of reality, which restrict or stylize reality by forgoing all 
those features that cannot be entirely captured by the formulation. If there is no such 
thing as an experiment that can be confidently regarded as entirely free of alternative 
explanations, then the falsificationist view is an oversimplification of the way that 
scientific knowledge evolves. A paper by Brinberg, Lynch, and Sawyer (1992) makes 
the further point that "both findings consistent and findings inconsistent with a theo­
ry's predictions can be informative" (p. 140), and using a Bayesian analysis ofhypoth­
esis testing, they showed that both a priori and post hoc explanations may have equal 
merit in certain circumstances. Though internal validity may be viewed by most 
behavioral and social researchers as the sine qua non of valid causal inference, the 
reality may be that it is an ideal that is forever beyond our grasp. There is always the 
possibility that some theory or observation awaiting discovery will threaten the internal 
validity of even the most brilliantly designed experiment. 
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Randomization is not always possible in human subject research, and researchers have 
used a number of alternative strategies that sometimes (under ideal conditions of 
implementation) serve as an approximation of randomized controlled experiments. 
Campbell and Stanley (1966) introduced the term quasi-experimental to refer to 
research designs for data collection that are "something like" randomized experiments 
but lack "the full control over the scheduling of experimental stimuli (the when and to 
whom of exposure and the ability to randomize exposures)" that make randomized 
experiments possible (p. 34). Their seminal chapter (Campbell & Stanley, 1963), which 
became the basis of their influential monograph (Campbell & Stanley, 1966), appeared 
in a handbook on teaching and educational practices. Campbell and Stanley (1966) 
insisted that randomized experiments (they called them "true experiments") were 

the only means for settling disputes regarding educational practice, ... the only way of 
verifying educational impr,.ovements, and ... the only way of establishing a cumulative 
tradition in which improvements can be introduced without the danger of a faddish 
discard of old wisdom in favor of inferior novelties. (p. 2) 

Campbell and Stanley were not alone in eschewing studies that did not use 
active interventions and randomized controls to establish causal relationships, but they 
conceded that it remained an ideal that was impossible to implement in many situations. 

233 
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For example, it would be ethically absurd to think that we could randomly assign 
nonsmokers to an experimental condition that required them to smoke for many years. 
Instead, we might plan an observational study in which we would measure the asso­
ciation of heart attack and lung cancer with smoking. Association implies covariation, 
but it is not the same thing as causation. It is possible that some hidden variable might 
induce people to smoke, and that that variable might also give them heart attacks and 
lung cancer. Using sophisticated statistical procedures (noted at the end of this chapter), 
we may be able to adjust the results of large sample studies by matching the nonsmokers 
and the smokers. Then we might compare the results of our observations with those 
of animal experiments using single-case designs, and also with the results of other 
quasi-experimental and survey studies, to see whether there is a convergence of 
evidence. This is the spirit of methodological pluralism that we alluded to in chapter 1, 
that is, the assumption that, because all research designs are limited in some ways, 
we need to draw on multiple methods of empirical investigation. 

In this chapter we describe several general types of nonrandomized studies, all 
of which are, by implication, concerned with causal effects. We say "by implication" 
because the tradition in some areas is not to speak of "causal effects," but to finesse 
the metaphysical conundrum regarding the nature of causation by referring to 
functional relationships between independent and dependent variables. For example, 
in single-case behavioral research on learning and conditioning, researchers refer to 
stimyli and the responses to them (Skinner, 1938, p. 41); they seldom mention "causal 
effects" but quite often mention "functions of stimuli," following in the tradition of 
Skinner (1938, p. 232). In Sidman's (1960) incisive text in this area, he stated that "a 
sufficient number of experiments have demonstrated that the behavior of the individual 
subject is an orderly function of a large number of so-called independent variables" 
(p. 49). Sidman provided a detailed rationale for single-case experiments-which are 
reminiscent in many ways of lab experiments in chemistry, biology, and physics. That 
they are called experiments implies that they are focused on the operation of causal 
relationships (what is responsible for what, or what causes what), but many method­
ologists, adopting Campbell and Stanley's (1966) labeling convention, refer to them 
as "quasi-experimental" on the assumption that they are similar to, but not exactly 
like, randomized experiments. 

In particular, we will discuss four types of nonrandomized strategies. The first 
type, nonequivalent groups designs, resemble between-groups experiments except that 
the researcher has .no control over how the subjects (or other sampling units) are 
assigned to different groups. In clinical trials, a popular (but potentially perilous) 
variation on this strategy is historical control trials, in which the control group is 
based on the nonrandomly selected archival records of patients diagnosed with a 
disease similar to the disease of those in the experimental treatment group. A second 
nonrandomized approach, interrupted time-series designs, uses large numbers of con­
secutive outcome measures that are interrupted by a critical intervention, the objective 
being to assess the causal impact of the intervention by comparing before and after 
measurements. A third approach, single-case studies, has (as noted above) played a 
prominent role in the exploration of behavioral learning and conditioning. Single-case 
designs are also used as detection experiments in biological and medical areas. This 
approach, similar in some ways to the interrupted time-series study, is characterized 
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by the repeated observation of only one or a few units while one or more behavioral 
manipulations are introduced and withdrawn. A fourth approach, which is really a 
kind of "catchall category," is generally described as consisting of correlational designs. 
It is characterized by the simultaneous observation of interventions (or X treatments) 
and their possible Y outcomes, so that correlation in this case refers to the retrospective 
covariation of X and Y. 

Some of the procedures used involve between-groups observations and others, 
within-subject observations. The tracking of the variable of interest over successive 
periods of time is sometimes referred to as diachronic research. An example would 
be longitudinal research on child and adult development, in which the same people 
are observed repeatedly over the life span. The name for studies that take a slice of 
time and examine behavior only at one point is synchronic research. Most exper­
imental studies are illustrative of synchronic research. As noted above, the chapter 
concludes with a discussion of a statistical matching procedure for controlling 
extraneous variation in studies in which causal effects are of interest, but in which 
the researcher has no control over the assignment of subjects to conditions. In this 
procedure, so-called propensity scores take into account all of the information that 
is available, and we "match" the nonrandomized groups on all these variables 
(Rosenbaum & Rubin, 1983a; Rubin, 1988). Of course, there may be variables that 
we do not know about, but that might have produced relevant observed causal 
effects. Once again, what we mean by a causal effect is that something happens 
(Y) because of something else that happened (X), so that X was not only prior to 
Y but was also presumably responsible for Y. 

NONEQUIVALENT GROUPS AND 
HISTORICAL 'CONTROLS 

Another defining characteristic of nonequivalent-groups designs, in addition to their 
resemblance to nonrandomized between-groups experiments, is that there is usually a 
pre and post observation or measurement. Suppose that, in a traffic safety project 
designed to reduce drinking and driving, a court-ordered treatment program is to be 
evaluated by researchers (Vaught, 1977). The objective of the project is to compare 
four conditions: (a) drug therapy using Antabuse (which causes an unpleasant reaction 
when alcohol is consumed); (b) group psychotherapy administered by clinical psy­
chologists; (c) a volunteer program along the lines of Alcoholics Anonymous; and 
(d) a zero-control condition (no treatment of any kind). A number of complications make 
it impossible to use a randomizing procedure to assign the individuals to groups. One 
problem is that those who operate the volunteer program will accept only participants 
who attend of their own accord; they refuse to accept randomly assigned nonvolunteers. 
A second problem is that the, judge feels a legal and moral obligation to assign the 
worst offenders to either a drug or a group psychotherapy condition and is adamant 
about not assigning the worst offenders to the zero-control group. A third problem is 
that the administrator at the institution conducting the research is concerned about 
risks inherent in the use of random assignment. Her fear is that the institution may 
be sued by repeat offenders who find themselves assigned to a condition not to their 
liking, or by future victims of participants assigned to the zero-control condition. 



236 THE LOGIC OF RESEARCH DESIGNS 

Difficulties like these are not uncommon in field experiments. The problem is 
that, in employing a nonequivalent-groups design, researchers can expect participants 
in different conditions to differ because of self-selection or assignment biases because 
the assignment to groups is uncontrolled. Researchers use alternative methods to 
increase the likelihood that the groups will be comparable, but these methods are not 
without problems of their own in many cases. For example, one alternative is to try 
to overcome the objections to random assignment by proposing randomization after 
assignment (Vaught, 1977). In our example, the assignment might be made to each 
of the three treatment groups on the basis of a group decision process involving the 
judge, the institutional administrator, the volunteer program coordinator, and the 
researchers. Afterward, each group of participants might be randomly divided into 
experimental and control subgroups. The experimental subgroups would receive the 
experimental treatment, and the controls would receive nothing. Within these groups, 
the experimental and control subgroups should be roughly comparable because each 
experimental subgroup is naturally paired with its own control subjects. Once the 
experimental treatments have ended, the control subjects would receive them (i.e., in 
a wait-list control design). One nagging problem, however, is that the treatment of 
those in the wait-list control group is delayed for a significant period of time. The 
ethical and legal reasons that were raised for why we should not randomize to begin 
with may also prevent us from using randomization to determine which subjects will 
have to wait for their treatment to begin. Moreover, using no-treatment controls is 
usually ethically questionable when some standard treatment is known to be better 
than no treatment at all. There are situations, however, in which wait-list controls may 
be ethically quite defensible. Those are the situations in which the resources to admin­
ister the treatment to all the subjects/patients are simply unavailable. Wait-list controls 
have been used, for example, in psychotherapy research where there were too few 
psychotherapists available to treat all the subjects/patients. Under those conditions, 
randomization to treatment now versus treatment later seemed to be a fair and realistic 
way to cope with the lack of resources. 

Ethical and legal objections to depriving some people of the benefits of the 
experimental treatment, or concerns that the experimental treatment might be ineffective 
or counterproductive, have led to the use of historical controls in many clinical stud­
ies with nonequivalent-groups designs. Historical controls (also described as literature 
controls because they are retrieved from file records) are recently treated patients all 
of whom suffered from the same disorder. Proponents of the use of historical controls 
argue that it is advantageous on logistic and ethical grounds, in that not only is it less 
costly than a fully randomized design, but it also provides results more rapidly with­
out exposing patients to possibly ineffective treatments. However, in an important 
paper, Sacks, Chalmers, and Smith (1982) compared randomized control trials (RCT) 
with historical control trials (HCT) in six areas of medical research and found the 
HCT dangerously flawed. The HCT typically reported clinical treatments to be effec­
tive, whereas the RCT usually reported no statistically significant beneficial effects 
of the treatments. Sacks et al. noted that the RCT were generally low-power studies 
(i.e., using not enough units) and thus subject to false-negative conclusions, in which 
real differences presumably went undetected. Although the treated patients seemed to 
respond similarly in both HCT and RCT, the historical controls tended to be worse 
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off than the control groups in RCT. Thus, the HCT had a tendency to imply beneficial 
effects of the treatment procedures. Furthermore, poor-risk patients in HCT were often 
excluded from treatment or, if selected for treatment, might "not be selected for the 
report of the treatment" (p. 237). An example of this mystifying reporting procedure 
was documented in an earlier paper noting that in uncontrolled trials of cancer therapy, 
there were frequently higher proportions of patients listed as "nonevaluable" than in 
RCT (Block, Schneiderman, Chalmers, & Lee, 1975). As a consequence, Sacks et ai. 
concluded, the HCT were often uninterpretable and dangerously misleading. More­
over, the accuracy of HCT left little room for improvement, as "the data presented 
suggest that such biases in patient selection may irretrievably bias the outcome of the 
HCT" (Sacks et aI., 1982, p. 237). 

Before we leave this discussion of clinical trials, we want to repeat one more 
point, and that is the problem that pooled effects (also called net effects) may often 
mask true individual effects (we made a similar point in the previous chapter). It 
is standard practice in randomized drug and clinical trials for the research to be 
conducted in more than one medical center or hospital. Because the sample sizes 
are often relatively small in each setting, the principal investigators may simply 
cumulate the results as a way of improving the overall statistical power and then 
report only the net effects. Though this practice has a long history (Turner, 1997), 
it can lead to spurious conclusions because of a statistical irony now known as 
Simpson's paradox-which, according to Pearl (2000), was recognized by Karl 
Pearson in the late 19th century. In general, the paradox is that bivariate statistical 
relationships may be reversed by the inclusion of other factors in the analysis. 
Pearl's interesting example was the hypothetical finding that students who smoked 
got higher grades than nonsmokers, but when the data were adjusted for age, the 
smokers actually got lower grades in every age group (p. 78). Here is a quite 
different illustration of ours: Suppose we have the results of three studies, each 
with three subjects, and with the X and Y scores listed in Table 8.1. The correlation 
of these X and Y scores in each of the studies is r xy = -1.0, but when we combine 
the nine scores, we find r = + 1.0, which is the opposite result. The lesson is that xy 
raw data should not be pooled before the individual results are first examined to 
ensure that there is good justification for looking at the net effects. Unfortunately, 
it is a lesson that has not been fully absorbed by many biomedical researchers, as 

TABLE 8.1 

Hypothetical results of three studies 

Study A Study B Study C 

Subject X Y Subject X Y Subject X Y 

10 12 100 102 1000 1002 

2 11 11 2 101 101 2 1001 1001 

3 12 10 3 102 100 3 1002 1000 

r xy -1.00 -1.00 -1.00 
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reporting only the pooled results and not reporting the individual center data is 
still a common practice in the leading medical journals. 

INTERRUPTED TIME SERIES AND 
THE AUTOREGRESSIVE INTEGRATED 
MOVING AVERAGE 

In interrupted time-series designs the effects of an intervention are inferred from 
sampled measurements obtained at different time intervals before and after the 
intervention is introduced. The data structure is called a time series because there is 
a single data point for each point in time, and it is called an interrupted time series 
because, presumably, there is a clear-cut dividing line at the beginning of the 
intervention (Judd & Kenny, 1981). In order to describe these data the researcher tries 
to choose a sampling interval that will capture the effects of interest, although when 
there is a finite number of data points and the data are not very costly to collect and 
store, it is possible to work with all the relevant data points. If not, the researcher 
must balance the risks of too-frequent and too-infrequent sampling, that is, between 
being potentially wasteful and losing some of the essential features (Diggle, 1990, 
p. 2). Time-series analysis is a branch of statistics, and the methodology for analyzing 
data and using the results for modeling and forecasting causal effects is specialized 
beyond the focus of this text. However, we will summarize an example of an interrupted 
time-;eries study in order to give a sense of how the data were analyzed. This study was 
conducted by Diana DiNitto, a social welfare professor who was interested in the effects 
of government-mandated changes in the food stamp purchase requirement of 1977 
(DiNitto, 1983). One of the effects of the mandated changes was to increase the number 
of qualified participants by awarding them a bonus equivalent to the monthly value of 
the stamps for which they were eligible. DiNitto studied the food stamp program 
participation in one state, Florida, in order to evaluate the impact of the 1977 law. 

The first step in DiNitto's analysis was to define the period of observations in this 
interrupted time-series design. She selected for her analysis the period from March 1972 
to December 1981, a period that enabled her to examine food stamp participation before, 
during, and following the 1977 law's initiation. The next step was to obtain the data to 
be analyzed, but there were four important considerations. First, there had to be a sufficient 
number of observations and time points-usually 100, but no fewer than 50--in order 
to use the data-analytic method she chose (the Box-Jenkins procedure, described below). 
Second, she had to observe the same units throughout the analysis to ensure that the 
observations and the time points were equally spaced. She could not, for example, take 
monthly observations one year and then quarterly observations another year. Third, the 
time points had to be sensitive to the particular effects being studied. If there were a drop 
in food stamp recipients one week each month, the time points should reflect such 
variations. Fourth, the measurements should not fluctuate very much as a result of instru­
mentation changes (i.e., the observations would have to be reliable). The final step was 
to use a procedure called ARIMA (for autoregressive integrated moving average) to 
assess change (Box & Jenkins, 1970). 

ARIMA proceeds in three steps: identification of an underlying model of serial 
effects; estimation of the model parameters; and checking the fitted model (cf. Diggle, 
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1990, pp. 165-187). DiNitto began by considering three possible underlying models. 
One model implied a sharp increase in participation in the program followed by main­
tenance of the new level. Given a hypothetical mean of 3 for the pretreatment series, 
we might visualize this model as 3, 3, 3, 5, 5, 5, 5, 5. The second possibility she 
considered was that there might be gradual, constant improvements in participation. 
This model might be visualized as 3, 3, 3, 4.5, 4.5, 5, 5, 5.5, in which the series after 
the intervention shows a drift upward. The third model implied what is called a pulse 
function-an abrupt change lasting only a short time, for example, 3, 3, 3, 5, 4, 3, 3, 3, 
in which the effect pulses upward but then reverts to the preintervention level. 

The third step was to evaluate the efficacy of each of the three models. There 
were some technical considerations to deal with first. In later chapters we refer to the 
"lID normal" assumptions that underlie the use of certain statistical tests, and there 
are similar kinds of assumptions underlying the use of ARIMA. We will note two 
considerations as a way of acquainting readers with the terminology of this procedure. 
One important assumption is that a series of observations must be stationary. That 
is, it is assumed that the integer values of the observations fluctuate normally about 
the mean, as opposed to systematically drifting upward or downward. Most time­
series observations, however, do show systematic increases or decreases in the level 
of the series, referred to as a secular trend. For statistical purposes, a secular trend 
can be made stationary by differencing, which consists of subtracting the first obser­
vation from the second, the second from the third, and so forth. In the series 2, 3, 4, 
5,6, for example, differencing would give us: 3 - 2 = 1; 4 - 3 = 1; 5 - 4 = 1; 
6 - 5 = 1 (which has no secular trend). Mathematically, differencing does not affect 
the actual pattern of the results, only how the data are entered into the time-series 
analysis. A problem, however, is that we forfeit an observation in this series; that is, 
differencing results in a loss of some data. 

Another consideration concerns what is termed autocorrelation, which refers 
to whether the data points or observations are dependent on one another (autocorrelated) 
or instead can be assumed to be independent. In time-series analysis, a distinction is 
made between two kinds of autocorrelations: regular, which describes the dependency 
of adjacent observations or data points on one another, and seasonal, which describes 
the dependency of observations separated by one period or cycle (e.g., biannual 
separation; Cook & Campbell, 1979). If food stamp recipients one month received 
them the previous month and the month before, the data points are regularly autocor­
related. We must allow for (or "correct for") this autocorrelation so as not to increase 
the risk of Type I error. After doing all this, DiNitto concluded that her first model 
provided the best fit for the interrupted time-series data. The actual results in this 
study were that the new law was associated with a sharp increase of 5 percent (12,117 
households) to Florida's food stamp program. 

SINGLE-CASE EXPERIMENTAL DESIGNS 

Single-case experimental studies also involve repeated observations, but on a single 
unit (a case) in most diagnostic studies or a few units in exploratory and hypothesis­
testing studies. The treatment or intervention (characterized by some behavioral or 
cogilitive control manipulation) is generally under the control of the experimenter. 
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Many different designs have been used in this kind of research, but the simplest ones 
are reminiscent of the causal reasoning one experiences in everyday life. As an illus­
tration, suppose your hand has been bitten by a dog. You go to a doctor, who prescribes 
a tetanus shot and an oral antibiotic. You ask the doctor to give the tetanus shot in 
your bad arm so that you have your good arm to use. But the doctor points out that 
if she did so and you had a reaction to the tetanus, she would not be able to separate 
it from the possible continued reaction to the dog bite-which could, in the worst 
case, also cause the arm, not the hand, to swell. For this reason, she gives the shot 
in your good arm, so that any swelling caused by an allergy to the tetanus will not 
be confounded with a possible reaction to the dog bite. Her causal reasoning will be 
based on a comparison of her before and after observations, so her strategy is similar 
to an interrupted time-series design (cf. Campbell & Stanley, 1966). One big difference 
is that interrupted time-series studies call for much larger numbers of repeated obser­
vations so that statistical analyses like ARIMA can be used. Traditionally, single-case 
researchers have been more interested in inspecting graphs of individual behavioral 
trends (or in neuroscience, trends in brain imaging responses, for example), or even 
possibly pooled curves based on averaged results, rather than computing significance 
tests. As one leading researcher argued, "If the effect of treatment is not sufficiently 
substantial to be detected by visual inspection . . . then the treatment applied is not 
clinically potent and its controlling effects have not beentlearly documented (Hersen, 
1982, p. 196). Nonetheless, it is also common to see p values reported for within­
s~bjects analyses in some fields in which these designs are used. 

There are many papers, chapters, books, and standard references that provide a 
rationale for single-case research on learning and conditioning of behavior and the special 
nomenclature associated with this strategy of investigation, beginning with the seminal 
work of B. F. Skinner (1938, 1953, 1957). The idea of experimenting with a single 
organism by scheduling and removing different conditions has been traced back to the 
19th century and the work of the French physiologist Claude Bernard (1865/1957), who 
argued that medical practice could be based on diagnostic reasoning by means of a kind 
of single-case experimental strategy (Hineline & Lattal, 2000). To illustrate, he described 
how he had diagnosed that a starving rabbit had survived on its own stored nutrients; he 
then demonstrated by manipulating the physiological state of the animal. As a more 
contemporary illustration of the diagnostic use of single-case methodology, Terry L. Rose 
(1978) was interested in the "functional relationship" between a child's ingestion of 
artificial food colors and subsequent hyperactive behavior. Earlier studies had provided 
mixed results and had been criticized on methodological grounds. Rose decided to use 
a double-blind design to diagnose the effects of a particular artificial food color ingested 
by two 8-year-old children who had previously been on a restricted diet. The independent 
variable was an oatmeal-type cookie containing either the questionable food color or no 
additive, and the dependent variables were duration of attention, out-of-seat frequency 
(a measure of fidgetiness), and physical aggression. Each child's behavior was recorded 
by two independent observers, and the children's parents were asked to fill in a daily 
checklist and to keep a log of informal observations. The parents (but not the independent 
observers) knew the intent of the study but (like the observers) were blind to the 
sequencing of the two types of cookies, which looked identical. Unfortunately, the results 
were confounded because of dietary infractions during the course of the study, though 
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the graphic results did suggest a functional relationship between food color and hyper­
activity as hypothesized. More recently, Morgan and Morgan (2001) proposed the 
applicability of single-case designs in managed-care programs. 

The use of single-case designs in clinical, counseling, organizational, and edu­
cational settings is a subject of considerable scholarly discourse (e.g., Barlow, 1984; 
Hersen & Barlow, 1976; Hineline, 2000; Johnston & Pennypacker, 1993; Kazdin & 
Tuma, 1982). Whether they are used as a diagnostic or a hypothesis-testing strategy, the 
hallmark of all single-case designs is that the individual subject's behavior is first assessed 
under certain baseline conditions against which any subsequent changes in behavior can 
be evaluated after an environmental treatment is manipulated (Hersen, 1982). For exam­
ple, in learning and conditioning research, one popular design is the A-B-A (also called 
a reversal design), where A is the no-treatment (baseline) phase and B is the treatment 
phase. If the treatment is observed to have a beneficial effect, the sequence may be 
extended to end on the B phase rather than the A phase (i.e., A-B-A-B). A more complex 
design with two treatments would be A-B-BC-B, where B and C might refer to two 
different clinical or educational treatments, so that there are repeated observations before 
B or C are introduced, then during treatment B, next during the combination of B and 
C, and finally when only B is operating. The purpose of this design is to tease out the 
effect of B both in combination with C and apart from C. 

In choosing the baseline the researcher looks for an orderly, relatively stable pattern 
of behavior during the initial period of observation. Experience has taught researchers to 
look for different baseline patterns, however. For example, one person's baseline might 
consist of steadily worsening behavior, and another's might consist of steadily improving 
behavior, or even a consistently variable pattern. Suppose a child is increasingly belligerent 
and the purpose of the experiment is to see whether a particular treatment might reverse 
this baseline trend, or a child periodically engages in disruptive antics (i.e., high baseline 
variability) and the treatment procedure is intended to eliminate the negative behavior 
and stabilize positive behavior. The A phase, in which the baseline pattern is first identi­
fied, thus requires a sufficient number of data points to establish the pattern of negative 
and positive behavior. In some cases multiple baselines might even be established for 
different behaviors that are to be targeted and evaluated (Hersen, 1982). For example, 
both disruptive antics and tic behavior might be targeted in the same child. Although 
intersubject variability is usually of less interest than intrasubject variability (because the 
treatment is focused on a particular subject), if the objective of the investigation is to 
generalize to other individuals and other settings, then replications across persons and 
settings would be essential. Nonetheless, the philosophy of most single-case research is 
that the statistical averaging of people washes out individual differences, so it is important 
to establish baseline characteristics and not be blind to the vicissitudes and idiosyncrasies 
of individuals. 

Among the advantag¢s of single-case studies is that they are processual, which 
means that they are focused not just on effects measured at one point in time, but instead 
on effects monitored during the entire course of treatment and observation. If the treat­
ment is counterproductive or ineffective, the researcher can terminate the environmental 
manipulation or alter the scheduling of events. Another advantage is that these studies 
are cost-effective in terms of the number of subjects needed to test functional hypotheses. 
The rule of thumb when using animal subjects appears to be that no fewer than two, and 
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usually no more than six, are used, on the assumption that one or two animals may have 
to be eliminated from the study because of some odd problem beyond the experimenter's 
control (P. H. Hineline, personal communication, 2000). Although cost-effective in terms 
of the number of human or animal subjects, these studies are nevertheless time-consuming 
because of their processual nature. An early criticism was that, because they focused on 
only one or a few organisms, the results might not be generalizable beyond the limited 
circumstances of the observations. In the case of diagnostic studies, of course, the 
objective is to learn about a particular human subject. In the case of exploratory and 
hypothesis-testing studies, Sidman (1960) responded to the criticism by elaborating on 
two kinds of replications, one involving repetition of the same study (direct replication) 
and the other, varying an aspect, or the scheduling, of the stimulus conditions or treat­
ments (systematic replication). Direct replication on the same subjects (intrasubject 
replications) presumably identifies the reliability of functional relationships over time, 
whereas systematic replications on other subjects would identify the generality of the 
functional relationships across variations of independent and dependent variables, and 
over other subjects (although a tiny sample of the general population). Sidman (1960) 
concluded that a powerful feature of intrasubject replication was "the ease with which 
experimental control can be exercised, at will, over the course of time" (p. 87), the 
reason being that it "has the obvious virtue of eliminating intersubject variability as a 
factor in the evaluation of an experimental finding" (p. 88). 

In fact, it is quite common to see single-case replication designs in neuroscience 
research. For example, a team of researchers at Princeton University and the University 
of Pittsburgh collaborated on a correlational study of how the brain responds as a person 
weighs a moral dilemma (Greene, Sommerville, Nystrom, Darley, & Cohen, 2001). The 
dilemma might be a story about a runaway trolley that is hurtling toward five people, all 
of whom will be killed unless you throw a switch that routes the trolley onto a spur, 
where it will kill one person instead of five. In another variation of the trolley dilemma, 
you are standing next to a large stranger on a footbridge over the tracks, and the only 
way to save the five people is to push the stranger onto the tracks, where he will die but 
his heavy body will also stop the trolley, saving the five others. Most people say they 
would not push the stranger. Sixty dilemmas involving moral and nonmoral issues were 
presented to two groups of nine subjects, who responded to each dilemma while under­
going brain scanning by functional magnetic resonance imaging (!MRI). The results were 
that different parts of the brain lit up when these subjects were responding to an "imper­
sonal dilemma" (e.g., throwing a switch) and when they were responding to a "personal 
dilemma" (e.g., shoving a person off a bridge). The researchers interpreted these results 
as implying a functional association between how people process information involving 
moral reasoning and how parts of their brains respond physiologically. 

CROSS-LAGGED CORRELATIONAL DESIGNS 

We turn now to the third general type of quasi-experimental designs, called correlational 
designs as a catchall name for odds and ends of relational methods. The term correlational 
is really a misnomer, as we know that correlation (i.e., some evidence of covariation 
between X and Y) is also what one looks for in randomized controlled experiments 
(e.g., effect size correlations). As our first example we describe an old correlational design 
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that was used with some frequency by sociologists and social psychologists and was 
subsequently viewed with "skeptical advocacy" by Campbell, who was one of its 
developers (Cook & Campbell, 1979, p. 309). This design is called a cross-lagged panel 
design. Cross-lagged implies that some data points are treated as temporally "lagged" 
values of the outcome measures; panel design comes from sociological survey research, 
where panel study is another name for longitudinal research (Lazarsfeld, 1948). We will 
have more to say about longitudinal research shortly, but two advantages of such designs 
are assumed to be that (a) they increase the precision of the defined "treatment" com­
parisons by the observation of each individual under all the different conditions to be 
compared, and (b) they identify how people's responses change over time (N. R. Cook & 
Ware, 1983). 

When the cross-lagged panel model was conceived, the assumption was that 
longitudinal measures of the same two variables, A and B, should provide information 
about the (bivariate) causal relationships between them (Lazarsfeld, 1978). Stated 
another way, the cross-lagged panel model was envisioned as a useful template with 
which to choose among competing causal hypotheses (cf. Campbell, 1963; Campbell & 
Stanley, 1966; Lazarsfeld, 1978; Pelz & Andrew, 1964; Rozelle & Campbell, 1969). 
A problem is that, like any quasi-experimental designs that depend on the time sam­
pling of data points, cross-lagged panel designs may miss a causal relationship that 
is transient, transitional, elusive, obscured by measurement biases, or just hard to pin 
down. As Shadish, Cook, and Campbell (2002) wisely cautioned, "Observed bivariate 
correlations can be too high, too low, spurious, or accurate (as indices of causation) 
depending on the pattern of relationship among the variables in the structure that 
actually generated the data" (p. 413). Thus, just as the presence of path coefficient 
correlation in time-series designs is not proof of causation, the absence of correlation 
in cross-lagged designs is not proof of the absence of causation. 

Figure 8.1 diagrams the simplest model, in which A and B denote two variables, 
each of which is measured individually at two successive time periods. Three sets 

FIGURE 8.1 
Design for cross-lagged and other correlations between variables A and B. 
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of paired correlations are represented: test-retest correlations (r AIA2 and r BIB2)' 

synchronous correlations (r AIBI and r A2B2)' and cross-lagged correlations (r AlB2 and 
rBIA2). The test-retest correlations indicate the reliability of A and B over time. The 
synchronous correlations, when compared with one another, imply the reliability of 
the relationship between A and B over time. The cross-lagged correlations show the 
relationships between two sets of data points, in which one is treated as a lagged value 
of the outcome variable. As originally conceived, the question that was ostensibly 
addressed by this model was whether A is a stronger cause of B than B is of A. The 
logic was that, given reliable test-retest and synchronous correlations, comparing the 
cross-lagged correlations should answer this question. That is, the answer would be 
"yes" if rAIB2 were higher than r BIA2, and it would be "no" if rBIA2 were higher than 
rAIB2 (i.e., B is presumed to be a stronger "cause'" of A than A is of B). 

Figure 8.2a shows several hypothetical test-retest, synchronous, and cross-lagged 
correlations at three successive time periods. In this idealized case we see that A and B 
are highly reliable variables, with a strikingly consistent retest reliability of .85. The 
synchronous correlation between A and B is consistent as well (i.e., .40 at times 1, 2, 
and 3). The cross-lagged correlations are also unusually the same within each level 
throughout the investigation. If these numbers were represented as real data, we would 

AI~----------------~------------------~A3 

BI~----------------------------------------B3 
(b) 

FIGURE 8.2 
Hypothetical panel correlations between variables A and B measured at three 
successive time periods: (a) test-retest, synchronous, and cross-lagged 
correlations at two successive periods; (b) estimated test-retest and 
cross-lagged correlations based on a given temporal erosion rate. 
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be suspicious because they are so remarkably identical. However, putting our suspicion 
aside (because this is merely a hypothetical case), we might conclude from the fact that 
rA1B2 > rB1A2 and rA2B3 > rB2A3, and the further fact that all of the correlations are far 
from zero, that the path from A to B contributes more to the (presumed) causal relationship 
between A and B than the path from B to A. As all the cross-lagged correlations are 
nonzero, we also conclude that both paths (i.e., A ~ B and B ~ A) remain quite tenable. 
Of course, even if the cross-lagged correlations had been zero, the lack of correlation 
would not disprove causation because, as one author put it, "It is only when we isolate 
the cause and effect from all other influences that correlation is a necessary condition of 
causation" (Bollen, 1989, p. 52). 

Interpretability is considered maximum when the correlations remain similar 
at each period. In fact, relationships are seldom stationary, but instead are usually 
lower over longer lapses of time-described as temporal erosion (Kenny, 1973). 
Suppose the test-retest correlation of A eroded from .85 between two successive 
periods (i.e., Al with A2, and also A2 with A3) down to .765 between periods 
1 and 3 (i.e., Al with A3). That 10% reduction (also called attenuation) in test­
retest reliability leaves a 90% leftover (or residual) effect per unit of time (shown 
in Figure 8.2b), that is, (.765/.85) X 100 = 90 percent. After making necessary 
statistical corrections, we might use this figure to estimate the attenuation of the 
cross-lagged correlations. In this hypothetical case we multiplied the 90% residual 
times each of the cross-lagged correlations in Figure 8.2a. The results are given as 
idealized values in Part b of Figure 8.2, for example, .65 X .90 = .585. 

INVISffiLE VARIABLES AND 
THE MEDIATION PROBLEM 

To reiterate, in real life the correlations are rarely, if ever, as reliable or clear-cut as in 
the example that we just discussed. Thus, there is seldom a firm and clear inference that 
can be made even in the most simple cross-lagged design (cf. Mayer & Carroll, 1987). 
We turn next to actual data as a way of illustrating another correlational strategy, now 
simply called path analysis, which has been mired in controversy since it was first 
proposed (cf. Niles, 1922, 1923; Wright, 1921, 1923). As it is typically used to infer 
causation from nonexperimental data, a problem is that none of the variables are under 
the control of the researchers; they are simply observed, and thus all we really know is 
that they are correlated. By statistically removing some associations between the vari­
ables and then appraising the partial correlations, social scientists who use path analysis 
attempt to rule out alternative pathways of causal influence on the basis of quantitative 
models, the goal being to settle on the plausible causal pathway that is most viable. 
Although critics may grant that ingenious theoretical solutions have been proposed, they 
also argue that the causal claims are illusions based on assumptions that are not only 
unverifiable but often spurious (Freedman, 1987; Reichardt, 2002; Rogosa, 1987; 
see McKim & Turner, 1997, for a fascinating range of viewpoints). 

Before we turn to path analysis, we also need to mention the third-variable 
problem-which might be characterized as the invisible variables problem, because there 
may be more than one hidden, confounding variable. The third-variable problem is that 
some variable that is correlated with both A and B may be the cause of both. Mathematician 
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John Paulos (1990,1991) discussed a number of fascinating examples. For instance, there 
is a positive correlation between milk consumption and the incidence of cancer in various 
societies. Paulos explained this correlation by the fact that people in relatively affluent 
societies live longer, and increased longevity (the invisible third variable) is associated 
with an increase in the likelihood of getting cancer. Thus, any health practice (such as 
milk drinking) that increases longevity will probably correlate positively with cancer 
incidence. Another example is the small negative correlation observed between death 
rates and divorce rates (more divorce, less death) in various regions of the United States. 
The invisible third variable proposed by Paulos to explain this relation is the age distri­
bution of the various regions, because older married couples are less likely to divorce 
and more likely to die than are younger couples. Another Paulos example was the high 
positive correlation between the size of children's feet and their spelling ability. Should 
we, he asked facetiously, use foot stretchers to increase children's spelling scores? The 
invisible third variable is age, because children with bigger feet are usually older, and 
older children spell better. (We will return to the third-variable problem in chapter 11.) 

More recently, Shrout and Bolger (2002) focused on still another relevant issue in 
the context of causal modeling in nonexperimental studies, which is the possibility that 
a causal effect of some variable X on an outcome variable Y is explained by a mediator 
variable-briefly alluded to in the previous chapter and described as a condition, a state, 
or another factor that is presumed to intervene between X and Y. As Shrout and Bolger 
noted,~mediation is of equal interest to experimenters and social scientists who do non­
experimental studies. For example, in the previous chapter we ended by mentioning a 
mediational model of how subject- and experimenter-related artifacts may occur in exper­
imental and nonexperimental research (Rosnow & Aiken, 1973). Shrout and Bolger 
described the standard methods for estimating direct and indirect causal paths and the 
concerns associated with them (a) when there are mediator variables that are measured 
with error (leading to model misspecification), or (b) when the intervening variable is a 
partial mediator on average, and (c) other problems. In particular, they recommended the 
estimation of parameters by the use of a procedure called the bootstrap by Efron (1979), 
a variation on another procedure called the jackknife by Tukey (1958). (We will have 
more to say about the bootstrap and the jackknife in chapter 13.) 

PATH ANALYSIS AND CAUSAL INFERENCE 

Path analysis is much more widely used than cross-lagged panel analysis, but to continue 
the thread of the preceding discussion, we will present a path analysis example in the 
framework of the simple model previously depicted in Figure 8.1. The case we discuss 
is also another illustration of longitudinal research, and we will have more to say about 
this kind of research in the following section. In this particular study, the researchers 
were interested in the increasing prominence of violence in American society, with a 
special emphasis on the role of media violence viewing as a factor contributing to the 
development of aggression. Led by Leonard D. Eron and L. Rowell Huesmann, this 
team of investigators (Eron, Huesmann, Lefkowitz, & Walder, 1972) focused on 
television programming and its heavy emphasis on violence and lawlessness as one 
causal contributor to violence in American society. In earlier lab experiments, it had 
been observed that there was an immediate effect on the extent of aggressive behavior 
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among participants who witnessed aggressive displays in films. The question addressed 
by Eron, Huesmann, and associates was whether a similar finding might be observed 
long term, especially in regard to children's exposure to television violence and their 
subsequent aggressive and violent behavior when they were young adults. There was a 
body of theory suggesting that long-term aggressive effects were due to a long-term 
observational learning of beliefs and cognitive biases, whereas short-term (immediate 
effects) were theorized to be due to other psychological processes such as priming, 
imitation, and excitation transfer (see Bushman & Huesmann, 2001, for a more detailed 
discussion). More recently, this same team of researchers reported a follow-up of their 
earlier longitudinal study, including more detailed analyses that we describe next 
(Huesmann, Moise-Titus, Podolski, & Eron, 2003), but here we are primarily interested 
in illustrating the logic of path analysis. 

To address the long-term effects of children's exposure to TV violence, the 
researchers collected archival and interview data in 1970 on several hundred teenagers 
of an original group of children who had participated in a study of third-grade children 
growing up in Chicago in 1960 (Eron, 1963; Eron, Walder, & Lefkowitz,1971). In our 
discussion (above) of the cross-lagged panel design, we considered the possibility 
that A ~ B or B ~ A. However, a causal relationship can be either positive or negative, 
and it may also follow a more circuitous path involving, for example, A I ~ A2 ~ B2 
or Bl ~ Al ~ B2. Figure 8.3 shows some of the results obtained by these researchers. 
The information collected in 1960 and 1970 fell into two general categories: (a) measures 
of aggression (such as asking children, "Who starts a fight over nothing?" and "Who 
takes other children's things without asking?") and (b) possible predictors of aggression 
(particularly a child's preference for violent television programs, e.g., learned by asking 
each mother to identify her child's three favorite television programs). The results in 
Figure 8.3 represent the correlations between a preference for violent TV, labeled as A, 
and peer-rated aggression, labeled as B, for boys over the lO-year lag (Eron, Huesmann, 
Lefkowitz, & Walder, 1972, p. 257). In contrast to the mock data in Figure 8.2, note that 
these actual data indicate some not very reliable relationships. First, the correlation 

Preference for _______ .0_5 _______ Preference for 

violent TV (A 1) violent TV (A2) 

.21 -.05 

Peer-rated Peer-rated 
aggression (B1) --------------- aggression (B2) 

.38 

FIGURE 8.3 
Correlations between a preference for violent television and peer-rated 
aggression for 211 boys in 1960 and 1970. (After "Does Television Violence 
Cause Aggression?" by L. D. Eron, L. R. Huesmann, M. M. Lefkowitz, and 
L. O. Walder, 1972, American Psychologist, 27, pp. 253-263.) 
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between A and B in the third grade was positive (r = .21), but 10 years later it was 
negative and quite small (r = - .05). Second, the test-retest correlation was only .05 for 
a preference for violent TV, and it was .38 for aggression. Third, there was a statistically 
significant relationship between children's preference for violent television in the third 
grade and their aggressive habits 10 years later (r = .31), but the correlation between 
peer-rated aggression in the third grade and a preference for violent TV 10 years later 
was near zero (r = .01). 

The challenge in this case was to try to explain how a childhood preference for 
violent TV might be understood as causally related to teenage aggression in view of all 
these different correlations. It is not possible to prove that a causal hypothesis is true, 
but it might be possible to reject untenable hypotheses and, in this way, narrow down the 
number of plausible hypotheses. In this case the researchers came up with five alternative 
hypotheses for the results shown in Figure 8.3, which are represented by the five differ­
ent paths of causal influence in Figure 8.4. For example, labeled as Path 1 in Figure 8.4 
is the major hypothesis of this investigation, which was that preferring to watch violent 
television was a long-term cause of aggressive behavior. The results of both the synchro­
nous correlation between Al and Bl (.21) and the cross-lagged correlation between Al 
and B2 (.31) seemed logically consistent with this hypothesis. The low test-retest reliability 
of variable A might be explained by the notion that some of the children, by the time 
they were teenagers, had turned to other, more overtly aggressive activities (e.g., stealing 
and pghting) rather than getting their "kicks" vicariously by watching violent TV. It might 
also explain the near-zero correlation between A2 and B2 (- .05). 

Turning our attention next to Path 2 in Figure 8.4, we find the hypothesis that 
the preference for violent TV as a young child stimulated the person to be aggressive, 
and this aggressive behavior carried over into the teenage years. The researchers 
ruled out this hypothesis on the grounds that the correlation between the end points 
(indicated in Figure 8.3 as r = .31 between Al and B2) was much higher than the 
product of the intermediate correlations. They reasoned that, if the second hypothesis 
were correct, the relationship between the end points (i.e., Al and B2) would have 
been no stronger than the product of the relations between all adjacent intermediate 
points (i.e., .21 X .38 = .08). On similar grounds, the hypothesis represented by 
Path 3 was also ruled out. In this case the hypothesis was that aggressive children 
preferred aggressive television, and that a preference for aggressive TV then led to 
their aggressive behavior as teenagers. The researchers eliminated this hypothesis on 
the grounds that the strength of the relationship between the end points (B1 and B2, 
where r = .38 in Figure 8.3) was noticeably greater than the product of the relation­
ships between all adjacent intermediate points in Figure 8.4. 

Path 4 was not so easily rejected. It hypothesized that aggressive children were 
both more likely to enjoy watching aggressive television and more likely to become 
aggressive teenagers. The researchers reasoned that if this were the complete explana­
tion of the relation between Al and B2, adjusting for third-grade aggression would 
result in a near-zero correlation between A 1 and B2. They evaluated the idea by 
examining the correlation between Al and B2 while controlling for B1; the result was 
a partial r of .25. Because this correlation was only .06 below the original correlation 
between Al and B2 (.31 in Figure 8.3), they concluded that the fourth hypothesis was 
implausible as a "complete" causal explanation. 
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Path 1: 

Path 2: 

Path 3: 

Path 4: 

Path 5: 

~BI 

AI~ 
B2 

Al 
.21 

• B1 

B1 
.21 

• Al 

~AI 

Bl~8 

~B2 

:~A2 /1 
Bl~8 

~B2 
FIGURE 8.4 

.38 • B2 

.31 
B2 • 

Five plausible causal paths to explain the correlations presented 
in Figure 8.3. (After "Does Television Violence Cause 
Aggression?" by L. D. Eron, L. R. Huesmann, M. M. Lefkowitz, 
and L. O. Walder, 1972, American Psychologist, 27, pp. 253-263.) 

Path 5 hypothesized that early aggression caused both a weaker preference 
for TV violence as a teenager and a penchant for continuing to be aggressive. To 
test this hypothesis the resefu'chers decided they needed a correlation not reduced 
by the passage of time as a comparison base to evaluate the r = .01 between Bl 
and A2. Without going into detail, it will suffice to say that they found that .01 
was very close to that compllIison base, leading them to reject this fifth hypothesis. 
Thus, having ruled out four out of five hypotheses, they concluded that Path 1 
could best account for the observed data. That is, they concluded that watching 
violent television has a direct causal influence on aggressive behavior in some 
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children. In a more recent assessment of archival and interview data collected in 
this important study, the researchers reached a similar conclusion, "that childhood 
exposure to media violence predicts young adult aggressive behavior" (Huesmann, 
Moise-Titus, Podolski, & Eron, 2003, p. 201). 

In this follow-up analysis, even more fine-tuned than the earlier analyses, the 
researchers concluded that identification with aggressive TV characters and the perceived 
realism of TV violence also predicted later aggression in these children (Huesmann, 
Moise-Titus, Podolski, & Eron, 2003). When the effects of socioeconomic status, 
intellectual ability, and various parenting factors were statistically controlled for, the 
relationship between TV violence and aggression remained. Interestingly, a meta-analysis 
by Paik and Comstock (1994) of the results of 217 different studies of the relation 
between exposure to media violence and different forms of antisocial behavior reported 
effect size correlations of .32 for aggressive behavior, .10 for violent criminal behavior, 
and .28 for nonviolent criminal behavior. Bushman and Huesmann (2001) suggested an 
analogy between smoking and lung cancer as a way of interpreting the implications of 
findings like these, because the smoking-cancer literature is largely based on a similar 
kind of analysis and, according to data reported in their paper, the overall correlation 
between media violence and aggression was only slightly smaller than that between 
smoking and lung cancer (see also Bushman & Anderson, 2001). Bushman and Huesmann 
argued that, just as there is not a perfect one-to-one relationship between smoking and 
lung cancer, there is not a one-to-one relationship between watching violent TV as a 
clilld and growing up to be aggressive or hostile. However, they added, the direction of 
the relevant data do strongly suggest that watching violent TV is a contributing factor, 
and the more young children are exposed to violence in the media, the more cumulative 
will be the negative behavioral effects on some of them. (For a detailed discussion and 
review of the literature on the influence of media violence on youth, see Anderson, 
Berkowitz, Donnerstein, Huesmann, Johnson, Linz, Malamuth, & Wartella, 2003.) 

THE COHORT IN LONGITUDINAL 
RESEARCH 

The investigation just described is an example of longitudinal research, its purpose 
being to examine people's responses over an extended time span. The advantages of 
longitudinal research are particularly evident when one is interested in changes that 
occur over a lengthy period of time, because problems can arise when cross-sectional 
(i.e., synchronic) research is used to study the life course of some variable but the 
data are collected during a particular slice of time. We will illustrate this problem 
shortly, but another term that is commonly used in longitudinal research is cohort, 
denoting a "generation" that has experienced a significant life event (birth, marriage, etc.) 
at the same period of time (Ryder, 1965). Hence, a group of people born about the 
same time and having had similar life experiences constitutes a cohort. As we will 
show, researchers can use longitudinal research to track several different cohorts to 
find out, for example, whether a generation gap on some variable is observable. In 
some studies the researchers are not only interested in measuring one or more cohorts 
repeatedly through time but are also interested in making age comparisons on some 
variable. They may be interested in the period (calendar date) of measurements as 
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well, but this could complicate the analysis because any combination of two dimensions 
then determines the third (as we will illustrate). 

Longitudinal data are usually collected prospectively, which means the participants 
are tracked and measured over time (as in panel studies, or in the investigation described 
previously), but the data can also be gotten retrospectively from historical records 
(Rosnow, 2000). For example, another classic prospective study was begun by Lewis 
Terman and his associates in 1921 (Terman et al., 1925) and was summarized in a volume 
by Terman and Oden (1947). The study tracked the psychosocial and intellectual develop­
ment of a cohort of over a thousand gifted California boys and girls from preadolescence 
through adulthood. Later, other researchers picked up the earlier trail by gathering the 
death certificates of the people in Terman's study (Friedman, Tucker, Schwartz, Tornlinson­
Keasey, Martin, Wingard, & Criqui, 1995). The average IQ of the children was 135, and 
various follow-up analyses found little difference between those lost from the study and 
those who remained. Coding their dates and causes of death, these researchers were able 
to identify a number of psychosocial and behavioral "risk" factors that were correlated 
with premature death. For example, they found that the trauma of going through a divorce 
predicted premature mortality, as did particular personality factors. These findings were 
interpreted as providing confirmation of the current view in psychology and medicine 
that a cluster of individual and social factors is critical to longevity. More recently, 
after additional analyses, the team of researchers concluded that childhood cheerfulness 
(operationalized as a combination of two items measuring a child's "cheerfulness/ 
optimism" and "sense of humor," as rated by the child's parents or teacher) "should not 
be assumed to be related to health in a simple manner" (Martin, Friedman, Tucker, 
Tornlinson-Keasey, Criqui, & Schwartz, 2002, pp. 1155, 1158). 

In another prominent longitudinal study, the principal investigator, K. Warner 
Schaie, began the data collection when he was a graduate student working on his doctoral 
dissertation; he continued to collect information regarding the intellectual development 
of several thousand individuals during a series of other testing cycles spanning several 
decades (see Schaie, 1993, 1994). Among the major findings are that a number of factors 
account for individual differences that appear to reduce the risk of cognitive decline in 
old age, including (a) not having a chronic disease; (b) living in favorable environmental 
circumstances; (c) engaging in complex, intellectually stimulating activities; (d) having 
a flexible personality style; (e) having a marital partner who is cognitively active; and 
(f) feeling satisfied about life (Schaie, 1994). Together with Sherry L. Willis, his col­
laborator, Schaie has also been studying methods of reversing intellectual decline by 
certain educational interventions (Schaie & Willis, 1986; Willis & Schaie, 1986, 1988). 

Not all longitudinal studies track participants over so long a period as the 
Terman or the Schaie and Willis studies. In another longitudinal study, E. W. Morrison 
(1993) was interested in the socialization effects of information seeking in accountants 
during their first six months of employment. Using data reported by workers, she 
concluded that the newcomers tended to seek out knowledge and take an active role 
in adjusting to their environment. 

As implied above, longitudinal research has come to play a prominent role both 
in developmental investigations (e.g., Loeber & Stouthamer-Loeber, 1998; Scarr, 1998; 
McLoyd, 1998) and in medicine. In medical research, for example, an important, and 
continuing, longitudinal study, known as the Framingham Heart Study, was begun by the 



252 THE LOGIC OF RESEARCH DESIGNS 

u.s. Public Health Service in 1948. Responding to concerns about the soaring coronary 
disease rate in the United States, this longitudinal study has followed several thousand 
residents of Framingham, Massachusetts. The findings have produced insights into the risk 
factors that predict cardiovascular disease. In 1960, cigarette smoking was first revealed 
to be a risk factor, and in 1961, high blood pressure was identified as another risk factor. 
The correlational findings have led to randomized clinical trials, which in turn have 
confirmed the preventive approach to combating heart disease by exercise (which at one 
time was considered dangerous for people at risk for heart disease), not smoking, lowering 
harmful cholesterol, and reducing stress, blood pressure, and obesity. 

DIFFERENT FORMS OF COHORT STUDIES 

One way to visualize the various forms and combinations of cohort studies is with 
the help of a cohort table. Table 8.2 provides basic data and enables us to see 
some important differences between cross-sectional and cohort designs. The values 
in this table, adapted from a more complete cohort table provided by Jacques 
Hagenaars and Niki P. Cobben (1978), give the percentages of women in the 
Netherlands who reported having no religious affiliation, according to age and time 
period. The results are shown for seven different cohorts of respondents. The 
analysis of any given column would be comparable to the "one-shot case study" 
design discussed in the previous chapter in Table 7.8. An example is shown with 
reference to period 4; Figure 8.5 shows the shape of the cross-sectional age curve 
in 1969. These data seem to support the idea that, with the passing of years and 
the approach of the end of life, there is an increase in religious observance 
(i.e., the percentage of nonaffiliation decreases). The analysis of any particular 

TABLE 8.2 

Percentages of women in the Netherlands with no religious affiliation, 
according to age and time period 

Period 1 Period 2 Period 3 Period 4 
(1909) (1929) (1949) (1969) 

Cohort 6 Cohort 7 
17.4% 23.9% 

Age 40-50 Cohort 6 
22.0% 

Age 60-70 Cohort 2 Cohort 5 
1.9% 19.4% 

Age 80- Cohort 1 Cohort 2 Cohort 
1.2% 3.8% 2.2% 

Note: An example of a cross-sectional design is shown by the vettical analysis (Period 4), and an example of 
a longitudinal desigu is shown by the diagonal analysis (Cohort 4). 

Note: From "Age, Cohort and Period: A General Model for the Analysis of Social Change," by A. Hagenaars 
and N. P. Cobben, 1978, Netherlands Journal of Sociology, 14, 59-91. Reprinted by permission of Elsevier 
Scientific Publishing Co. 
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FIGURE 8.5 
Percentages of women in the Netherlands not 
affiliated with a church, as shown by a 
cross-sectional design in 1969 and a longitudinal 
design from 1909 to 1969 (after Hagenaars & 
Cobben, 1978). Cohorts are symbolized as C7 
(Cohort 7), C6 (Cohort 6), and so forth. 

cohort would be equivalent to a longitudinal study with data collected periodically 
to follow the lIfe course of that generation of individuals. An example is shown 
with reference to Cohort 4 (on the diagonal of Table 8.2), and Figure 8.5 shows 
the shape of the age curve from 1909 to 1969. We can clearly see that the conclusion 
based on the cross-sectional data is wrong. 

When we have an adequate cohort table, such as Table 8.2, other types of 
analyses are also possible. For example, we could improve on the one-shot analysis 
by plotting all the cross-sectional curves as shown in Figure 8.6a. We see that the 
exact percentages of affiliation and the slopes of the age curves are different for dif­
ferent periods. We could also plot the values according to cohort of women, as shown 
in Figure 8.6b, to help us avoid assuming that the results of an analysis of one given 
time period are generalizable to other periods (called the fallacy of period centrism). 
This design can also be used with survey data to study age trends by reexamining not 
the same persons, but a specific age group (persons aged 21-29 in 1963) several years 
later (persons aged 30-38 in 1972). It approximates a pure longitudinal design because 
the sampling units are all based on a random selection procedure (discussed in the 
next chapter). 

The concepts of age, cohort, and period may not be operationally defined the 
same way in different fields. 'In the literature on counseling and student development, 
age is often taken to mean the person's year in school rather than chronological 
age (Whiteley, Burkhart, Harway-Herman, & Whiteley, 1975). In research on social 
change, period is often defined as some environmental effect or cultural change 
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resulting from a lengthy historical process such as industrialization or urbanization 
(Hagenaars & Cobben, 1978). In general, however, (a) an age effect implies changes 
in average responses due to the natural aging process; (b) a time-oj-measurement 
effect implies some kind of impact of events in chronological time (occurring at 
the points of measurement); and (c) a cohort effect implies "past history" specific 
to a particular generation and contributes to all measurements of the generation 
(N. R. Cook & Ware, 1983). 

Table 8.3 provides a comparison of different longitudinal and cross-sectional 
designs in which age, time of measurement (period), and cohort are the major variables 
(Schaie, 1965; Wohlwill, 1970). The three effects cannot be estimated simultaneously 
in any of these designs: 

In the simple cross-sectional design, subjects at different ages are observed at 
the same time. The limitation of this design is that it confounds the age of the subject 
and the cohort. That is, 20-year-olds would be from only one generation. 

In the simple longitudinal design, subjects of the same cohort are observed 
over several periods. The deficiency in this case is that the design does not control 
for the effect of history (or period). That is, different results might have been obtained 
if people from different time periods had been studied. 

In the cohort-sequential design, several cohorts are studied, the initial measure­
ments being taken in successive years. The design takes into account cohort and age, but 
does not take time of measurement (period) fully into account. That is, different results 
might have been obtained if all the blank spaces representing time of measurement were 
filled in. 
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TABLE 8.3 

Five sampling designs according to age (grades 1-6), period (history or time of 
measurement), and cohort (CI-Cll) 

Simple cross-sectional design (1980) Simple longitudinal design 

Period Period 
Age 1975 1976 1977 1978 1979 1980 Age 1975 1976 1977 1978 1979 1980 

. C6 
.~ ..... ~ ..... ............ ® ..... . 

......... Q ..... 
.~ . 

G1 @@ @@ @~Cll ~ 
G2 @@@@@~@~ 
G3 @@@@@~@~ 
G4 @@@@@~@~ 
G5 @@@@@~@~ 
G6 @@@@@~@~ 

G2 

G3 

G4 

G5 

G6 

........ @~ ..... 
. . 

....... @~ 

Cohort-sequential design 

Period 

Age 1975 1976 1977 1978 1979 1980 

G1 

G2 

G3 k~~Y @). <§~)"- ..... 
G4 .......... @ @ @)"-.... . 
G5 .......... @@@y .... . 
G6 ......... @ @ (~~)-: 

Time-sequential design Cross-sequential design 

Period Period 

Age 1975 1976 1977 1978 1979 1980 Age 1975 1976 1977 1978 1979 1980 

G1 ~@ C§) C§>~ Gl ~@)" ...... 
G2 ~@@@~ G2 ~@ @)" ....... 
G3 ~@ @@~ G3 ~@@@ ........ 
G4 ~@ @@~ G4 ........ @ @@)""~ 
G5 ~@ @@~ G5 ....... @@~ 
G6 ~@ @@~ G6 ...... ®~ 
Note: Each sampling design is accentuated by dotted lines. Only the first subtable is completely labeled to show all possible 
cohorts; in addition it shows the simple cross-sectional design for the 1980 period (set off by dotted lines). 
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In the time-sequential design, subjects at different ages are observed at differ­
ent times. This design considers age and time of measurement, but as the blank spaces 
indicate, it does not take cohort fully into account. 

In the cross-sequential design, several different cohorts that are observed over 
several periods are initially measured in the same period. This design takes into 
account the time of measurement and the cohort but (again as indicated by the blank 
spaces) does not take age fully into account. 

Even though the more complex designs are a distinct improvement over the 
simple cross-sectional design in the study of maturational processes, we see that each 
design is limited in some way. This is not a startling revelation, however, for all 
empirical research has its limitations. Table 8.3 also reminds us that, in order to 
achieve clarity of understanding, it is best whenever possible to use more than one 
strategy, in the spirit of methodological pluralism. 

SUBCLASSIFICATION ON 
PROPENSITY SCORES 

By now we know that valid causal inferences are hard to come by in the absence of 
randomized controlled experiments. We have seen a variety of procedures designed 
to increase the validity of causal inferences in situations where randomized experi­
ments. could not be conducted for ethical, monetary, or logistical reasons. But of all 
the p~ocedures available for drawing causal inferences from nonexperimental data, 
none has captured the imagination of the social science, biomedical, and statistical 
communities as much as matching groups by a subclassification on propensity scores 
(Rosenbaum & Rubin, 1983a; Rubin, 1973; Rubin & Thomas, 1996). The procedure 
involves reducing all the variables on which the "treated" and the "untreated" par­
ticipants differ into a single composite variable that effectively summarizes all the 
differences on all the variables (the covariates). The reason for quotes around treated 
and untreated is that the "treatment" can be operationalized as an active experimental 
(or quasi-experimental) manipulation or intervention, or it can be an observed action, 
behavior, event, or condition. 

The basic idea of matching by propensity scores is seen most clearly when we 
consider just a single covariate, for example, age in a nonexperimental study of the 
effects of smoking on death rates. Donald B. Rubin (1998) illustrated the propensity 
score procedure, which he developed, by using data from Cochran (1968) in which an 
American study found (quite surprisingly) higher death rates for cigar and pipe smokers 
than for cigarette smokers or nonsmokers, whose death rates did not differ. Table 8.4 
lists those death rates per 1,000 person years for three conditions: (a) not smoking, 
(b) smoking cigars or a pipe, and (c) smoking cigarettes (i.e., death rates of 13.5,17.4, 
and 13.5, respectively). In other words, it appears that, compared with cigar and pipe 
smoking, cigarette smoking is actually quite harmless (i.e., no difference was found 
between the nonsmokers and the cigarette smokers). Clearly, such a conclusion goes 
against common wisdom. Further inspection of Table 8.4 reveals that the cigar/pipe 
smokers in the study were older on average (59.7) than the nonsmokers (57.0) and the 
cigarette smokers (53.2). The propensity score procedure adjusts for these age 
differences, which we suspect were confounded with the treatment conditions. 
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TABLE 8.4 

Death rates (per 1,000 person years) for three levels of smoking behavior 

Number of subclasses 

Group Death rate per 1,000 Mean age 2 3 9+ 

1. Nonsmoker 13.5 57.0 13.5 13.5 13.5 
2. Cigar or pipe smoker 17.4 59.7 14.9 14.2 13.7 
3. Cigarette smoker 13.5 53.2 16.4 17.7 21.2 
4. Increased risk of cigar 10% 5% 1% 

or pipe smoking 
5. Increased risk of 21% 31% 57% 

cigarette smoking 

Note: In row 4. increased risk refers to the excess death (given as a percentage) of cigar or pipe smokers versus nonsmokers 
divided by the death rate of nonsmokers. In row 5. the increased risk is the excess death rate of cigarette smokers versus 
nonsmokers divided by the death rate of nonsmokers. 

If we consider the nonsmokers as the baseline condition, we will essentially 
"standardize" the death rates in the other two conditions relative to the age distribution 
of the nonsmokers. The most crude kind of adjustment would be to divide each entire 
sample into a younger half and an older half, to compare the three conditions within each 
of these levels, and finally to average the results for the younger and older halves. These 
results are shown in Table 8.4 as death rates per 1,000 of 13.5 for nonsmokers, 14.9 for 
cigar or pipe smokers, and 16.4 for cigarette smokers. Cochran (1968) called this proce­
dure "subclassification," and he showed that increasing the number of subclasses increased 
the precision of the analysis, assuming that there are reasonable numbers of subjects in 
each subclass and that the subclassifications of the different treatment groups overlap. 
Thus, if there are k = 3 subclasses in one group or condition, we need k = 3 subclasses 
in the other groups or conditions as well. If there were no young people in one group, 
for example, subclassification would be inappropriate. Table 8.4 shows what happened 
when Rubin increased the number of subclasses of age to three equal-sized levels. The 
death rate of cigarette smokers increased to 17.7, and the death rate of cigar or pipe 
smokers decreased slightly (down to 14.2). Increasing the subclassification on age to nine 
or more age levels greatly increased the precision of the subclassification, and cigar and 
pipe smokers showed a death rate only slightly higher than the nonsmokers, but the 
cigarette smokers showed a far greater increase in death rate. Thus, with an increase in 
the number of subclasses from two to three to nine or more, the excess risk of cigar and 
pipe smoking, compared to nonsmoking, decreased from 10% to 5% to 1 %, whereas the 
excess risk of cigarette smoking, compared to nonsmoking, increased from 21 % to 31 % 
to 57%. It has been shown that a clearer, more precise picture emerges as the number 
of subclasses increases, five or six subclasses ordinarily reducing the bias in the raw 

,I 

comparisons by some 90% (Rubin, 1998). 

MULTIPLE CONFOUNDING COVARIATES 

In the example above, the subclassification on propensity scores was predicated on 
the assumption of a single confounding covariate. In most practical applications, 
however, there are multiple confounding covariates. Cigarette smokers might differ 
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from nonsmokers not only in age but in education, ethnicity, income, general health, 
health care access, personality variables, stress exposure, and the like. The beauty, 
simplicity, and transparency of the propensity score procedure flow from the com­
bining of all confounding covariates into a single score. This single score-in our 
example, the propensity to be in the (a) cigarette-smoking group versus the non­
smoking group, (b) the cigar/pipe-smoking group versus the nonsmoking group, or 
(c) the cigarette group versus the cigar/pipe group-becomes our single confounding 
covariate. (When there are three or more conditions, we apply propensity score 
methods to two conditions at a time.) In work with multiple confounded covariates, 
the propensity score is computed from the prediction of group membership scored 
one or zero (e.g., cigarette smoking vs. nonsmoking) by logistic regression or dis­
criminant analysis. The estimated propensity score is the estimated probability, 
based on participants' scores on the covariates, of ending up in Group 1 or Group 2 
(e.g., cigarette smoking vs. nonsmoking). The logic ofthe propensity score procedure 
is that if we have two participants with identical propensity scores, one person in 
Group 1 and one in Group 2, the differences in outcomes are due to their belonging 
to Group 1 or to Group 2. They cannot be due to differences in confounding covari­
ates, because the subjects have scored identically on the propensity score that 
indexes the entire set of covariates. The technical underpinnings of this method and 
its effectiveness in practice have been well documented (Rosenbaum & Rubin, 
198~a, 1983b, 1984, 1985a, 1985b; Rubin, 1979, 1980; Rubin & Thomas, 1992a, 
1992b, 1996, 1997). 

As a further illustration, suppose we are interested in the effectiveness of a 
new clinical treatment for improving psychological adjustment. Though the treat­
ment has not yet been evaluated in a randomized controlled trial, we have available 
the adjustment scores of 250 people who were exposed to stress and also happened 
to receive the new treatment and another 250 participants who were exposed to 
stress but did not receive the new treatment. The adjustment index ranges from zero 
to 9, and the mean adjustment scores of the treated and untreated groups are identical 
(3.2 in each case). Before concluding that the treatment was not effective, we con­
sider the possibility that the treated and untreated individuals differed on a number 
of available covariates, making it more or less likely that they would obtain the 
treatment rather than not obtain it. We create propensity scores for all these people 
and then subclassify each person into one of five levels of the likelihood of having 
or not having received the treatment. Table 8.5 shows for each of the five subclasses 
the mean adjustment score and sample size (n) for the treated (T) and the untreated 
control (C) members of each subclass. The important result in this hypothetical 
study is that, although the overall mean adjustment scores of the treated (MT ) and 
untreated (Me) groups were identical (MT = Me = 3.2), our findings after we 
subclassified the individuals were noticeably different. For every level of our 
subclassification, the treated individuals scored higher than the untreated individuals. 
Propensity score procedures greatly clarified what was really going on when we 
adjusted for our full set of covariates. 

More typical at present than the use of propensity scores is the use of regression 
methods to adjust for covariates. A serious risk of the regression approach, however, 
is that the conditions being compared may not overlap adequately on the confounding 
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TABLE 8.5 

Mean adjustment scores and sample sizes for treated and untreated 
participants in five levels of propensity score subclasses 

Treatment No-treatment control 

Propensity score Mean 
subclass· (MT) n n MT -Me 

2 

3 

4 

5 

Sum (I) 

k 

Unweighted M (Ilk) 

S2 

Weighted M (IMnIIn) 

6 

5 

4 

3 

2 

20 

5 

4 

2.5 

3.2 

10 

30 

50 

70 

90 

250 

5 

3 

2 

12 

5 

2.4 

2.8 

3.2 

'Lower numbered subclasses were less likely to have received the treatment. 

bOne-sample /(4) = 6.53, p = .0014, r = .96. 

90 

70 2 

50 2 

30 2 

IO 

250 8 

5 

1.6b 

0.30 

covariates. When nonoverlap occurs in propensity score procedures, it is detectable 
immediately from the fact that the sample sizes are too small or even zero for some 
subclasses. Regression procedures do not normally warn us of these serious problems 
of failure to overlap sufficiently. We are likely to think we have obtained a sensible 
answer to our causal question even if every member of Condition A scored higher (or 
lower) on every covariate than did any member of Condition B. If all our smokers 
were older than any of our nonsmokers, it would be hopeless to attempt to adjust for 
age as a covariate. A further advantage of the propensity score method is that it does 
not require a particular kind of relationship (e.g., linear, log-linear) between the 
covariate and the outcome within each condition, whereas the regression approach 
does (Rubin, 1973). The major limitation of the propensity score method is that it can 
adjust only for observed confounding covariates. If we have not measured a confound­
ing covariate or have overlooked one altogether the propensity score method cannot 
help us, at least not for the hidden confounding covariates. Another limitation of the 
propensity score method is that it works best with larger sample sizes, but that 
limitation is not unique to the propensity score method. 
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Because the world is large and we can study only a small part of it in our research, 
we use samples to represent the whole. In this chapter we discuss a number of 
considerations to be weighed in selecting the sampling units randomly or nonrandomly 
from the larger aggregate (the population). The units might be human or animal 
subjects, cities, groups, classrooms, hospitals, numbers, or any other entities believed 
to be characteristic of the population. We will explain the method known as probability 
sampling, in which (a) every sampling unit has a known nonzero probability of being 
selected, (b) the units are randomly drawn, and (c) the probabilities are taken into 
account in making estimates from the sample (Snedecor & Cochran, 1980, pp. 437-438). 
Probability sampling is used primarily in survey research; it is seldom used in 
experimental research, in which it is typical to study the most convenient participants. 
Thus, we will also explore issues in attempting to generalize from samples that are 
merely convenient (i.e., rather than from random probability samples) to a wider 
population. 

As we mentioned in chapter 7, many experimenters, after they go to elaborate 
lengths to design and implement carefully crafted studies, depend only on college 
students as the research participants. Many years ago, this practice prompted one critic 
to assert that "the existing science of human behavior is largely the science of the 

260 
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behavior of sophomores" (McNemar, 1946, p. 333). Concerns about the use of students 
as the model of "persons in general" are based not only on the very obvious differ­
ences between college students and more representative persons in age, intelligence, 
and social class, but also on the suspicion that college students, because of their 
special relationship with the teacher-investigator, may be especially sensitive and 
responsive to demand characteristics. Silverman (1977) compared this situation, in 
which researchers struggle to find out what college-student subjects really feel and 
think about serving in experiments, to the fable of the emperor's new clothes: 

A student and seasoned subject once said to me, with apparent innocence: "If everyone 
does things in experiments for the same reasons I do, I don't understand how you can 
find out anything that's true." I liken her to the child in the fable, to whom we may now 
say: "Yes the Emperor is naked." (p. 19) 

Even so, it is also true that college students as experimental subjects have 
taught us a tremendous amount about cognition, perception, and countless aspects of 
psychological behavior. Thus, it is important not to exaggerate the problem of using 
such subjects, but it is also important not to be lulled into overgeneralizing from 
such findings. The issue becomes further complicated when only volunteer subjects 
are used but the findings are generalized to a population including nonrespondents 
or likely nonvolunteers. As social researchers tum increasingly to the Internet for 
volunteers for questionnaire studies, the concern about generalizability is raised in a 
whole new context (Gosling, Vazire, Srivastava, & John, 2004). We will discuss 
nonresponse bias and volunteer subject bias, but without implying that research 
results are always different for volunteers and for nonrespondents or nonvolunteers. 
We know enough about the characteristics of volunteers for behavioral and social 
research to be able to predict the direction of volunteer subject bias as well as to 
suggest recruitment procedures for improving the subject sample by enticing more 
non volunteers to enter the subject pool. A related concern is that the participating 
subjects-whether they are volunteers or non volunteers-may not respond to all the 
questions put to them by survey researchers, experimenters, or other investigators. 
At the conclusion of this chapter, we will sketch a number of procedures for dealing 
with missing data. 

Probability sampling, although it is the gold standard of external validity in 
survey research, is also based partly on a leap of faith, or what Abraham Kaplan 
(1964) called the "paradox of sampling": 

On the one hand, the sample is of no use if it is not truly representative of its population, 
if it is not a "fair" sample. On the other hand, to know that it is representative, we must 
know what the characteristics of the population are, so that we can judge whether the 
sample reflects them properly; but in that case, we have no need of the sample at all. 
(p. 239) 

Kaplan went on to explain that this predicament was reminiscent of other situations. 
In fact, all inductive inferences are based on samples, he noted. We make generaliza­
tions about a whole class of cases although we have observed only some of them, or 
we make predictions about certain future outcomes on the basis of nonrandom samples 
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of events from the past. The way this paradox is resolved in survey research is "by 
the consideration that the representativeness is not a property of the sample but rather 
of the procedure by which the sample is obtained, the sampling plan" (Kaplan, 1964, 
pp. 239-240). 

We begin by defining some basic concepts used in survey research and probability 
sampling as well as examining the kinds of sampling plans used in surveys. The 
survey researcher asks questions and looks for the answers in the replies of the respon­
dents. Sampling plans specify how the respondents will be selected. In particular, we 
will discuss probability sampling plans, which specify how randomness will enter into 
the selection process at some stage so that the laws of mathematical probability apply. 
Data selection plans based on the use of probability sampling enable the researcher 
to assume-but never for sure (because of the paradox of sampling)-that the selected 
sample is in fact representative of its population (i.e., without already knowing the 
population value). 

BIAS AND INSTABILITY IN SURVEYS 

Frequency distributions, including all sampling distributions in survey research, can 
be described in terms of their central values (point estimates) and variability (interval 
estimates). For example, the point estimate might be the mean, median, or modal cost 
of housing in a community or the percentage of voters who favor Candidate X over 
Candidate Y. In survey research, interval estimates are frequently expressed in terms 
of the margin of error, or the confidence limits of the estimated population value based 
on a specified probability that the value is between those limits. For example, a sur­
vey researcher might state "with 95% confidence, that 47% of the registered voters 
favor Candidate X, given a margin of error of plus-or-minus 2 percentage points." 
The margin of error is conceptually related to the standard error, which indicates 
the degree of imprecision with which we have estimated, for example, the mean or 
median of a population. The standard error is usually symbolized as SE in psychology 
(American Psychological Association, 1994), and we illustrate its use shortly. The 
actual population value is referred to as the true population value (i.e., the point 
value we would obtain based on analyzing all the scores in the population). The dif­
ference between the true population value and our estimate of it from a sampling 
distribution is called bias, which (as noted in chapter 7) is simply another name for 
systematic error. An unbiased sampling plan is one in which the estimated population 
value is equal in the long run to the true population value. The variability of observa­
tions or of samples drawn on the basis of probability sampling is inversely related to 
the stability or precision of the observations or measurements. 

It is also conceivable that the amount of bias and instability (imprecision) will 
vary in a number of more subtle ways, such as those illustrated in Figure 9.1, where 
X denotes the true population value and the Os are the point estimates of X based on 
biased and nonbiased sampling plans. The differences between the averages of the 
sample Os and the true population value (X) indicate the amount of bias. Notice that 
the instability is constant within each row, going from a high amount in row 1 to no 
instability in row 3. The amount of bias is constant within each column, going from 
a high amount in column 1 to zero bias in column 3. In all three cases in column 3 
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Biasedness 

Instability Much Some None 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Much 

X X X 

00000 00000 00000 
Some 

X X X 

~ ~ ~ 
None 

X X X 

FIGURE 9.1 
Illustrations of biasedness and instability in sampling. An 0 denotes a particular sampling unit, X 
represents the true population mean, and the horizontal line indicates the underlying continuum on which 
the relevant values are determined. The distance between the true population mean and the midpoint of 
the sampling units indicates the amount of biasedness. The spreading (variability) among the sampling 
units indicates their relative degree of instability. 

the sample values are balanced around X, but with much instability in row 1, some 
instability in row 2, and none in row 3. In the three cases in row 3 there is no insta­
bility, but there is much bias in column 1, some bias in column 2, and none in 
column 3. The case at the intersection of row 3 and column 3 is the best of all situ­
ations because there is no bias and no instability. 

Generally speaking, instability results when the observations within a sample 
are highly variable and the number of observations is small. Thus, the more alike 
(homogeneous) the members of the population, the fewer of them that need to be 
sampled. If all members of the popUlation were exactly alike (as at the intersection 
of row 3 and column 3), we could choose any observation (0) to provide information 
about the population (X) as a whole. A variation on this idea is sometimes presumed 
to be an implicit assumption in experimental research in which convenience samples 
are used, the notion being that people are people, and that probabilistic assertions 
derived from any of them will be characteristic (although to varying degrees) of all 
of them. Of course, within convenience samples there may be specifically designated 
subgroups (e.g., women vs. men), on the further assumption that moderating variables 
may be operating (e.g., gender). However, the subgroups are usually selected in a 
convenient or haphazard way (as if all women were the same, or all men the same). 
Increasing the size of the samples might reduce the instability or imprecision, but by 
itself it cannot reduce the bias; 

A famous historical case occurred in 1936, when Franklin D. Roosevelt (the 
Democratic candidate) ran for U.S. president against Governor Alfred Landon of 
Kansas (the Republican candidate). Most people thought that Roosevelt would win 
easily, but a nonrandom poll conducted by a current events magazine, the Literary 
Digest, predicted that Landon would win an overwhelming victory. What gave the 
prediction credence was that the Digest had predicted the winner in every presidential 
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election since 1916. Moreover, this time, they announced they had based their 
prediction on a sample of 2.4 million respondents! They got the 2.4 million by 
generating a nonrandom sample of 10 million people from telephone directories, 
automobile registration lists, and club membership lists; they then mailed straw vote 
ballots to each person in their sample. The lists had actually been compiled for 
solicitation purposes, and advertising was included with the straw vote ballot 
(D. Katz & Cantril, 1937). 

One problem was that few people in 1936 had a telephone (only one in four 
households), owned a car, or belonged to a club, so that the final list was biased in 
favor of wealthy Republican households. Another problem was that there was a large 
number of nonrespondents, and subsequent analyses suggest that had they responded, 
the results might have been very different (Squire, 1988). As it turned out, the election 
voting was split pretty much along economic lines, the more affluent voting for 
Landon and the less affluent voting for Roosevelt. The Digest predicted that Landon 
would win by 57% to Roosevelt's 43%, but the election results were Roosevelt 62% 
and Landon 38%. The Digest could have used the fact that the sample was top-heavy 
in upper-income Republicans to correct its estimate, but it deliberately ignored this 
information. Instead, the Digest proudly proclaimed that the "figures had been neither 
weighted, adjusted, nor interpreted." After making the largest error ever made thus 
far by political prognosticators in a presidential election, the Digest (which had been 
in financial trouble before the election) declared bankruptcy. 

SIMPLE RANDOM-SAMPLING PLANS 

In the Literary Digest debacle the "polling" was not random, and there were other 
variables besides party affiliation that would have constituted informative strata. We 
will have more to say about stratified sampling, but the least complicated method of 
random sampling is to take a list of people and randomly select names from the list, 
a procedure called simple random sampling. The simple means that the sample is 
selected from an undivided population, and the random means that the sample is 
chosen by a process that gives every unit in the population the same chance of being 
selected. Simple random sampling can also be done in other ways, although the most 
common procedure is to use random digits. However, suppose we want to dramatically 
select numbers at random for a state lottery. We might have ping-pong balls, each 
with a different number painted on it, and then stir them and use a chance procedure 
to select one ball at a time. Or we might use a roulette wheel to select the numbers, 
although the same numbers might tum up more than once. 

As another illustration of the use of random digits, suppose we want to select 10 
men and 10 women from a population totaling 96 men and 99 women, and we 
have a list of all of them. We would begin by numbering the men in the population 
consecutively from 01 to 96 and the women in the population consecutively from 01 
to 99. We are now ready to use the 5 X 5 blocks of random digits in Table 9.1, which 
were extracted from Table B.9 in Appendix B. Table B.9 is a small segment of a mam­
moth table that was generated by an electronic roulette wheel programmed to produce 
a random frequency pulse every tiny fraction of a second (RAND Corporation, 1955). 
A million random digits were generated, and afterward, as a check on the hypothesis 
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TABLE 9.1 

Random digits 

Line Random digits 

000 10097 32533 76520 13586 34673 54876 

001 37542 04805 64894 74296 24805 24037 

002 08422 68953 19645 09303 23209 02560 

003 99019 02529 09376 70715 38311 31165 

004 12807 99970 80157 36147 64032 36653 

005 66065 74717 34072 76850 36697 36170 

006 31060 10805 45571 82406 35303 42614 

007 85269 77602 02051 65692 68665 74818 

008 63573 32135 05325 47048 90553 57548 

009 73796 45753 03529 64778 35808 34282 

Note: This abbreviated table is taken from Table B.9 in Appendix B. The left-hand column is for reference only, and 
the other columns contain random digits in sets of five. (Adapted from A Million Random Digits With 100,000 Normal 
Deviates, by The RAND Corporation, 1955, New York: Free Press.) 

of randomness, the computer counted the number of Os, 1 s, 2s, and so on. Each 
digit from 0 to 9 occurred 10 percent of the time in the overall table of random 
digits. The reference numbers in the left-hand column of Table 9.1 are there only 
to help us refer to a particular line. We now do our simple random sampling by 
putting our finger blindly on some starting position. We can start anywhere in the 
table and move' our finger in any direction, as long as we do not pick some set of 
numbers because they look right, or avoid some set of numbers because they do 
not look right. 

Suppose we put our finger on the first five-digit number on line 004 
(i.e., 12807). We read across the line two digits at a time, then across the next line, 
and so forth, until we have chosen individually at random the 10 male subjects. 
We do the same thing, beginning at another blindly chosen point, until we have 
selected the 10 female subjects. Beginning with the number 12807, we would select 
men numbered 12, 80, 79, and so on. Suppose we chose the same two-digit number 
more than once, or chose a two-digit number not represented by any name in the 
popUlation. We would go on to the next two-digit number in the row. What if we 
were forced to skip many numbers in the table because they were too large? That 
would be terribly inefficient. For example, what if there were 450 members in the 
population and we wanted to select 50 individually at random? Because the 
population is numbered from 001 to 450 we will have to skip approximately half 
the three-digit numbers our finger points to. One way to handle this problem 
(acceptable in terms of random sampling) is mentally to subtract 500 from any 
number in the range from 501 to 999. 

Previously, we alluded to random sampling with or without the replacement of 
the chosen unit. In random sampling without replacement, a selected unit cannot 
be reselected and must be disregarded on any later draw. Survey researchers usually 
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prefer this procedure because they do not want to question the same individuals twice. 
If we were randomly choosing winners of door prizes and wanted to spread out 
the prizes, we would not put the chosen tickets back into the pool, because we do 
not want to give the same person more than one prize. In the lottery example 
mentioned above, if there were 100 ping-pong balls, the probability of the first ball 
drawn is 1/100. When we eliminate the first ball, the probability of the second ball 
drawn is 1/99, and so on. The population shrinks, but the balls remaining still have 
an equal chance of being selected on the next occasion. In random sampling with 
replacement, the selected units are placed in the sampling pool again and may be 
reselected on subsequent draws. Thus, every unit in the population continues to 
have the same likelihood of being chosen every time a random number is read. 
Tossing a coin would be sampling with replacement, in this case from a population 
consisting of two elements, heads and tails (Kish, 1965). 

Instead of using a table of random digits, or spinning a roulette wheel, or 
drawing ping-pong balls, another method was used in World War II, and again in 
the war in Vietnam, to choose an order in which to draft men into military service. 
In 1970, while the war in Vietnam was in progress, the U.S. Congress passed a 
bill allowing the use of a random lottery to select conscripts for the armed forces. 
To give each man an equal chance of being selected, the 365 days of the year were 
written on slips of paper and placed inside tiny cylindrical capsules. Once the 
capsqles were inside the urn, it was shaken for several hours, and then the capsules 
were removed, one by one. However, capsules are very difficult to stir thoroughly, 
and it turned out that the results were biased: The birth dates in December were 
more likely to be drawn first, those in November next, then those in October, and 
so on. The reason was that the January capsules were put in the urn first, the 
February capsules next, and so forth, and layers were formed with the December 
capsules on top. Even stirring the urn for several hours did not ensure a thorough 
mixing of the capsules (Broome, 1984; Kolata, 1986). Something similar occurred 
during World War II. Instead of birth dates, selective service numbers were put 
into capsules, and the capsules into a bowl and stirred, but subsequent analysis of 
the results indicated that they were also biased. As statisticians Mosteller, Rourke, 
and Thomas (1961) observed, "The moral, as every cook knows, is that thorough 
mixing is not as easy as it sounds" (p. 102). 

IMPROVING ACCURACY 
IN RANDOM SAMPLING 

In contrast to the method of simple random sampling, the method of randomly 
sampling strata has distinct advantages. To illustrate, we refer to Table 9.2, which 
is based on a simple random sampling plan in which the raw data were the batting 
averages of six infielders of the 1980 Philadelphia Phillies baseball team. We chose 
the 1980 team because one of us is a Phillies fan, and it happened that 1980 was the 
only time the Phillies ever won a World Series championship (though that year 
they had been trying for over 97 years). Batting averages are calculated by 
dividing the number of hits the player made by the number of official times that 
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TABLE 9.2 

Results for all possible simple random samples of size two 

Estimate of 
Sample population mean Error of estimate (Error of estimate)2 

Aviles, Bowa .272000 +.01ll67 .000125 

Aviles, Rose .279500 +.018667 .000348 

Aviles, Schmidt .281500 +.020667 .000427 

Aviles, Trillo .284500 +.023667 .000560 

Aviles, Vukovich .219000 -.041833 .001750 

Bowa, Rose .274500 +.013667 .000187 

Bowa, Schmidt .276500 +.015667 .000245 

Bowa, Trillo .279500 +.018667 .000348 

Bowa, Vukovich .214000 -.046833 .002193 

Rose, Schmidt .284000 +.023167 .000537 

Rose, Trillo .287000 +.026167 .000685 

Rose, Vukovich .221500 -.039333 .001547 

Schmidt, Trillo .289000 +.028167 .000793 

Schmidt, Vukovich .223500 -.037333 .001394 

Trillo, Vukovich .226500 -.034333 .001179 

Sum 3.912500 .0000 .012319 

Mean .260833 .0000 .000821 

the player went to bat. The batting averages at the end of the year for the six 
infielders were 

.277 Ramon Aviles 

.267 Larry Bowa 

.282 Pete Rose 

.286 Mike Schmidt 

.292 Manny Trillo 

.161 John Vukovich 

Taking the sum of these six batting averages (1.565) and dividing by 6 (the size of 
the population) gives the mean of this population (.260833, ordinarily rounded to .261, 
although for this illustration we will be working with the more precise estimate). We 
now ask, "How good an estimate of the precise true population mean do we obtain 
by simple random sampling?" 

To answer this question We must first decide on the size of the sample we will 
use to estimate the mean of the population. For convenience we will define the sample 
size as any two infielders selected at random. The sample value is the arithmetic mean 
of the two batting averages. Hence, a sample consisting of Aviles (.277) and Bowa 
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(.267) has a mean score of .272000. The first column in Table 9.2 shows all the 
two-member samples. The second column shows their corresponding estimates of 
the population value. The overall mean is exactly .260833, which indicates that the 
random sampling plan is unbiased. The third column lists errors of estimate, obtained 
by subtracting the true population value from the sample estimate. Although the simple 
random sampling plan is clearly unbiased, we notice that some samples overestimate 
the true population value and others underestimate it. 

Another way of thinking about the accuracy of the sampling plan is based on 
the standard deviation of chance fluctuations of the sample estimates of the population 
value (Snedecor & Cochran, 1980). The last column in Table 9.2 lists the squared 
errors of estimate, with the sum of all the squared errors shown at the bottom as 
.012319. Dividing this sum by the number of samples (15) gives the average of the 
squared errors of estimate, or mean square error (MSE). The divisor of the MSE is 
not usually the total N (as we explain in a later chapter), but in this case the error 
scores were measured from the true population value. The standard error of the 
population value is / MSE, that is, the standard deviation of all the errors of estimate. 
As MSE = .012319/15 = .000821, the standard error is /.000821 = .028658. 
Dividing .028658 by the average of the sample means in Table 9.2 (.260833) tells us 
that the standard error amounts to about 11 % of the population value. Now let us see 
how much more accuracy we would get with a stratified random sampling plan of 
simijar sample size. 

In doing stratified random sampling we divide the population into a number 
of parts and randomly sample in each part independently. Returning to Table 9.2, 
we notice that every simple random sample that contains Vukovich's name under­
estimates the true population value, but every sample without Vukovich's name 
overestimates it. If we had reason to suspect this fact before the sampling, we 
could make use of the information to divide the population into two strata. Stratum 1 
consists of Vukovich alone, and Stratum 2 consists of Aviles, Bowa, Rose, Schmidt, 
and Trillo. We again draw simple random samples of Size 2, but now each sample 
will contain Vukovich and one name randomly drawn from Stratum 2. The total 
score of each sample is Vukovich's batting average plus the Stratum 2 member's 
batting average after it is multiplied by 5 (because we measured 1 member out of 5). 
We obtain the estimated population value by dividing this total by 6 (the total N). For 
example, the first sample listed in Table 9.3 consists of Vukovich (.161) and Aviles 
(.277 X 5 = 1.385), so that the estimated population value is (.161 + 1.385)/ 
6 = .257667. Once again, it is evident that the stratified sampling plan is unbiased 
because we see that the average of the five sample estimates is exactly .260833. 
The errors of estimate are again the differences between the sample values and the 
true population value, and the MSE is the mean of the squared errors of estimate, 
or .000050. The standard error is / MSE = .007057, which, divided by the popu­
lation mean (.007057/.260833 = .0271), indicates an improvement over the stan­
dard error obtained with simple random sampling. In this case the standard error 
of our stratified random sample amounts to only 2.7% of the population value, or 
one quarter the size of the standard error of the simple random sampling plan. The 
lesson? As Snedecor and Cochran (1980) noted, although some forethought is 
needed in deciding how to divide a popUlation into strata, it can payoff handsomely 
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TABLE 9.3 

Results for all possible stratified random samples of size two 

Estimate of Error of 
Sample Stratum 1 Stratum 2 population mean estimate (Error of estimate)2 

1 Vukovich Aviles .257667 -.003166 .000010 

2 Vukovich Bowa .249333 -.011500 .000132 

3 Vukovich Rose .261833 +.001000 .000001 

4 Vukovich Schmidt .265167 +.004334 .000019 

5 Vukovich Trillo .270167 +.009334 .000087 

Sum 1.304167 .0000 .000249 

Mean .260833 .0000 .000050 

in improved accuracy by enabling us to randomly sample strata that are less vari­
able than the original population. 

CONFIDENCE INTERVALS FOR 
POPULATION ESTIMATES 

When reporting statistical inferences in survey research, it is customary to state that 
the population value is within a certain interval and to give the level of statistical 
confidence. The statement is based on the confidence interval (CI) around the estimated 
population value. Suppose we have 10 sampling units with scores of 3, 3, 4, 5, 5, 6, 
8, 8, 9, 9, which have a mean (M) of 6.0 and a sample standard deviation (S) of 
2.357. The 95% upper and lower limits for the estimated population value are based 
on the t distribution (discussed in chapter 13), where 

95% CI = M ± (t(.J]jS), (9.1) 

and N is the sample size, and t(.OS) is read from Table B.2 (in Appendix B as 2.262) in the 
column headed .05 and df = 9 (the number of degrees of freedom in S, or N - 1). 

Substituting these values in Equation 9.1, we find 

95% CI = 6.0 ± (2.26~.357) = 6.0 ± 1.686, 
10 

which leads us to conc1ud~, with 95% statistical confidence, that the estimated 
population mean is betweem 4.314 and 7.686. If we choose some other confidence 
level, we simply select another column in Table B.2 (e.g., the column labeled .01 for 
99% confidence, or the column labeled .1 for 90% confidence). Increasing the 
confidence level from 90% to 95% to 99% will, of course, also increase the interval 
between the upper and lower limits. We can also use Table B.3 (which is more 
detailed), but we need to look in the column that lists a p value one half the p value 
we chose to define the confidence level, because the column headings in Table B.3 
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are one-tailed p values. In our example we would look in the column headed .025 
and the row labeled df = 9 in Table B.3 to find the value of t(os)" 

In many cases the sample estimate of the population value is a binomial 
proportion. For example, in a random survey of 200 of 3,000 graduating seniors at a 
large university, each student is asked, "Do you plan to join the alumni association 
after you graduate from college?" Of the sampled students, 25 reply "yes." 

Expressed as a proportion of the sample N of 200 students, this value becomes 
25/200 = .125. The estimate of the population proportion is symbolized as P, and 
1 - P is symbolized as Q, so Q = .875. The 95% upper and lower limits for the 
binomial population proportion are obtained from the following equation: 

95% CI = P ± (l.96/ PQ IN), (9.2) 

where / PQ I N is the standard deviation of theoretical random samples estimating 
the binomial P, on the assumption that the binomial sample estimates of P are approx­
imately normally distributed about the true population P (Snedecor & Cochran, 1980). 
The value of 1.96 is the standard normal deviate of p = .05 two-tailed, which we 
obtain from Table B.l (in Appendix B). Because Table B.I shows only the one-tailed 
p values, we instead locate one-tailed p = .025 in the body of Table B.l and then 
find the standard normal deviate from the corresponding row and column headings. 
If we want a 90% confidence level, we substitute 1.645 for l.96. If we prefer a 99% 
CI, we' substitute 2.576. 

Continuing with our original specifications, where P = .125, Q = .875, and 
N = 200, we find by substituting in Equation 9.2 that 

95%CI= .125 ± ~1.96j(.12~~~875) 1 = .125 ± .0458, 

which leads us to conclude, with 95% confidence, that the estimated population 
proportion is between .08 and .17. What if we double the size of the sample, from 
200 to 400? The 95% CI becomes .09 to .16, a slight improvement but probably 
not worth the cost of interviewing another 200 students. And what if we double 
this sample, from 400 to 800? The 95% CI is .10 to .15, which also is probably 
not a cost-effective improvement. Given certain statistical assumptions, once a 
survey researcher has decided on the tolerable confidence limits and confidence 
level (e.g., 90%, 95%, 99%), the sample size needed to estimate the population 
value is easily computed. Later in this book we will have more to say about the 
choice of sample size in the context of significance testing, including the use of 
power tables to guide our selection of the sample size (chapter 12). 

SPEAKING OF CONFIDENCE INTERVALS 

In speaking of confidence intervals we have interpreted them to mean: If we find 
the lower and upper limits of a 95% confidence interval around our obtained 
estimate, we can be 95% confident, or sure, or certain, that the popUlation value 
we are trying to estimate falls between those lower and upper limits. This view 
of the meaning of confidence intervals reflects a particular statistical approach, a 
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so-called Bayesian approach (Gelman, Carlin, Stem, & Rubin, 1995; Lewis, 1993; 
Winkler, 1993). 

There are alternative views of confidence intervals, however. These views have 
been variously labeled as traditional, classical, sampling theorist, or frequentist. 
The interpretation of a 95% confidence interval given by a statistician representing 
these views might be: With repeated samplings, and repeated calculations for each 
sample of 95% confidence intervals, we will be correct in 95% of our samples when 
we say that the quantity estimated (e.g., a mean, a median, an effect size) will fall 
within the 95% confidence interval. 

Because both of these meanings of confidence intervals are "correct," we are 
not inclined to choose for others which view of confidence intervals they should hold. 
Perhaps because the Bayesian interpretation is the more "commonsense" view, it is 
the one we are likely to use in our own everyday analyses of data. Later in this book 
we have occasion to return to a comparison of Bayesian and non-Bayesian approaches 
to data analysis. 

OTHER SELECTION PROCEDURES 

There are many variations on the basic procedures we have discussed so far. Another 
popular variant of stratification is area probability sampling. The population is divided 
into selected units that have the same probablity of being chosen as the unselected units 
in the population cluster, all done in stages, a procedure described as multistage cluster 
sampling. Suppose we need an area probability sample of dwellings in a city. We would 
begin by dividing the city into a number of geographic clusters, then subdivide the geo­
graphic clusters into wards, then into precincts, then blocks, and finally into households. 
As a simplified exainple, suppose we needed an area probability sample of 300 out of 
6,000 estimated dwellings. We might divide the area into blocks and then select 1 of 
every 20 blocks. If we define the sample as the dwellings located within the boundaries 
of the sample blocks, any dwelling's probability of selection is the selection of its block, 
set at 1/20 to correspond to the desired sampling rate of 30016,000 (Kish, 1965). 

Another procedure is called systematic sampling because it involves the 
methodical selection of the sampling units in sequences separated on lists by 
the interval of selection (Kish, 1965). It is often used when only manual procedures 
are available for sampling and the sample and population are both large. For 
example, suppose we want to select 1,000 households from the white pages of the 
telephone directory. Systematic selection starts randomly and is based on the 
selection of units from the population at particular intervals (Sudman, 1983). Thus, 
we need two things: (a) the sampling interval and (b) a random start. We can use 
a table of random digits to select the initial page and the name on that page. We 
then add to (or subtract from); the page selected a constant number and choose the 
name in the same place on that page. Afterward, we do the same thing again, and 
so forth. To illustrate, suppose we chose the number 48 by closing our eyes and 
pointing our finger to a particular row and column in our random digits table (i.e., a 
random start). We open the telephone directory to page 48 and find the forty-eighth 
name on every tenth page (i.e., a sampling interval of 10 pages) from page 48 
(pages 8, 18, 28, 38, 58, 68, etc.). 
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A problem is that the systematic samples may not be exactly random samples. 
They are, in fact, complex samples with unknown properties (Sudman, 1983). To 
illustrate, we make a slight modification in our systematic sampling to help us deal 
more efficiently with refusals and unanswered calls. Whenever we encounter either 
problem we add 1 to the last digit in the telephone number of the person just called 
and try that number as an alternative. This approach is economical-and certainly it 
is systematic-but not all the numbers will be independent. We might be dialing into 
a bank of numbers from the same exchange, which will introduce a nonrandom 
element. 

The most common strategy of nonrandom selection involves the use of 
haphazard or fortuitous samples (Kish, 1965). Archeologists who stumble on spec­
imen bones, or people who draw conclusions from whatever ideas come to their 
minds, or artists who create sculptures from found objects-all are doing haphazard 
or fortuitous selection. A famous case of this research strategy involved the interview 
studies conducted by Alfred Kinsey and his associates (Kinsey, Pomeroy, & Martin, 
1948; Kinsey, Pomeroy, Martin, & Gebhard, 1953). The research was conducted 
before the sexual revolution of the 1960s, and the results were not only surprising to 
many people but also suspected of being biased. Through a series of intensive inter­
views of about 8,000 American women and 12,000 American men, Kinsey concluded 
that as many as 50% of the men and 28% of the women had, by the age of 45, 
engaged in homosexual behavior, and that 8% of the men and almost 4% of the 
women had, by the time they were 21, had sexual contact with animals. And 50% of 
the men and 26% of the women reported having had extramarital relations before they 
had reached the age of 40. 

Kinsey's conclusions became a source of intense discussion and controversy, as 
statisticians and social scientists questioned the accuracy of his population estimates 
(e.g., Cochran, Mosteller, & Tukey, 1953; Dollard, 1953; Geddes, 1954). One interesting 
attempt to address this criticism was based on some empirical studies in which it had 
been found (a) that people who were high in self-esteem tended to have somewhat 
unconventional sexual attitudes and behavior and (b) that volunteers for Kinsey inter­
views had scored higher on the measure of self-esteem than others who were unwill­
ing to participate in a Kinsey interview (Maslow, 1942; Maslow & Sakoda, 1952). 
From this combination of results it was theorized that Kinsey's subjects probably 
differed from those who declined to be interviewed on the very dimensions of sexual 
behavior that the researchers were intent on identifying. In particular, it seemed that 
the Kinsey estimates might be overestimates of true population values. 

A more familiar example of haphazard sampling is the "informal polls" con­
ducted by the media, in which the procedure is to pose a question about some current 
controversial issue and then ask people to phone in or e-mail their opinions. In one 
case it was reported that WABC-TV in New York suspected that organized groups 
had jammed its telephone lines. In another case, Albuquerque's KOB-TV skipped its 
polling one night and still received about 20 calls voting "yes" and 38 voting "no" 
(Doan, 1968). Another example is how do-it-yourself pollsters now pose questions 
online at Web sites without an inkling of an idea of the generalizability of the 
responses. One reason for the online surveys is that they cost little or nothing to 
include on Web sites; another reason is that more and more people are reluctant to 
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participate in telephone surveys or mailed questionnaire studies. We will have more 
to say about nonresponse in the next section, but many years ago, Wallis and Roberts 
(1956) called it the "Achilles heel" of opinion polling (p. 300). 

Another form of subject selection is called quota sampling because it involves 
obtaining specified numbers of respondents to create a sample that is roughly proportional 
to the population (Kish, 1965). The problem is that, within the quotas, the interviewers 
are left to their own devices to obtain the respondents, though the characteristics of the 
desired respondents are spelled out in advance. This method goes back to the 1930s and 
early political polling, in which the interviewers were given ranges of characteristics and 
told to identify by sight people who seemed to fit the quota. For example, an interviewer 
might be told to find so many people of ages 25-35, 36-55, and 56 or over. As noted 
by Rossi et al. (1983), we do not know how much of the interviewing actually took place 
on busy comers and trolley stops rather than in house-to-house canvassing, but bias might 
have been introduced as a consequence of the interviewed individuals being more 
accessible than others. 

NONRESPONSE BIAS AND ITS CONTROL 

Even in the most carefully designed and precisely executed survey, not everyone who 
is contacted automatically agrees to participate. In a nationwide consumer tracking 
study done over a consecutive 12-month period in 1980-1981, marketing researchers 
Roger A. Kerin and Robert A. Peterson (1983) attempted to contact a large number 
of households in the United States. Those called were selected by means of a com­
puterized telephone-numbering system used to generate households with both listed 
and unlisted numbers within the continental United States. The outcomes were then 
coded as (1) no answer (after five rings); (2) busy signal; (3) out-of-service number; 
(4) ineligible respondent (e.g., underage, or the number of a business or similar orga­
nization); (5) refusal to be interviewed; and (6) completion of the interview. The 
independent variables coded were (1) period of the day; (2) geographic location of 
the household; (3) day of the week; and (4) month. The results of this study, although 
conducted some years ago, might still serve as a guide to help us anticipate the best 
and worst times for a telephone interview. 

In all, 259,088 dialings were made, but only 8.4% resulted in actual completions 
of the interview. The remainder, the nonrespondents, included 1.4% who refused to 
participate even though eligible, 34.7% no answers, 2% busy signals, 20.3% out-of-service 
numbers, and 33.2% ineligible respondents. The researchers divided the day into two 
unequal parts for their phone calls and analyses. The refusal rate was slightly lower 
when the dialing period was 5-9 p.m. (14.0%) as opposed to 8 a.m. to 9 p.m. (15.7%). 
It was also lower in rural (10.2% refusals) than in urban locations (16.7% refusals), and 
lowest on Sundays and Tuesdays (13.1% refusals for both days) and highest on 
Wednesdays (16.0% refusals) and Fridays (16.2% refusals). Potential interviewees were 
most likely to be at home during the months of December (11.3% at home) and January 
(12.0% at home) and less likely to be available during the other months of the years 
(ranging from 9.0% in September to 10.7% in February). 

Can high rates of nonresponse impair the validity of survey studies, and if so, what 
can be done about it? Some answers to both parts of this question were provided by 
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TABLE 9.4 

Example of bias due to nonresponse in survey research (Cochran, 1963) 

Response to three mailings 

First Second Third Non- Total 
Basic data wave wave wave respondents population 

1. Number of respondents 300 543 434 1,839 3,116 

2. Percentage of population 10 17 14 59 100 

3. Mean trees per respondent 456 382 340 290 329 

Cmnulative data 

4. Mean trees per respondent (MJ) 456 408 385 

5. Mean trees per nonrespondent (M2) 315 300 290 

6. Difference (MJ - M 2) 141 108 95 

7. Percentage of nonrespondents (P) 90 73 59 

8. Bias = (P)(MJ - M 2) 127 79 56 

William Cochran (1963), based on the results summarized in Table 9.4. The data pertain 
to three waves of questionnaires that were mailed out to fruit growers. One variable in 
this ~dy was the number of fruit trees owned, and data were available for the entire 
population of growers for just this variable. As a consequence, it was possible to calculate 
the degree of bias attributable to nonresponse present after the first, second, and third 
waves of questionnaires. Rows 1 to 3 provide the basic data in the form of (1) the number 
of respondents to each wave of questionnaires and the number of nonrespondents, 
(2) the percentage of the total population represented by each wave of respondents 
(and nonrespondents), and (3) the mean number of trees owned by the respondents and 
the nonrespondents in each wave. Examination of row 3 reveals the nature of the 
nonresponse bias, which is that the earlier respondents owned more trees on the average 
than did the later responders. 

The remaining five rows of data are based on the cumulative number of 
respondents available after the first, second, and third waves. For each wave, five 
items of information are provided: (4) the mean number of trees owned by the 
respondents up to that point in the survey, (5) the mean number of trees owned by 
the nonrespondents up to that point, (6) the difference between these two means, 
(7) the percentage of the population that had not yet responded, and (8) the magnitude 
of the bias up to that point in the study. Examination of this last row shows that, 
with each successive wave of respondents, there was an appreciable decrease in the 
magnitude of the bias, a result that appears to be fairly typical of studies of this kind. 
That is, increasing the effort to recruit the nonrespondents decreases the bias of point 
estimates in the sample. 

Considerable theoretical attention has for some time been paid to sample selec­
tion bias in many areas of research (e.g., Berk, 1983; Berk & Ray, 1982; Gniech, 
1986; Heckman, 1980; Nederhof, 1981; Rosenthal & Rosnow, 1975; Sudman, Sirken, & 
Cowan, 1988). In most circumstances of behavioral and social research we can 
compute the proportion of our population participants (P) and the statistic of interest 
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for these respondents (M1), but we cannot compute the same statistic for those who 
do not respond (M2). Therefore, we are often in a position to suspect bias but unable 
to give an estimate of its magnitude. In survey research conducted by telephone or 
questionnaire a further problem is that researchers are frequently unable to differentiate 
the household refusals from the potential respondent refusals. In the former instance 
the nonrespondent is not the person who should be interviewed, but a "gatekeeper" 
within the household (Lavrakas, 1987). 

A number of ideas have been suggested for stimulating response rates (Linsky, 
1975). In the case of mail surveys these techniques include (a) using one or more 
follow-ups or reminders, such as telephone calls, postcards, and letters sent to the 
initial nonresponders; (b) contacting potential respondents before they receive the ques­
tionnaire and describing the study and why it is important for them to respond, 
(c) using "high-powered" mailings such as special delivery, and (d) offering a cash 
incentive or a desirable premium for responding. Church (1993) concluded that prepaid 
monetary incentives produce higher response rates than promised incentives or gifts 
offered with the initial mailing. A related concern is that the increasing use of 
incentive payments may raise the future expectations of survey respondents (Singer, 
Van Hoewyk, & Maher, 1998), possibly leading to perceptions of inequity and thus 
noncooperation in the future, although the latter does not yet seem to be a significant 
problem (Singer, Groves, & Coming, 1999; Singer, Van Hoewyk, & Maher, 2000). 

A meta-analytic review of the literature on the effect of using incentives in tele­
phone surveys concluded that paying an incentive is effective in increasing the response 
rate; its effectiveness is similar to that in mail surveys (Singer, Van Hoewyk, Gebler, 
Raghunathan, & McGonagle, 1999). In experiments conducted by Singer, Van Hoewyk, 
and Maher (2000), the finding was that prepaid incentives enclosed with advance letters 
reliably increased the response rates in random-digit-dialed telephone surveys by at least 
10 percentage points. Another strategy is to train interviewers to handle difficult people 
and refusals by being politely persuasive without being aggressive, for example, to tell 
the person who picks up the phone how helpful his or her cooperation will be to the 
investigators. This procedure may have been more effective some years ago, but we 
suspect it is likely nowadays to elicit the opposite reaction from busy people, to the point 
where the interviewer can expect an almost instantaneous negative response. 

Wainer (1999) underscored another general strategy for dealing with non­
response, which is the creation of a theory-based model for the selection process. 
The model must describe not only what is to be observed, but also what cannot be 
observed. Such a model, he noted, was developed by the statistician Abraham Wald 
in work he did during World War II. Wald was trying to figure out where to place 
extra armor on military aircraft that had been shot at, and he began by recording 
on the outline of a plane the patterns of bullet holes in the returning planes. 
Reasoning that these were not the most vulnerable spots for extra armor, because 
those planes had returned safely despite being hit, he concluded that the best areas 
on the planes for extra armor must be every place else. As Wainer noted, Wald's 
"model for the nonresponse" Was thus based on his assumption that military aircraft 
that did not return must have been hit in more vulnerable areas, and these needed 
extra protection. Of course, to properly test this model he would also need to find 
planes that did not return and record the pattern of bullet holes in them as well. 
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Wald's model was correct, but it worked not because of the "magic of statistics," 
but because of his key insight into the "unsampled population" (Wainer, p. 255). 

STUDYING THE VOLUNTEER SUBJECT 

The volunteer subject problem can be understood as a variant on, or as encompassing, 
the problem of nonresponse bias. We have long been interested in the volunteer sub­
ject and, some years ago, wrote a book that summarized the results of hundreds of 
empirical findings regarding the characteristics of these subjects and the situational 
correlates of volunteering for research participation (Rosenthal & Rosnow, 1975). Our 
review of the relevant literature took the form of a number of quantitative summaries 
of research domains. (Such summaries were not common at the time, and a year later 
Gene Glass, 1976, gave such a summary its current name: meta-analysis.) Some of 
our results were given in terms of effect sizes, and some in terms of directional trends 
in statistically significant results. In the following discussion we describe some of our 
main conclusions, but first, we want to address two questions that have frequently 
been raised about research on the volunteer subject: (a) How does one study people 
who, by definition, are nonparticipants or nonvolunteers? And (b) how reliable is the 
act of volunteering for research participation? 

In the spirit of methodological pluralism, several different strategies have been used 
to corripare the characteristics of volunteers and nonvolunteers. One approach begins with 
an archive containing for each person listed all the information desired for a comparison 
between volunteers and nonvolunteers. Requests for volunteers are then made some time 
later, sometimes years later, and those who volunteer are compared to those who do not 
volunteer on all items in the archive in which the researcher is interested. For example, 
many colleges administer psychological tests and questionnaires to incoming students 
during an orientation period. Assuming there are safeguards of individuals' privacy, and 
that the study is approved by the ethics review board, the data may be used to compare 
students who volunteer with those who do not volunteer for a psychological study. In 
some cases the researchers have used similar data to compare the respondents and non­
respondents to an alumni-organization questionnaire sent out years later. 

A second approach calls for the recruitment of volunteers for research, usually 
in college classes, so that the volunteers and the nonvolunteers can be identified from 
the class rosters. Shortly thereafter, a test or questionnaire is given to the entire class 
by someone ostensibly unrelated to the person who recruited the SUbjects. Volunteers 
can then be compared to nonvolunteers on any of the variables measured in the 
class wide testing or surveying. 

In a third approach, all the subjects or respondents are volunteers to begin with, 
and so any required data can be easily obtained from all of them. From this sample 
of volunteers, new volunteers for additional research are then recruited, and these 
second-level, or second-stage, volunteers can be compared to second-level non­
volunteers on the data available for all. The differences between the second-level 
volunteers and the second-level nonvolunteers are likely to underestimate the differ­
ences between "true nonvolunteers" and "true volunteers," however, because the 
second-level nonvolunteers had at least been first-level volunteers. Thus, the proce­
dure requires extrapolation on a gradient of volunteering, but it is also based on a 
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leap of faith~ For example, it might be hypothesized that, if the repeat volunteers were 
higher in the need for social approval than one-time volunteers, the nonvolunteers 
would be lower still in need for social approval. 

A fourth approach is similar to the one described in Table 9.4, in which respondents 
are solicited from some sampling frame or list. After a suitable interval, another request 
for volunteers is made of those who were identified originally as nonvolunteers, and this 
process of repeat requesting may be repeated three or four or more times. The charac­
teristics of those volunteering in each wave are plotted as data points from which a 
tentative extrapolation is made to the characteristics of those who never responded. In 
some cases the incentive might be periodically increased to show whether those who 
volunteer with less incentive, or those who volunteer more quickly, are further down the 
curve from those who volunteer with more incentive or less quickly. 

In a fifth approach, only a single request for volunteers is issued, but the latency 
of volunteering is recorded. The characteristics of those responding at each of the two 
or more levels of latency are used as data points from which to extrapolate to charac­
teristics of those who did not volunteer at all. This method has been used primarily in 
survey research, and it appears to have some promise. However, it is probably less 
effective as a basis for extrapolating to nonvolunteers or nonrespondents than the method 
of increasing the incentive. Nonetheless, this fifth strategy can be combined with the 
method of increasing the incentive, and the trends within waves or requests can be 
compared with the trends between the waves or requests. 

With regard to the reliability of volunteering, Table 9.5 shows the results of 10 
studies available to us when we addressed this question after we were given an opportunity 

TABLE 9.S 

Reliability of volunteering behavior 

Author Index Magnitude p Type of study 

Barefoot (1969) I rpb .45 .001 Various experiments 

Barefoot (1969) II rpb .42 .001 Various experiments 

Dohrenwend & Dohrenwend (1968) <I> .24a,b .02 Interviews 

Laming (1967) p .22b .05 Choice-reaction 

Martin & Marcuse (1958) I r, .91" .001 Learning 

Martin & Marcuse (1958) II r, .80' .001 Personality 

Martin & Marcuse (1958) III r, .67' .001 Sex 

Martin & Marcuse (1958) IV r, .97' .001 Hypnosis 

Rosen (1951) <I> .34 .05 Personality 

Wallace (1954) CO .58 .001 Questionnaires 

Median .52 .001 

Note: Different types of correlations listed under Index are described in chapter 11. 

'In these studies the second request was to volunteer for the same research as the first request. 

hAll subjects had been volunteers at one time. so that the reliabilities were probably lowered by a restriction of range of 
the volunteering variable. 

'The symbol C refers here to the contingency coefficient. 
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to respond to an earlier published critique (cf. Kruglanski, 1973; Rosnow & Rosenthal, 
1974). Notice that the median reliability coefficient was .52, with a range from .22 to 
.97. As a standard with which to compare these values, we examined the subtest intercor­
relations for what is perhaps the most widely used and carefully developed test of intel­
ligence, the Wechsler Adult Intelligence Scale, or WAIS (Wechsler, 1958). Repeated 
factor analyses of the WAIS had suggested that there was a very large first factor, g, that 
in its magnitude swamped the other factors extracted, typically accounting for 10 times 
more variance than the other factors. The full-scale WAIS, then, was an excellent measure 
of this first factor, or g. The WAIS subtest intercorrelations were reported by Wechsler 
to range from .08 to .85, with a median of .52, which, by coincidence, is the median 
value of the reliabilities of volunteering shown in Table 9.5. Of the studies listed in this 
table the median reliability of the laboratory studies was .56, whereas the median for the 
field studies was .41, but there were too few studies (only two) in the latter group to 
allow conclusions about this difference. 

As indicated in the footnote to Table 9.5, five of the studies requested people to 
volunteer a second time for the same task. In the remaining studies, the second and 
subsequent requests were to volunteer for a different study. Assuming there are propen­
sities to volunteer, then surely these propensities should be more stable when people are 
asked to volunteer for the same, as opposed to a different, type of research experience. 
The d~ta in the table bear out this plausible inference. The median reliability for studies 
that requested volunteers for the same task was .80, whereas the median reliability for 
studies that requested volunteers for different tasks was only .42. Both these median 
reliabilities are very significantly different from zero (p much less than .001). Although 
the 10 studies were not very many on which to base such a conclusion, the findings 
nevertheless suggested to us that volunteering, like IQ, might have both general and 
specific predictors. That is, some people volunteer reliably more than others for a variety 
of tasks, and these reliable individual differences might be further stabilized when the 
task for which volunteering was requested is specifically considered. 

It should also be noted that all of the indices of correlation in Table 9.5 underes­
timate the degree of association relative to the Pearson product-moment correlation 
(under most conditions), even though most of these indices are product-moment 
correlations. The contingency coefficient (C), not a member of the r family, shows this 
underestimation most dramatically. In a 2 X 2 table, Cmax is equal to .71 when a product­
moment correlation would yield <I> = 1.00. The median overall index of association noted 
in Table 9.5, therefore, is likely to be biased in the low direction and should be regarded 
as a rough estimate. 

CHARACTERISTICS OF THE 
VOLUNTEER SUBJECT 
Proceeding attribute by attribute, we considered a large number of empirical studies inves­
tigating the question of how volunteer subjects differ from their more reluctant colleagues 
(Rosenthal & Rosnow, 1975). Our quantitative analysis now seems primitive to us in light 
of subsequent developments in meta-analysis (discussed in chapter 21). However, on the 
assumption that all of our major conclusions remain tenable and their implications remain 
methodologically relevant, Table 9.6 shows an overall tabulation of several hundred 
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TABLE 9.6 

Summary of the results of studies of volunteer characteristics (Rosenthal & 
Rosnow, 1975) 

Number Percentage of Percentage of total Percentage of 
Volunteer of studies total significant studies significantly significant studies 
characteristic available studies favoring conclusion favoring conclusion 

Female 63 44 35 79 

Firstborn 40 25 18 70 

Sociable 19 68 63 92 

Extraverted 8 50 25 50 

Self-disclosing 3 100 100 100 

Altruistic 4 100 100 100 

Achievement-motivated 9 67 44 67 

Approval-motivated 19 58 58 100 

Nonconforming 17 29 29 100 

Nonauthoritarian 34 44 35 80 

Unconventional 20 75 55 73 

Arousal-seeking 26 62 50 81 

Anxious 35 46 26 56 

Maladjusted 34 71 44 62 

Intelligent 37 59 54 91 

Educated 26 92 92 100 

Higher social class 46 80 70 86 

Young 41 56 34 61 

Married 11 55 36 67 

Jewish > Protestant or 

Protestant> Catholic 17 41 41 100 

Interested in religion 11 45 36 80 

From smaller town 10 40 40 100 

Median 20 57 42 80 

studies, listed in the order in which we discussed these characteristics in more detail in 
our earlier book (Rosenthal & Rosnow, 1975, p. 85). The first column lists the character­
istics more often associated with the volunteer subject (i.e., except for the extraversion 
variable, which was as often associated significantly with volunteering as introversion). 
The second column lists the number of studies providing evidence on the relationship 
between volunteering and the characteristic in question. The minimum requirement for 
inclusion in this list was that there be at least three statistically significant results, in either 
direction, bearing on the relationship between any characteristic and volunteering. 
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The third column of Table 9.6 shows the percentage of the total number of the 
relevant results that reported a statistically significant relationship between volunteering 
and the listed characteristic. The range was from 25% to 100%, indicating that for 
all the characteristics listed, there were clearly more statistically significant results 
than would be expected if there were actually no relationship between the charac­
teristic listed and volunteering. Although this column indicates that all the listed 
characteristics are too often associated with volunteering, it does not provide evidence 
on the direction of the relationship. Thus, in the first row, the characteristic listed is 
"female" and the corresponding third column indicates that 44% of the 63 relevant 
studies found some statistically significant relationship between being female and 
volunteering. Some of these relationships were positive, however, whereas others were 
negative. The fourth column gives the percentage of all the relevant studies that found 
volunteers to be more likely to show the characteristics listed in the first column. 
Thus, in the first row, the fourth column shows that 35% of the 63 relevant studies 
found females to be significantly more likely than males to volunteer for participation 
in a study. The range of percentages listed in the fourth column runs from 18% to 
lOO%, indicating that for all the characteristics listed, there were more statistically 
significant results than we would expect if volunteers were not actually more likely 
to be characterized by the attribute listed in the first column. 

Even this fourth column, however, does not give sufficient information, as 
it is pbssible that there was an equally large percentage of the total number of 
relevant studies that yielded results significant in the opposite direction. That is 
exactly what occurred in the fourth row, which lists "extraverted" as a volunteer 
characteristic. Exactly one half of the eight relevant studies revealed a statistically 
significant relationship between volunteering and extraversion (column 3) and 25% 
showed that extraverts were significantly more likely to volunteer than introverts 
(column 4). The difference between column 3 and column 4, however, shows that 
an equal number of studies (25%) yielded a significantly opposite effect. As a 
convenient way of showing the net evidence of a specific relationship between 
volunteering and any characteristic, column 5 was added. This final column lists 
the percentage of all significant results that favor the conclusion that volunteers 
are more often characterized by the attribute listed in the first column. The range 
of percentages runs from 50% to lOO%. This range indicates that for some char­
acteristics all significant results favor the conclusion implied by the first column, 
whereas for others the evidence is equally strong for the conclusion implied by 
the first column and for the opposite of that conclusion. This latter situation 
occurred only once, and that was in the case of the attribute we have already noted, 
extraversion. 

Table 9.7 lists all the characteristics by the degree to which we felt confident that 
they were indeed associated with volunteering for research participation. The table sorts 
the characteristics into four groups, and within each group the characteristics are listed 
in approximately descending order of the confidence we expressed in the relationship 
between volunteering and the particular characteristic. By confidence we imply not a 
statistical confidence level, but an empirically driven, intuitive judgment. The definition 
of the degree of confidence involved an arbitrary, complex multiple cutoff procedure in 
which a conclusion was felt to be more warranted when (a) it was based on a larger 
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TABLE 9.7 

Volunteer characteristics grouped by degree of confidence 
of conclusion 

I. Maximum confidence III. Some confidence 

1. Educated 12. From smaller town 
2. Higher social class 13. Interested in religion 
3. Intelligent 14. Altruistic 
4. Approval-motivated 15. Self-disclosing 
5. Sociable 16. Maladjusted 

II. Considerable confidence 17. Young 

IV. Minimum confidence 
6. Arousal-seeking 
7. Unconventional 18. Achievement motivated 
8. Female 19. Married 
9. Nonauthoritarian 20. Firstborn 

10. Jewish> Protestant or Protestant> Catholic 21. Anxious 
11. Nonconforming 22. Extraverted 

number of studies; (b) a larger percentage of the total number of relevant studies signi­
ficantly favored the conclusion; and (c) a larger percentage of those studies showing a 
statistically significant relationship favored the conclusion drawn. If we were to repeat 
this analysis today, we would use a more informative meta-analytic approach in which 
the effect sizes were estimated, interval estimates around the pooled effect sizes were 
calculated, the fail-safe numbers were reported for overall significance levels, and a 
further effort would be made to uncover more recent studies that explored for moderating 
variables. That qualification notwithstanding, the three criteria we used were based on 
the second, fourth, and fifth columns of Table 9.6, with the minimum values of each 
criterion that we used shown in Table 9.8. 

In Table 9.8, to qualify for "maximum confidence" a relationship had to be based 
on a large number of studies, of which a majority significantly favored the conclusion 
drawn and of which the vast majority of just the significant outcomes favored the conclu­
sion. To qualify for "considerable confidence" a large number of studies was also required, 
but the fraction of total studies significantly favoring the conclusion drawn was permitted 

TABLE 9.8 

Cutoff requirements for each degree of confidence 

Number of Percentage of available 
Degree of studies studies significantly 
confidence available favoring conclusion 

Maximum 19 54 

Considerable 17 29 

Some 3 29 

Minimum 3 18 

Percentage of 
significant studies 

favoring conclusion 

86 

73 

61 

50 
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to drop somewhat below one-third. The percentage of significant results that favored the 
conclusion, however, was still required to be large (73%). The major difference between 
the categories of "considerable" and "some" confidence was in the number of studies 
available on which to base a conclusion, although some characteristics that often had 
been investigated were placed in the "some confidence" category when the fraction of 
significant studies favoring the conclusion fell to below two thirds. The final category, 
"minimum confidence," comprised characteristics that did not so clearly favor one 
direction of relationship over the other and characteristics that had not been sufficiently 
investigated to permit a stable conclusion. To put the basis for the grouping shown in 
Tables 9.7 and 9.8 in a slightly different way, we can say that the degree of confidence 
in a conclusion was based on the degree to which future studies reporting no significant 
relationships, or even relationships significantly in the opposite direction, appeared 
unlikely to alter the overall conclusion drawn. Thus, for example, when 24 of 26 studies 
showed volunteers to be significantly better educated than nonvolunteers, it would take 
a good many studies showing no significant relationship and even a fair number of studies 
showing a significantly opposite relationship before we would decide that volunteers were 
not, on the whole, better educated than nonvolunteers. 

So far in our summary of characteristics associated with volunteering, we have 
counted all relevant studies, paying no attention to the type of task for which volunteering 
had been requested, nor to the sex of the sample of subjects, nor to the particular opera­
tional clefinition of the characteristic investigated in each study. Yet each of these variables 
has been found to affect the relationship between volunteering and some of the charac­
teristics investigated. Hence, we conclude this section with a listing of specific conclusions 
that also seemed warranted by the evidence, taking into account the effects of various 
moderator variables. The order of our listing follows that shown in Table 9.7, beginning 
with conclusions warranting maximum confidence and ending with conclusions warranting 
minimum confidence. Within each of the four groups, the conclusions are again ranked 
in the approximate order of the degree of confidence we can have in each. 

Conclusions warranting maximum confidence: 

1. Volunteers tend to be better educated than nonvolunteers, especially when personal 
contact between investigator and respondent is not required. 

2. Volunteers tend to have higher social-class status than nonvolunteers, especially when 
social class is defined by the respondents' own status rather than by parental status. 

3. Volunteers tend to be more intelligent than nonvolunteers when volunteering is 
for research in general, but not when volunteering is for somewhat less typical 
kinds of research (e.g., hypnosis, sensory isolation, and small-group and personality 
research). 

4. Volunteers tend to be higher in the need for social approval than nonvolunteers. 

5. Volunteers tend to be more sociable than nonvolunteers. 

Conclusions warranting considerable confidence: 

6. Volunteers tend to be more arousal-seeking than nonvolunteers, especially when 
volunteering is for studies of stress, sensory isolation, and hypnosis. 



RANDOMLY AND NONRANDOMLY SELECTED SAMPLING UNITS 283 

7. Volunteers tend to be more unconventional than nonvolunteers, especially when 
volunteering is for studies of sexual behavior. 

8. Females are more likely than males to volunteer for research in general, but less 
likely than males to volunteer for physically and emotionally stressful research 
(e.g., electric shock, high temperature, sensory deprivation, interviews about 
sexual behavior). 

9. Volunteers tend to be less authoritarian than nonvolunteers. 

10. Jews are more likely to volunteer than Protestants, and Protestants are more likely 
to volunteer than Catholics. 

11. Volunteers tend to be less conforming than nonvolunteers when volunteering is 
for research in general, but not when subjects are female and the research task is 
relatively "clinical" (as in hypnosis, sleep, or counseling research). 

Conclusions warranting some confidence: 

12. Volunteers tend to be from smaller towns than nonvolunteers, especially when 
volunteering is for questionnaire studies. 

13. Volunteers tend to be more interested in religion than nonvolunteers, especially 
when volunteering is for questionnaire studies. 

14. Volunteers tend to be more altruistic than nonvolunteers. 

15. Volunteers tend to be more self-disclosing than nonvolunteers. 

16. Volunteers tend to be more maladjusted than nonvolunteers, especially when 
volunteering is for potentially unusual situations (e.g., studies involving phar­
maceuticals, hypnosis, high temperature, or vaguely described experiments) or 
for medical research using clinical (rather than psychometric) definitions of 
psychopathology. 

17. Volunteers tend to be younger than nonvolunteers, especially when volunteering 
is for laboratory research and especially if the volunteers are female. 

Conclusions warranting minimum confidence: 

18. Volunteers tend to be higher in need for achievement than nonvolunteers, especially 
among American samples. 

19. Volunteers are more likely to be married than nonvolunteers, especially when 
volunteering is for studies requiring contact between investigator and respondent. 

20. Firstborns are more likely than laterborns to volunteer, especially when recruit­
ment is personal and when:the research requires group interaction and a low level 
of stress. ' 

21. Volunteers tend to be more anxious than nonvolunteers, particularly when volun­
teering is for more standard, nonstressful tasks, and especially if the volunteers 
are college students. 

22. Volunteers tend to be more extraverted than nonvolunteers when interaction with 
others is required by the nature of the research. 
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IMPLICATIONS FOR THE INTERPRETATION 
OF RESEARCH FINDINGS 

Before we turn to the situational correlates of volunteering, we should mention the 
implications of the preceding discussion for the validity of inferred causal relation­
ships as well as the generalizability of descriptive conclusions. Figure 9.2 illustrates 
the threat to generalizability from using volunteer subjects to establish test norms, in 
this case for a hypothetical IQ test. The figure depicts roughly the positive bias that 
is expected to result from using only volunteer subjects, who (as noted in Conclusion 3) 
have a tendency to score higher on intelligence tests than nonvolunteers. Similarly, 
were we to recruit volunteers to provide the norms for a test that correlated with any 
of the other characteristics of volunteer subjects, we would also predict positive or 
negative biasing effects. Insofar as any of those characteristics might be conceptualized 
as a potential threat to generalizability, we should be able to predict the direction of 
the bias resulting from this threat. Of course, merely increasing the size of the sample 
of volunteers will not reduce the bias, but an effort to recruit more nonvolunteers or, 
better still, to use probability sampling as well as attempting to reduce the nonresponse 
rate, would be expected to address this problem. 

We should also be able to predict the direction of the volunteer bias in randomized 
experimental studies. Suppose we want to evaluate the effect of an experimental treatment 
on the~ dependent variable of gregariousness. If we draw a sample of volunteers, any 

FIGURE 9.2 
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The curve symbolized by Y represents a theoretical normal distribution of IQs in the general population, 
and the curve labeled X represents a theoretical normal distribution of IQs among volunteers. To the 
extent that the mean of the X is different from the mean of the Y (as shown), the resultant bias 
constitutes a threat to the generalizability of the data. 
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treatment designed to increase gregariousness may be too harshly judged as ineffective 
because the untreated group is already unusually high in sociability (Characteristic 5). 
Similarly, suppose we want to assess the validity of a new educational procedure that is 
purported to make students less rigid in their thinking. If we randomly assign volunteers 
to an experimental group that receives the procedure or to a control group that does not 
receive it, we predict that the controls will already be unusually low on the dependent 
variable (because volunteers tend to be low in authoritarianism, i.e., Characteristic 9). 
Thus, even though we've designed a randomized controlled experiment, we have 
again inadvertently minimized the true difference between the two groups by using 
just volunteer subjects. 

The opposite type of error can also be imagined. Suppose we want to find out 
how persuasive an advertising appeal is by using a sample of volunteers, half of whom 
will randomly receive the message (the experimental group) and half of whom will 
not (the control group). Given that volunteers tend to be higher in the need for social 
approval (Characteristic 4), and that people who are high in the need for social 
approval tend to be more readily influenced than those low in this need, we predict 
that volunteers exposed to the advertising appeal will overreact to it. Comparing their 
reactions with those in the control group will have a tendency to exaggerate the impact 
of the appeal in the general population. 

One lesson, of course, is that randomized experimental designs usually do not 
control for sampling biases and may therefore yield less generalizable results. A second 
lesson is that knowing the general characteristics of volunteer subjects in Table 9.7, and 
also being sufficiently familiar with the literature in one's field to know how certain 
characteristics may interact with the experimental treatment, allows the investigator to 
predict the direction of the bias. In studies that involve any sort of stress, for example, 
the volunteer subjects' sex, arousal-seeking inclinations, and anxiety may be biasing 
factors. In clinical research, volunteers' nonconformity tendency may be suspect; in 
medical research, the volunteer subjects' psychological adjustment; and so on. 

SITUATIONAL CORRELATES AND THE 
REDUCTION OF VOLUNTEER BIAS 

We turn now to situational correlates of volunteering for research participation. As was 
the case in our examination of the more stable characteristics of volunteers, our inventory 
of situational variables was developed intuitively rather than deductively (Rosenthal & 
Rosnow, 1975). The question that we put to the empirical literature was "What are the 
variables that tend to increase or decrease the rates of volunteering?" The answers have 
specific implications for both the theory and the practice of behavioral and social science. 
First, we can learn something about the social psychology of volunteering, and second, 
we are in a better position to reduce the bias in our samples that derives from volunteers' 
being systematically different from nonvolunteers in a variety of characteristics. 

Table 9.9 lists the situational correlates of volunteering by the degree of 
confidence we expressed in each variable. The definition of confidence was again 
based both on the number of studies relevant to the relationship under consideration 
(although there were fewer in this case than in our investigation of the characteristics of 
volunteer subjects) and on the proportion of the relevant studies whose results supported 
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TABLE 9.9 

Situational correlates of volunteering grouped by degree 
of confidence of conclusion 

Maximum confidence Some confidence 

I. Subject interest 6. Recruiter characteristics 
2. Expectation of favorable evaluation 7. Aversive tasks 

Considerable confidence 8. Normative expectations 

Minimum confidence 
3. Task importance 
4. Guilt, happiness, and competence 9. Prior acquaintance 
5. Material incentives 10. Public versus private commitment 

a directional hypothesis. To qualify for "maximum confidence" a relationship had to be 
based on at least 20 studies, and at least 6 out of 7 studies had to support it. To qualify 
for "considerable confidence" a relationship had to be based on at least 10 studies, and 
at least two-thirds had to support the relationship. To qualify for "some confidence" a 
relationship had to be based either on 3 studies, all of which supported the relationship, 
or on 9 studies, most of which supported it, with none showing a significant reversal of 
the relationship. Relationships not meeting these standards are listed in Table 9.9 under 
the heading of "minimum confidence." We list the following conclusions that also seemed 
warranted by the evidence, taking into account the effects of moderator variables sug­
gested by the data. The order of our listing follows that shown in Table 9.9, beginning 
with the conclusions warranting maximum confidence and ending with those warranting 
minimum confidence. Within each category, the conclusions are again ranked in approxi­
mate order of the degree of confidence we expressed in each. 

Conclusions warranting maximum confidence: 

1. Persons more interested in the topic under investigation are more likely to volunteer. 

2. Persons with expectations of being more favorably evaluated by the investigator 
are more likely to volunteer. 

Conclusions warranting considerable confidence: 

3. Persons perceiving the investigation as important are more likely to volunteer. 

4. Persons' feeling states at the time of the request for volunteers are likely to affect 
the probability of volunteering. Persons feeling guilt are more likely to volunteer, 
especially when contact with the unintended victim can be avoided and when the 
source of guilt is known to others. Persons made to "feel good" or to feel competent 
are also more likely to volunteer. 

S. Persons offered greater material incentives are more likely to volunteer, especially 
if the incentives are offered as gifts in advance and without being contingent on the 
person's decision to volunteer. Stable personal characteristics of the potential volunteer 
may moderate the relationship between volunteering and material incentives. 
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Conclusions warranting some confidence: 

6. Personal characteristics of the recruiter are likely to affect the subject's probability 
of volunteering. Recruiters higher in status or prestige are likely to obtain higher 
rates of volunteering, as are female recruiters. This latter relationship is especially 
modifiable by the sex of the subject and the nature of the research. 

7. Persons are less likely to volunteer for tasks that are more aversive in the sense 
of being painful, stressful, or dangerous biologically or psychologically. Personal 
characteristics of the potential volunteer and level of incentive may moderate the 
relationship between volunteering and task aversiveness. 

8. Persons are more likely to volunteer when volunteering is viewed as the normative, 
expected, appropriate thing to do. 

Conclusions warranting minimum confidence: 

9. Persons are more likely to volunteer when they are acquainted with the recruiter. 
The addition of a "personal touch" may also increase volunteering. 

10. Conditions of public commitment may increase rates of volunteering when it is 
normatively expected, but they may decrease rates of volunteering when nonvol­
unteering is normatively expected. 

Previously, we mentioned some of the procedures that are used to try to improve 
response rates in survey research. In a similar vein, there are a number of steps that may 
prove useful in reducing volunteer bias in experimental and other studies. Here is a list 
of recommendations, offered in a tentative spirit and subject to further empirical testing: 

1. Make the appeal for volunteers as interesting as possible, keeping in mind the 
nature of the target population. 

2. Make the appeal for volunteers as nonthreatening as possible so that potential 
volunteers will not be put off by unwarranted fears of unfavorable evaluation. 

3. Explicitly state the theoretical and practical importance of the research for which 
volunteering is requested. 

4. Explicitly state in what way the target population is particularly relevant to the 
research being conducted and the responsibility of would-be volunteers to 
participate in research that has potential for benefiting others. 

5. When possible, potential volunteers should be offered not only pay for participation 
but small courtesy gifts simply for taking time to consider whether they will want 
to participate. 

6. Have the request for volunteering made by a person of status as high as possible, 
and preferably by a w0-lllan. 

7. When possible, avoid research tasks that may be psychologically or biologically 
stressful. 

8. When possible, communicate the normative nature of the volunteering response. 

9. After a target population has been defined, make an effort to have someone known 
to that population make the appeal for volunteers. The request for volunteers may 
be more successful if a personalized appeal is made. 
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10. In situations where volunteering is regarded by the target population as normative, 
conditions of public commitment to volunteering may be more successful; where 
nonvolunteering is regarded as normative, conditions of private commitment may 
be more successful. 

A hasty reading of these recommendations might give the impression that they 
are designed only to increase rates of volunteering and thus to decrease volunteer bias. 
A more careful reading, however, should reveal that the recommendations may have 
other beneficial effects. They should make us more careful and thoughtful not only 
in how we make our appeals for volunteers, but also in our planning of research. Our 
relations with our potential participants may become somewhat more reciprocal and 
more human, and our procedures may become more humane. Finally, if we are to tell 
our research subjects as much as possible about the significance of our research 
(as though they were another granting agency, which in fact they are, granting us time 
instead of money), then we will have to give up trivial research. 

THE PROBLEM OF MISSING DATA 

At the beginning of this chapter we alluded to the problem of missing data, which is a 
concern of all behavioral and social researchers (West, 2(01). The term is most commonly 
applieiiI to situations in which each research subject has supplied multiple responses to 
a test, a questionnaire, a longitudinal study, or a set of psychophysiological measures, 
but one or more responses that were to be collected by the investigator are unavailable. 
The proportion of data missing per research subject may range from .00 to l.OO. Subjects 
who provide all the desired data have no missing data, and those who never show up 
for the research have only missing data. Analyzing the data from only those who show 
up and provide all the data desired does not really address the primary problem of 
missing data, which is that the quantities to be estimated (means, variances, correlations, 
etc.) are likely to differ systematically from the values that would have been obtained 
had all the data been available. 

In short, the primary problem of missing data is the introduction of bias into our 
estimates; an additional problem is decreased statistical power. Recent works have dis­
cussed the issues involved in the handling of missing data, including the importance of 
the reasons underlying the "missingness" (its mechanisms) and the older and newer 
approaches to missing data (Collins, Schafer, & Kam, 2001; Enders, 2001; Sinharay, 
Stem, & Russell, 2001). Thus, it has been noted how missingness can occur completely 
at random (MCAR), not quite at random but explainably so (MAR), and not at random 
but explainably so (MNAR). We will first define each of these expressions in a little 
more detail and then describe alternative procedures for dealing with missing data. 

MCAR (missing completely at random) is said to occur when the missingness is 
unrelated to any variables of substantive interest. In this case the data observed give 
unbiased estimates of what would have been observed had no data been missing. 

MAR (missing at random) is said to occur when the missingness is related 
to variables of interest, but when these relationships can be accounted for by other 
variables that have been observed. Because missingness is not uncorrelated with 
variables of interest, MAR has a potential of yielding biased estimates. However, 
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when these correlations can be explained by other variables, bias can be reduced 
or eliminated. 

MNAR (missing not at random) is said to occur when the missingness is related 
to variables of interest but cannot be fully accounted for by other variables that have 
been observed. To the extent that the correlations between missingness and variables 
of interest are neither zero nor explainable, MNAR will yield biased estimates. 

Mechanisms of missingness have been conceptualized in recent years by Donald B. 
Rubin and his collaborators and colleagues (Dempster, Laird, & Rubin, 1977; Little & 
Rubin, 1987; Rubin, 1976, 1978, 1987, 1996; Schafer, 1997). The importance of these 
conceptualizations is that the procedures used to minimize bias and maximize power 
depend for their effectiveness on the mechanisms of missingness. These procedures have 
recently been summarized by Sinharay et al. (2001), and in the following discussion we 
provide thumbnail sketches of each procedure. 

PROCEDURES FOR DEALING 
WITH MISSING DATA 

Table 9.10 lists the two broad types of approaches for dealing with missing data and 
their various subcategories. Nonimputational procedures are those that yield estimates 
of parameters without "filling in" the missing data. Imputational procedures are those 
that yield their estimates after filling in the missing data. Two quite venerable and simple 
approaches to nonimputational procedures are listwise and pairwise deletion. In listwise 
deletion the procedure is to drop all subjects who have any missing data. If the missing 
data are known to be MCAR, listwise deletion yields unbiased estimates, but it suffers 
from loss of power in proportion to the number or percentage of the total number of 
subjects that were dropped. In pairwise deletion the procedure does not drop any subjects 
but simply computes the parameters of interest (e.g., means, variances, correlations) on 
all data that are available for that particular computation. This procedure is more powerful 
than listwise deletion but also requires that missing data be MCAR to yield unbiased 
estimates. What makes listwise deletion and pairwise deletion problematic, however, is 
that it is virtually impossible to know whether the missing data are, in fact, MCAR. Thus, 
two newer, more sophisticated procedures are maximum likelihood estimation and 
Bayesian estimation. Both of these procedures can yield unbiased results when missing 
data are MAR. For both approaches, computations may be very complex, and both 
approaches are very dependent on the specific statistical model applied to the data set. 

TABLE 9.10 

Procedures for dealing with missing data 

I. Nonimputational procedures II. Imputational procedures 
A. Listwise deletion A. Single imputation 
B. Pairwise deletion 1. Mean substitution 
C. Maximum likelihood estimation 2. Regression substitution 
D. Bayesian estimation 3. Stochastic regression imputation 

4. Hot deck imputation 
B. Multiple imputation 
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Imputational procedures can also be divided into two general types, single and 
multiple, with the single imputational procedures further subdivided into four alternative 
procedures as noted in Table 9.10. The single imputation procedures have in common 
that each missing value is replaced by a reasonable estimate of what that value might 
have been had it been observed. The now "complete" data set is then analyzed by 
the procedures that would have been used had there been no missing data, but with 
some adjustments, for example, decreasing df so that they cannot exceed the df 
available before imputation. 

In the mean substitution procedure all missing values for any given variable are 
replaced by the mean value of that variable. Only if the missing data are MCAR does 
this procedure yield unbiased estimates, and even then estimates of variability are likely 
to be too low. In the regression substitution procedure all missing values are replaced 
by the predicted value of that variable from a regression analysis using only cases with 
no missing data. As with mean substitution, the estimates are unbiased only if the missing 
data are MCAR, but even then estimates of variability are likely to be too low. Stochastic 
regression imputation adds a random residual term to the estimates based on regression 
substitution and often yields more accurate analyses than does regression substitution. In 
hot deck imputation the procedure finds cases without the missing data that are similar 
to the cases with the missing data. From several cases that are close matches to each 
case with missing data, one is chosen at random as the case whose corresponding value 
is to be "imputed for the missing observation. This method, although quite appealing, can 
be difficult to implement when a good many data points are missing. 

In multiple imputation each missing observation is replaced not by a single esti­
mate, but by a set of m reasonable estimates that will yield m pseudocomplete data sets. 
These multiple data sets are then analyzed as complete data sets to address all questions 
of scientific interest. The results of the m analyses are combined to yield minimally biased 
results with more accurate estimates of variability than are obtained from single imputation 
procedures. Compared to maximum likelihood estimation and Bayesian estimation, 
multiple imputation procedures tend to be much simpler computationally under most 
circumstances. The mathematical bases for the multiple imputation approach are beyond 
the scope of this text (and its authors). Currently, multiple imputation procedures seem 
to be the most useful under most conditions (Collins et al., 2001; Sinharay et al., 2001). 
The application of multiple imputation procedures requires sophisticated software that is 
currently available in JOreskog and Sorbom (2001) and Schafer (1999). Because maxi­
mum likelihood approaches give results similar to those of multiple imputation under a 
good many conditions, we note that software is also available for these approaches in 
Arbuckle and Wothke (1999). 
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CHAPTER 

10 
DESCRIBING, 
DISPLAYING, 

AND 
EXPLORING 

DATA 

As noted at the beginning of the previous chapter, much of the fundamental data­
analytic work in behavioral and social research involves the description of a group of 
sampling units. A number or metric value is assigned to each unit, or to some attribute 
of that unit, and the task of describing the data is summarizing the numbers representing 
the units or counting the data in different categories. Summaries of numerical values 
typically indicate the location of the central value and the spread of the values around 
it. Those summary values are usually means, medians, modes, variances, standard 
deviations, and ranges (all of which are reviewed in this chapter). 

There are also various options for exhibiting the values. One common way of 
presenting summary data is in a table, but graphic displays are also widely used. The 
advantage of tables is that exact values can be provided, whereas when data are 
reported in graphics, viewers can usually make only an educated guess about the exact 
values. An important exceptior, described in this chapter, is the stem-and-Ieaf chart, 
which provides the exact values and also gives a picture of the distribution of the 
values. Whatever the form summary data take, however, it is essential that the infor­
mation be reported clearly, accurately, precisely, and in enough detail to allow research 
consumers to reach their own conclusions. Fortunately, for those skilled enough in 
statistical reasoning and patient enough to explore the data, it is possible to calculate 
secondary analyses even with the barest of available ingredients. 

293 
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That idea of "exploring the data" is one of the themes of this chapter-and 
indeed of this text. It is also a reflection of a seminal book, Exploratory Data Analysis, 
written by one of the most influential statisticians of our time, John W. Tukey. Before 
its publication, many researchers believed it to be "poor form," or even cheating, to 
snoop around in the data, looking for interesting findings that had not been predicted. 
Tukey's (1977) work made it not only acceptable, but even desirable and sophisticated, 
to explore the data (Wainer & Velleman, 2001). Although such snooping, or data 
exploration, may complicate the calculation of accurate significance levels, it seems 
a small price to pay for opportunities to learn something new and important about 
our disciplines. Of course, it is ethically imperative that researchers not misrepresent 
ad hoc interpretations of data as a priori predictions. 

Traditional kinds of visual representations, going all the way back to R. A. Fisher, 
Karl Pearson, and other leading statisticians and methodologists, include correlational 
diagrams, bar graphs, trend charts, pie diagrams, and so forth, all of which can now 
be easily created with readily accessible software. Intricate aspects of the visual repre­
sentation of data have been discussed in a number of articles and specialized texts in a 
detail that is beyond the scope of this chapter (e.g., Basford & Tukey, 1999; Chambers, 
Cleveland, Kleiner, & Tukey, 1983; Cleveland, 1985, 1993, 1994; Cleveland & McGill, 
1985; Gross, 1983; Kosslyn, 1994; Tufte, 1983, 1990, 1997,2001; Wainer, 1984,2000). 
Emph¥.ized in this chapter are two strategies for displaying data, the stem-and-Ieaf 
and the box plot, although we begin by reviewing the most common of all graphics, 
the frequency diagram. We also have more to say about commonly used indices of the 
precision of estimating population means. And finally, we describe how to deal with 
outliers that might result in a biased index of central tendency, and we also give a 
flavor of the exploration of a particular correlational diagram. 

FREQUENCY DIAGRAMS AND 
STEM-AND-LEAF DISPLAYS 

The most common graphic displays in the behavioral and social sciences are distribu­
tions that indicate the patterning of increasing and decreasing values, called "frequency 
diagrams" by R. A. Fisher (1973, p. 33). As a simplified example, suppose we have 
measured nine people on a scale of anxiety and obtained the following values: 5, 8, 
7, 6, 4, 6, 7, 5, 6. We might begin by ordering the values from lowest to highest to 
get a better view of their beginning and end points and how they clump or bunch: 4, 
5, 5, 6, 6, 6, 7, 7, 8. The graphic display on the left side of Figure 10.1 is intended 
to clarify the nature of the nine observations by showing score values increasing from 
left to right, with the height of the overarching curve reflecting the frequency of 
occurrence of the values. By tradition, the independent variable is plotted on the X 
axis (the abscissa) and the dependent variable on the Yaxis (the ordinate). But there 
is no hard-and-fast rule that frequency diagrams must adhere to this tradition; the 
display on the right side of Figure 10.1 shows the same values plotted sideways. 

Tukey's stem-and-Ieaf display, which has been called "the most important device 
for the analysis of small batches of numbers to appear since the t-test" (Wainer & 
Thissen, 1981, p. 199), is another example of a graphic in which the values are plotted 
sideways. As Emerson and Hoaglin (1983) noted, the stem-and-Ieaf enables us not only 
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B. Alternative arrangement 

A. Traditional arrangement 
y 

I 
Score value 

Frequency 

FIGURE 10.1 
Distributions of the same metric values, with variables interchanged on the two axes. 

to see the batch as a whole, but also to notice such features as (a) what the degree of 
symmetry is, (b) what the dispersion of individual values is, (c) whether there are 
outliers, (d) whether the data are concentrated in specific areas, and (e) whether there 
are gaps in the patterning of the data. The stem-and-leaf also stores the data for pres­
ent and later usage. It has been said that pictures of numbers are often more instructive 
than the actual numbers (Tufte, 1983). In short, the beauty of the stem-and-leaf is that, 
at the same time, it exhibits both the numbers and the picture of the numbers. 

To illustrate the use of the stem-and-leaf, we refer again to our discussion in 
chapter 9 of the research on volunteer characteristics (Rosenthal & Rosnow, 1975). 
As part of that program of investigation, we were also interested in the nature of the 
volunteers who become "no-shows" (i.e., who fail to show up for their scheduled 
appointments to participate as research subjects). In our investigations we uncovered 
20 studies that reported the proportion of research participants who failed to show up 
when scheduled. Those proportions of no-shows were as follows (not in any particular 
order): .41, .30, .14, .36, .19, .38, .12, .31, .24, .37, .10, .37, .40, .16, .30, .36, .42, 
.32, .03, .37. To help us make sense of these data, we plotted the values economically 
by means of a stem-and-Ieaf. Because these were two-digit numbers, we listed the 
leading digits (or stems) just once and then recorded for each stem the second digits 
(the leaves) attached to it. These results are shown in Part A of Figure 10.2, where 
the scores are entered in the same sequence as noted above. The first score above, 
.41, is the first value (1) shown on the leaf corresponding to a stem of .4, and thus 
is read as ".41." The second s~ore above, .30, appears as the first value (0) shown on 
the leaf corresponding to a stem of .3, and is read as ".30." 

One other fillip, shown in Part B of Figure 10.2, is to arrange the unordered scores 
of Part A from smallest to largest on each stem. The result of this operation is called 
the ordered sample (perhaps more accurately in this case, the ordered samples, as there 
were 20 sampled studies). Thus, in Part B of Figure 10.2, we read the top row, which 
has a stem of .4 and the three leaves 0, 1, and 2, as representing the values of .40, .41., 
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A. Unordered sample B. Ordered sample 

Stems Leaves Stems Leaves 

.4 102 .4 012 

.3 0681770627 .3 0012667778 

.2 4 .2 4 

.1 49206 .1 02469 

.0 3 .0 3 

FIGURE 10.2 
Stem-and-Ieaf displays of no-shows. 

and .42. These three values are the 13th, 1st, and 17th entries in the unordered listing 
of results in the paragraph above. It is informative to provide a summary of the ordered 
stem-and-Ieaf with certain key values of the distribution, typically the highest (the max­
imum) value, the values located at the 75th, 50th (the median), and 25th percentiles, 
and the lowest (the minimum) value. For the ordered stem-and-Ieaf display in Figure 
10.2, we would report these five summary values as follows: 

Maxi~~m 
75th percentile 

Median (50th percentile) 

25th percentile 

Minimum 

.42 

.37 

.32 (.315 rounded to the nearest even digit) 

.17 

.03 

What can these results tell us? The 50 percent of the studies that were midmost 
(25 to 75 percent) had values between .17 and .37, with a median no-show rate of 
.32. The implication is that if we are counting on 40 volunteer subjects to participate 
in a research study, we ought to schedule about 60, on the assumption that, on average, 
only two-thirds may actually show up. Incidentally, findings by Aditya (1996) also 
seem to support this assumption; in an analysis of more recent studies, he found that 
the median no-show rate had remained relatively unchanged (still about one-third). 

Identifying the maximum and minimum values is simple enough. A convenient 
way to locate the median is to mUltiply N + 1 (where N is the number of scores in 
the set) by .50 to get the location of the median value. In this example, N = 20, so 
the location of the median value is (20 + 1).50 = 10.5, or halfway between the lOth­
ordered value of .31 and the 11th of .32, that is, .315 (which we rounded to the nearest 
even value). The 25th and 75th percentile values can be located, respectively, by 
(N + 1).25 and (N + 1).75. For this example, these locate the (21).25 = 5.25th 
values (i.e., adding to the 5th-ordered value 25 percent of the distance between it and 
the 6th-ordered value) and the (21).75 = 15.75th value (i.e., adding to the 15th value 
75 percent of the distance between it and the 16th-ordered value). Stem-and-Ieaf 
displays and their numerical summaries should be flexibly, not rigidly, used; thus it 
is not surprising that some investigators prefer using other means of locating the 25th 
and 75th percentile values (e.g., the nearest whole number). 
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BOX PLOTS 

Particularly when a stem-and-Ieaf display presents a large amount of data, and espe­
cially when there are several stem-and-Ieaf displays to be compared, it is quite useful 
to convert the five-value summary into another graphic, called by Tukey (1977), its 
originator, a "box-and-whisker" plot. Most others now call it a box plot or box graph. 
For our five-number summary (Figure 10.3), we plotted the graphic on the left (A) 
so that the top and bottom dots denote the maximum and the minimum values; the 
top and bottom of the rectangle denote the 75th and 25th percentiles, and the line 
dividing the rectangle denotes the median value. This box plot, like the stem-and-Ieaf 
chart in Figure 10.2, shows that the values are not symmetrically distributed about 
the median. Instead, the data are skewed, with the values furthest from the median 
heavily concentrated below rather than above the median. 

Variations of the box plot abound. Some investigators prefer to indicate the lOth 
and 90th percentile scores instead of the highest and lowest scores, and to record a 
dot mark for every value more extreme than the 10th or the 90th percentile (Cleveland, 
1985), as illustrated in Figure 10.3 on the right (B). Other data analysts add the mean 
value to the box plot by placing an asterisk or other symbol at the spot on the box 
plot where the mean would be found. In Figure 10.3 such an asterisk appears below 
the median on both box plots (Mean = .28). Before leaving the discussion of box 
plots, we should mention that an early precursor of the box plot was a display created 
by Francis Galton, which he called a "dot diagram" and used to represent the theoretical 
distribution of the heights of a million hypothetical men in his work on "hereditary 
genius" (Galton, 1869, p. 28). Galton's dot diagram, which was based on the standard 
normal distribution (discussed later in this chapter), was in the shape of a vertical 

A B 

.50 

Maximum • 
.40 

"""90th P 

75th P 

.30 
Median 50th P 

* * Mean 

.20 

25th p 

.10 -10th P 

Minimum • 
. 00 

FIGURE 10.3 
Box plots. (P denotes percentile) 
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rectangle containing a million dots, each of which was calibrated along a metric scale 
of feet; it showed horizontal lines intersecting the rectangle at several points: the 
average male height and the points above and below which there were 100 per million 
men (Stigler, 1986, p. 269). 

COMPARING DISTRIBUTIONS 
BACK TO BACK 

In chapter 9 we also mentioned the conclusion that volunteers for psychological 
research were generally more likely to be females, whereas volunteers for studies 
involving stress were more likely to be males (Rosenthal & Rosnow, 1975). This 
conclusion was based on the reported results of 63 studies that compared females with 
males for rates of volunteering for research. For each of those studies we subtracted 
the percentage of males volunteering from the percentage of females volunteering. 
We did this separately for general psychological studies and for the studies involving 
stress. The results are shown in Figure lOA, in which positive values of the differ­
ences in percentages denote that females volunteered more than males did, and nega­
tive values denote that females volunteered less than males did. For obvious reasons 
this comparison is described as a back-to-back stem-and-Ieaf. It reveals immediately 
that females were much more likely to volunteer than males for general studies, 
whereas for studies involving stress, males were much more likely to volunteer. 

One can also speak of back-to-back box plots. The display depicted in Figure 10.5 
is based on the same data shown in Figure 10.4. We immediately perceive that both 
distributions in Figure 10.5 are fairly symmetrical and unremarkable, but the one for 

Stress studies (N = 12) General studies (N = 51) 

Leaves Stems Leaves 

+3 5 
+3 
+2 59 
+2 011112224 
+1 667888 
+1 01112223334 

9 +0 5556889 
+0 1112344 

0 0 
21 -0 24 
86 -0 
40 -1 13 

6 -1 
0 -2 03 

85 -2 6 
-3 
-3 
-4 

6 -4 

FIGURE 10.4 
Back-to-back stem-aDd-leaf plots. 
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Stress studies General studies 
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FIGURE 10.5 
Back-to-back box plots. 

general studies is clearly higher than the one for stress studies. At a glance, these 
back-to-back box plots inform us in still another way that females were much more 
likely to volunteer than males for general studies, and that the reverse occurred for 
studies involving stress. The point of these examples is to show that researchers have 
alternative ways of grouping data, each option providing a somewhat different 
perspective on the pattern of results. 

MEASURES OF CENTRAL TENDENCY 

As the graphics we have discussed would suggest, one characteristic of distributions 
that researchers almost always want to describe is the location of the bulk of the data, 
which is to say, the central or typical values. Several measures are available for this 
purpose, including the mode, the median, and the mean. 

The mode is the score that occurs with the greatest frequency. In the series of 
scores 3, 4, 4, 4, 5, 5, 6, 6, 7, the modal score is 4. The series 3, 4, 4, 4, 5, 5, 6, 7, 
7, 7, has two modes (at the values 4 and 7) and is called bimodal. In the case of a 
stem-and-Ieaf display, there might be one or more modal stems, that is, stems with 
the greatest frequency of values on their corresponding leaves. Thus, there is some 
flexibility in the use of the term mode in describing the bulk of data in a given type 
of distribution. 

The median (Mdn), already discussed above, is the midmost score in a series 
of N scores when N is an odd number. When N is an even number, the median is half 
the distance between the two midmost numbers. In the series 2, 3, 3, 4, 4, 5, 6, 7, 7, 
8,8, the Mdn = 5. In the series 2, 3, 3, 4, 4, 7, the Mdn = 3.5, halfway between the 
3 and 4 at the center of the set of scores. Ties create a problem. In the series 3, 4, 4, 
4, 5, 6, 7, there is one score below 4 and three above, four scores below 5 and two 
above, four scores below 4.5 and three above. What should we regard as the median? 
One strategy is to view the series as perfectly ranked, so that a series consisting of 



300 FUNDAMENTALS OF DATA ANALYSIS 

1, 2, 3, 3, 3 is viewed as consisting of a 1, a 2, a "small" 3, a "larger" 3, and a "still 
larger" 3--on the assumption that a more precise measurement procedure would have 
broken the ties. Thus, in the series 1, 2, 3, 3, 3, we would regard 3, the "smallest" 3, 
as the median. There are two scores below this particular 3, and two above it. When 
reporting this median, we would simply specify "the median value is 3." 

When the term mean is used, it typically refers to the arithmetic average (the 
arithmetic mean) of the values, written symbolically as 

M=LX 
N 

(10.1) 

and read as "the sum of the scores divided by the number of scores." The mean can 
be thought of as the "center of gravity" or balance point of a distribution of numbers. 
If we turned a stem-and-Ieaf chart on its side and balanced it, the balance point would 
be the arithmetic mean (Wilkinson & Engelman, 1999). Incidentally, there are other 
variations on the mean, including the harmonic and geometric mean. The harmonic 
mean is the reciprocal of the arithmetic mean of numbers that have been transformed 
to their reciprocals. The geometric mean is the antilog of the mean of log-transformed 
values. 

We will also discuss another way of dealing with outlying scores, but one 
traditional way to deal with nettlesome outliers is by equitable trimming, which results 
in a trimmed mean. In trimming, the same number of scores is dropped from both 
end~ of the distribution, and then the arithmetic average of the remaining scores is taken. 
Consider the series of scores -20, 2, 3, 6, 7, 9, 9, 10, 10, 10. The untrimmed mean is 
4.6, but after 10% of the scores are trimmed from each end, the trimmed mean is 7.0. 
Trimming 10 percent from each end eliminated the -20 and the "highest" 10. The 
median is unaffected by trimming, so the Mdn = 8 with or without trimming. The mode, 
which may be affected by trimming, is 10 before trimming, but is bimodal at 9 and 10 
after trimming. 

Medians and trimmed means are typically preferred over ordinary arithmetic means 
when the distribution of values is strongly asymmetrical. The reasoning is that trimming 
protects against misleading interpretations based on highly unusual scores. For example, 
suppose 9 of 10 families have zero income, and the remaining family has a $1O-million 
income. Reporting the mean income of $1 million would be highly unrepresentative 
compared with the trimmed mean, the median, or (in this case) the mode. Medians and 
trimmed means also provide protection against the intrusion of certain "wild" scores. We 
say more about this later, but consider the following scores: 4, 5, 5, 6, 6, 6, 7, 7, 8. The 
mean, median, mode, and trimmed mean are all 6. Suppose we had entered the highest 
number not as 8, but as 80, so the series is 4, 5, 5, 6, 6, 6, 7, 7, 80. The new (erroneous) 
mean is 14, but the median and the trimmed mean remain unaffected. 

MEASURES OF SPREAD 

In addition to knowing the central tendency (or roughly the typical value of a batch 
of data), researchers almost always also want to know the degree to which the scores 
deviate from the measures of central tendency (that is, how spread out the scores are). 
Several measures of spread, dispersion, or variability are available, including the range 
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and its variants (the crude range, the extended range, and the trimmed range), the 
average deviation, the variance, and the standard deviation. 

The crude range (CR) indicates the distance between the highest (H) and the 
lowest (L) score, that is, 

CR = H - L (10.2) 

In the series 2, 3, 4, 4, 6, 7, 9, the crude range is 9 - 2 = 7. 
A refinement is often introduced on the assumption that a score of 9 might, 

under conditions of more accurate measurement, fall somewhere between 8.5 and 9.5, 
and that a score of 2 might, under conditions of more accurate measurement, fall 
somewhere between 1.5 and 2.5. Therefore, we can view the extended range, or 
corrected range, as running from a high of 9.5 to a low of 1.5 (i.e., 9.5 - 1.5 = 8). 
The use of the extended, or corrected, range thus adds a half unit at the top of the 
distribution and a half unit at the bottom of the distribution, or a total of one full unit. 
Hence, the extended range (ER) is computed as 

ER = (H - L) + 1 unit (10.3) 

If the units are integers, then (H - L) + 1 serves as the definition of the extended 
range. If the units are tenths of integers, we have (H - L) + .1 as the extended range. 
For example, consider a series consisting of 8.4, 8.7, 8.8, 9.0, 9.1. The crude range, 
using Equation 10.2, is 9.1 - 8.4 = 0.7. The extended range, using modified Equation 
10.3, runs from 9.15 to 8.35 and thus is 9.15 - 8.35 = 0.8, or (H - L) + .1. 

For most practical purposes, reporting either the crude range or the extended 
range will suffice. When measurements are not very accurate, and when the crude 
range is small, we obtain a more accurate picture of the actual range when we use 
the extended range. We illustrate with an extreme example. Suppose we have used a 
3-point rating scale in our research and all the judges made ratings at the midpoint 
value, say, 2 on a scale of 1 to 3. The crude range would be zero (2 - 2), but the 
extended range would be 1 (2.5 - 1.5), because some of those judges might have 
rated nearly as high as 2.5 and some nearly as low as 1.5 had such ratings been 
possible. If an intuitive, but quantitative, index is desired to help researchers decide 
between the crude and extended range, we suggest dividing the former by the latter. 
This index (CRIER) is zero in the extreme example just given, and it is .90 if the 
crude range is 9 and the extended range is 10. With CRIER as high as .90, it seems 
reasonable to report either of the ranges. With CRIER much lower, it may be more 
informative to report the extended range. 

The range is very convenient to compute and quite informative in describing 
the spread of certain well-balanced distributions. It suffers badly, however, from 
being very much affected by even a single very deviant score. These kinds of wild 
scores are sometimes due '0 recording errors, such as recording a 10 as 100. 
Trimmed ranges are a type of range designed to make the index of spread less 
affected by a small number of extreme scores. The guiding rule is again to drop an 
equal number of cases from both ends of the distribution and then to report the 
crude range for the data that remain. To illustrate, suppose we decided to drop the 
extreme 10% of the data from each end; that would leave X90 as the highest 
remaining score (the score falling at the 90th percentile) and XIO as the lowest 
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remaining score (the score falling at the 10th percentile). The trimmed range of the 
middle 80% of the scores is x'90 - x'IO. 

However, before we can compute this range, we must first identify X,90 and x'1O. 
We find x'90 by computing the location of the x'90 score as (N + 1).90 and the location 
of the x'IO score as (N + 1).10. Suppose we have the following scores: 10, 11, 12, 13, 
14, 15, 16, 17, 18,28, where N = 10 scores. Thus, (N + 1).90 = 11(.90) = 9.9, and 
(N + 1).10 = 1.1. Keep in mind that 9.9 and 1.1 are not the actual scores, but the 
locations of those scores. The 9.9th score is nine-tenths of the distance between the 
9th and 10th scores in the ordered series, which in this case is nine-tenths of the way 
between 18 and 28, or 27. The LIth score is one-tenth of the distance between the 1st 
and 2nd scores in the ordered series, which for this example is one-tenth of the way 
between 10 and 11, or 10.1. The trimmed range is x'90 - x'1O = 27 - 10.1 = 16.9. 

A particular trimmed range that is frequently reported is the interquartile 
range, defined as x'75 - x'25, which we encountered earlier in our discussion of box 
plots and related summaries of stem-and-Ieaf displays. Recall that we locate the 
required endpoints by (N + 1).75 and (N + 1).25, respectively. Thus, for N = 5 
scores of 4, 6, 9, 11, 15, we find (N + 1).75 = 6(.75) = 4.5, and (N + 1).25 = 
6(.25) = 1.5. The locations we want, therefore, are the 4.5th score and the 1.5th 
score, or 13 and 5, respectively. The interquartile range is x'75 - x'25 = 13 - 5 = 8. 
In the normal distribution (discussed below) the interquartile range is roughly equal 
to one-and-a-third standard deviations. There is a particular point in the normal 
di~tribution that we encountered earlier, x'50, which is the median, and it is located 
by (N + 1).50. 

The average deviation (D) tells us the average distance from the mean of all 
the scores in the batch. To compute the average deviation, we subtract the arithmetic 
mean (M) from each score (X) in tum, add these differences (D) disregarding signs, 
and finally divide by the number of scores (N) in the batch, that is, 

D = 1:1 X - M 1 = 1:1 D 1 
N N (10.4) 

To illustrate, given a series of scores, 4, 5, 5, 6, 10, we find the mean (M) to 
be 30/5 = 6. The signed deviations (D) are -2, -1, -1, 0, +4 for the values 4, 5, 
5, 6, 10, respectively. The sum of the signed deviations (algebraic values) about the 
mean is always zero, but the sum of the unsigned deviations (absolute values) is not 
zero. The latter sum is 8 for the present scores (2 + 1 + 1 + 0 + 4), which, when 
divided by N, or 5 for this series, yields an average deviation of 8/5 = 1.6. Notice 
that D uses more information in a series of scores than does the range (which uses 
only the largest and smallest scores), but (D) is clearly less convenient to compute 
or estimate than the range. 

The variance of a set of scores is the mean of the squared deviations of the 
scores from their mean. Thus, the variance is also called the mean square (MS) 
because it is the mean of the squared deviations. Symbolically, the variance, or (j2 

(read as sigma-squared), is written as 

(j2 = L(X ~ M)2 
N 

(10.5) 
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The square root of the variance, f(if = (J, is the standard deviation (also known as 
the root mean square, or RMS), perhaps the most widely reported of all measures of 
dispersion, spread, or variability. Both the variance ((J2) and the standard deviation 
((J) are frequently computed for populations or circumscribed sets of scores. 

However, suppose we wanted to estimate the (J2 of the popUlation from which 
a particular sample has been randomly drawn; the most accurate estimate uses a 
slightly different statistic, SZ, which is defined as 

S2 = L(X - M)2 
N-l ' 

(10.6) 

and N is the sample size. The name for S2 is the unbiased estimator of the population 
value of ti2• Unbiased estimators are measures that, under repeated random sampling, 
give the most accurate estimates of the values in question (where accuracy is defined 
by estimates that are not too high or too low, in the long run). The reason S2 is called 
the unbiased estimator of (J2 is that if repeated random samples with replacement were 
drawn from a popUlation of values, the average value of S2 would be equal to (J2. In 
large data sets, the difference between S2 and (J2 is usually trivial. Although S is not 
an unbiased estimator of the population value of (J, that fact rarely imposes a hardship 
on researchers. 

We illustrate the computation of (J2, (J, S2, and S for the following set of scores: 
2, 4, 4, 5, 7, 8. The mean of these scores, using Equation 10.1, is 

M =2+4+4+5+7+8=5 
6 . 

Using Equation 10.5, we calculate 

(J2 = (2 - 5)2 + (4 - 5)2 + (4 - 5)2 + (5 - 5)2 + (7 - 5)2 + (8 - 5)2 

6 

and therefore 

Using Equation 10.6, we find 

2 _ (2 - 5)2 + (4 - 5)2 + (4 - 5)2 + (5 - 5)2 + (7 - 5)2 + (8 - 5)2 
S - (6 - 1) 

= 24 = 48 5 . 

and 

S = JS2 = 14.8 = 2.19. 

In most situations in which the objective is to generalize to some population, 
S2 (or S) is typically used. In most situations in which the objective is only to describe 
a particular set of scores (as in a classroom test), then (J2 (or (J) is typically used. 
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THE NORMAL DISTRIBUTION 

The normal distribution is that special bell-shaped distribution that can be 
completely described once the mean and the standard deviation are known. It has 
been called "the most important probability distribution in the whole field of 
probability and statistics" (Mosteller, Rourke, & Thomas, 1961, p. 230). A traditional 
reason for its importance is that "the distribution of many statistics tends to the 
normal form as the size of the sample is increased" (R. A. Fisher, 1973, p. 42), 
and thus, it is useful in a wide variety of statistical procedures. Descriptively, it is 
especially useful (as we illustrate shortly) because we can specify what proportion 
of the area is found in any region of the curve. In addition, many biological, 
psychological, and sociological attributes are actually distributed in a normal or 
nearly normal manner, or they can be transformed so they will be distributed 
normally or nearly normally. 

A normal distribution with mean set equal to zero and a equal to 1 is called 
a standard normal distribution (curve). Figure 10.6 shows such a curve as sloping 
downward on both sides. Other features of this curve are that it is perfectly 
symmetrical, its highest point is at the center, and the two tails stretch into infinity. 
It can also be seen that approximately two thirds of the area of the curve is between 
-la and + la, and that about 95 percent falls between -2a and +2a. Over 
99 t'ercent is between -3a and +3a, but the tails never do quite touch down. 

Departures from normality generally involve skewness and kurtosis. Skewness 
means that one of the tails is extended more than the other. For example, the lower 
tail (the tail on the left side of the curve) may be the extended one, in which case 
the distribution is described as negatively skewed. If the upper tail is the extended 
one, then the distribution is described as positively skewed. Highly skewed binomial 
distributions may take the form of Poisson distributions, named after S. D. Poisson, 

J 
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the French statistician who first reported them in 1837. A famous example, noted 
by Snedecor and Cochran (1980, p. 133), was the number of Prussian soldiers killed 
during a year by being kicked by horses. Poisson distributions are often used to 
model the occurrence of rare events in medical research and in particle physics. 
Kurtosis refers to the flatness or peakedness of the curve. A very peaked curve 
(with values clustering closely around the mean) is described as leptokurtic; a 
relatively flattened curve, as platykurtic. 

STANDARD SCORES 

Assuming a normal curve with mean set equal to 0 and a equal to 1, any obtained 
score can be converted into a score corresponding to a location on the abscissa. That 
is, the obtained score is transformed into a standard deviation score, more commonly 
referred to as a standard score, or Z score. This conversion is achieved by a simple 
calculation: 

X-M 
Z score = --a-' (10.7) 

in which X = obtained score, M = mean obtained score, and a = standard deviation 
of the original distribution. For example, assuming the Scholastic Assessment Test 
(SAT) is set at M = 500 and a = 100, an obtained SAT score of 625 is equivalent 
to a standard score of 1.25, that is, 

625 - 500 
Z score = 100 = 1.25. 

Referring to the table of standard normal deviates (Z values) in Appendix B (Table B.l), 
we find that only about 10.6 percent of those people tested should score as high as 625 
or higher, and about 89.4 percent should score lower. 

A positive Z score is above the mean; a negative Z score is below the mean. 
An important use of Z scores is to permit the comparison (and the averaging) of 
scores from distributions of widely differing means and standard deviations. For 
example, by computing Z scores for height and weight, we can say whether a 
person is taller than he or she is heavy, relative to others in the distribution of 
height and weight. Or suppose we have two measures of course grades, one 
based on a midterm multiple-choice exam of 100 points with M = 70 and a = 12, 
another on a final essay exam of 10 points with M = 6 and a = 1. It would make 
no sense to sum or average each person's scores on the two exams. However, 
converting the exam scores to Z scores would allow us to compare the sums and 
averages. 

As a further illustration, consider Part A of Table 10.1, which shows the 
original exam scores of three students earning a total of 76 points. From the total 
scores, the three students are indistinguishable, but we see that Student 1 scored 
at the mean both times, Student 2 was slightly above average on the first exam 
and far below average on the final exam, and Student 3 was slightly below average 
on the first exam and far above average on the final exam. Using Equation 10.7 to 
convert each original score to a standard score (Z score), we find the results shown 
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TABLE 10.1 

Original and standard scores of three students on two exams 

A. Original scores 

Student Exam I Exam II Total Average 

70 6 76 38 

2 73 3 76 38 

3 67 9 76 38 

B. Standard scores 

Student Exam Ia Exam lIb Total Average 

0.00 0.00 0.00 0.00 

2 0.25 -3.00 -2.75 -1.38 

3 -0.25 3.00 2.75 1.38 

'M = 70, a = 12 for the class as a whole. 
bM = 6, a = I for the class as a whole. 

in Part B of Table 10.1. Whereas the sums and averages of the raw scores were 
quite misleading as indices of the students' course performance, the sums and 
averages of the Z scores take into account all the differences in how the students 
scored on the two exams. 

And finally, Z scores can be weighted if we want them to be. In Table 10.1, we 
weighted the Z scores for midterm and final equally (Z scores come equally weighted 
because their <J values are all alike; i.e., unity). Had we wanted to weight the final 
exams double, we would simply mUltiply the Z scores on the final exam by 2 before 
adding. Had we done that, the three students would have sums of weighted Z scores 
equal to 0.00, -5.75, and +5.75, respectively. Note that the sums of Z scores are not 
themselves Z scores of the distribution of summed Z scores. If we want these sums 
Z-scored, we must compute their mean and standard deviation, then convert each sum 
of Z scores to a new Z by Equation 10.7. For the three students of Table 10.1, this 
process would produce Z scores of 0.00, -1.22, and + 1.22, respectively. As a check 
on our arithmetic, we can compute the mean and <J of this set of Z scores. As with 
any distribution of Z scores, these computations should yield a mean of 0 and a <J of 1. 
Happily, they do. 

DATA NOT DISTRIBUTED NORMALLY 

Before leaving the topic of Z scores, we should also note that when the Z scores 
are based on data that are approximately normally distributed, they tell us quite a 
lot about the proportion of scores likely to be found above and below the level of 
the Z score, as shown in Figure 10.6 and in Table B.1 (Appendix B). That is a 
bonus of the Z score. However, Z scores need not be based on a normal distribution 
to be used to put variables with widely differing metrics onto a common scale 
(as we did in the example in Table 10.1). 
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We can illustrate that Z scores of data that are not normally distributed­
though the scores are useful-do not tell us what we might expect based on the 
normal distribution in Figure 10.6 (and Table B.l). Consider the set of raw scores 
-3, -3, + 1, + 1. Their mean is -1 and <1 = 2, and they become Z scores of 
-1, -1, + 1, + 1. Whereas Z scores of + 1 from a normal distribution exceed 
about 84% of the distribution, these Z scores of + 1 exceed only 50% of the 
distribution. 

PRECISION OF ESTIMATING 
POPULATION MEANS 

As far back as R. A. Fisher's seminal texts, it has been accepted that properly sampled 
measures of central tendency are the best estimators of population means (R. A. Fisher, 
1990). Reporting the precision with which the population mean was estimated is highly 
recommended (e.g., Estes, 1997). Two commonly reported indices of the precision of 
estimates of population means (and other population statistics) are the standard error of 
the mean (denoted as SEM) and the confidence interval (CI) of the mean. Both indices 
are based on the variability around the sample mean and the sample size. For both the 
SEM and the CI around the mean, the smaller the standard deviation of the sample, and 
the larger the sample size, the more precisely the sample mean estimates the population 
mean. In his enlightening and rigorous comparison of the history and purpose of the SEM 

versus the CI of the mean, Estes (1997) noted that the SEM came to psychology via the 
physical sciences and engineering and is used to evaluate the replicability of the sample 
mean. The CI of the mean, on the other hand, came to psychology more recently via 
statistical theory and is used to evaluate how precisely the population mean has been 
estimated. The SEM measures the variability of sample means, whereas the CI of the 
mean measures the interval that includes the population mean with a specified degree of 
confidence. 

Since around the mid-1980s, confidence intervals have been regularly reported 
in medical journals, the 95% CI being the most often reported. By contrast, the report­
ing and interpretation of confidence intervals has not been embraced with the same 
commitment in the behavioral and social science journals-although it has been recom­
mended often enough by methodologists and statisticians (see, for example, recent 
discussions and reviews by, among others, Fidler, Thomason, Cumming, Finch, & 
Leeman, 2004; Loftus, 1996; Masson & Loftus, 2003). In chapter 9 we described the 
calculation of the 95% CI for population estimates of means (Equation 9.1). To review, 
three quantities were required: the sample size (N), the value of t significant at .05 two­
tailed (t.05) when df = sample size minus 1, and the standard deviation (S) of the N 
scores, calculated directly as 

S = /1:(X - M)2 
N-I ' 

that is, the square root of Equation 10.6. 

(10.8) 

As another example, suppose we have scores of 2, 4, 4, 5, 7, 8, with M = 5, 
S = 2.19, and t.05 = 2.57 (where t.05 = 2.57 is from Table B.2 in Appendix B). Using 
Equation 9.1 to obtain the lower limit of the 95% CI interval around the estimated 
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TABLE 10.2 

Values of two-tailed a and ta (df = 5) for 
five different confidence intervals 

CI (%) a ta (df = 5) 

99.9 .001 6.87 

99 .01 4.03 

95 .05 2.57 

90 .10 2.02 

80 .20 1.48 

population mean of 5, we calculate 

95% CI Lower Limit = M - (t.;}f = 5 - (2.5~.19 = 2.70, 

and for the upper limit, we find 

95% CI Upper Limit = M + (ty'kS = 5 + (2.5~.l9 = 7.30. 

In sum, there is a 95% probability that the population mean falls between the lower 
and upper limits of 2.70 and 7.30. 

To use other than the 95% CI, we need only replace the quantity t.05 with the 
quantity ta , where a is the two-tailed probability of Type I error. Table 10.2 shows 
the values of a and ta (for df = 5) for five different confidence intervals. Values of ta 
are larger for the more demanding confidence intervals (99% CI and 99.9% Cl), as we 
would expect in general, but these values of ta (4.03 and 6.87, respectively) are especially 
large because of the small sample size in this example (i.e., 6 subjects). Table 10.3 
provides the values of ta required to compute the 95% CI for each of 13 values of df 

TABLE 10.3 

Values of two-tailed ta required for different 
values of df for 95% CI 

df t" df t" 

12.71 30 2.04 

2 4.30 40 2.02 

3 3.18 60 2.00 

4 2.78 100 1.98 

5 2.57 1000 1.96 

10 2.23 00 1.96 

20 2.09 
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DEFINING OUTLIERS 

Earlier in this chapter we brought up the issue of outliers. Sometimes it is obvious 
that an error has occurred when a score seems far too high or far too low for the 
particular data set. If a score of 35 turns up in a set of test scores in which the highest 
possible score is 22, it must be an error. However, it is not always so clear whether 
an outlier is an error or just a far-out score. An error may be dealt with by equitable 
trimming, but observing far-out scores that are not errors is a signal to look further 
into the data. One question in dealing with outliers is how to define them. In a mono­
graph on the topic of outliers, Iglewicz and Hoaglin (1993) reviewed a number of 
definitions and found themselves adopting one offered by Barnett and Lewis (1978) 
in which outliers are viewed as scores that are "inconsistent with the remainder of 
that set of data" (p. 4). But a basic question still remained about how to define incon­
sistent with the remainder of the data. For example, screening for outliers has some­
times been done by Z-scoring the data. But Iglewicz and Hoaglin (1993) demonstrated 
that Z scores do not always work well in defining certain outliers, especially when 
data sets are small. Thus, they proposed an alternative procedure based on theory and 
on empirical (simulation) studies. 

Iglewicz and Hoaglin's new procedure yields modified Z scores, which we indicate 
here as Zmodified. The calculation of Zmodified for each score in the data set is achieved by 

Z " _ 0.6745 (X - Mdn) 
modified - MdnAD ' (10.9) 

where 0.6745 is a constant, X is any original score, Mdn is the median value of the 
original set of scores, and MdnAD is the median of the absolute (unsigned) deviations 
from Mdn. 

As an illustration, suppose we have the following five scores: 10, 12, 14, 16, 
26. The Mdn = 14, and the absolute (unsigned) differences between each score and 
the Mdn are 4, 2, 0, 2, 12. The median of these five absolute deviations about the 
median gives us MdnAD = 2, so the Zmodified value for the original score of 10, using 
Equation 10.9, is 

Z " - 0.6745 (1 ° - 14) - _ 1 35 modified - 2 -.. 

Similarly, for the original score of 12, we calculate 

Z " _0.6745(12-14) __ 067 
modified - 2 -., 

and for the original score of 26, we find 

Z ,,' - 0.6745(26 - 14) - 405 
modified - 2 - + . . 

Adopting Iglewicz and Hoaglin's well-documented suggestion that modified Z 
scores of 3.5 or greater serve as the definition of an outlier, we see that in our 
array of 5 scores (10, 12, 14, 16, 26), the last score, 26, qualifies as an outlier with 
Zmodified = 4.05, a quantity greater than the criterion value of 3.5. 
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COPING WITH OUTLIERS 

Once we have identified all the outliers, the question is what to do next. There are at 
least three options: dropping outliers, equitable trimming, and reeling in outliers by 
data transformations. 

Dropping Outliers 

We might be tempted just to drop the outlier, but this is very likely to result in a 
biased index of central tendency (e.g., the mean or median) for the remaining data. 
For example, if we have found scores of 10, 12, 14, 16, 26 and drop the outlier 
score of 26, the predrop median of 14 becomes a postdrop median of 13. For the 
same five scores, dropping the outlier (26) changes the mean more noticeably, from 
a predrop mean of 15.6 to a postdrop mean of 13. The reason that dropping the 
outlier alone is a biased procedure is that some score has to be the largest (or the 
smallest), and if we drop only that offending score, we always move the mean and 
median downward if the outlier is the highest score, and upward if the outlier is 
the lowest score. 

Equitable Trimming 
l' 

Previously, we described the procedure of equitable trimming in the context of our 
discussion of measures of central tendency. Equitable trimming is a less biased proce­
dure than dropping the outlier. In this procedure, if the outlier is the highest score, we 
set aside that score and the lowest score. If we had two outliers for the two highest 
scores, we would set aside those two scores and the two lowest scores. The basic 
principle is simply that we set aside the same number of scores from the lowest and 
from the highest scores. This method works especially well when the sample sizes are 
not very small. After all, as Occam's razor teaches, we do not want to trim too much 
(even if equitably done) if the trimming leaves us too little. 

Reeling in Outliers by Data Transformations 

An often very effective method of dealing with outliers, even when the samples 
are quite small, is to find a suitable transformation to pull in the outlying stragglers 
and make them part of the group. Three very common transformations for pulling 
in scores that are far out (listed here in order in the degree to which they pull in 
extreme scores from a little to a lot) are (a) square roots, (b) logarithms, and 
(c) negative reciprocals (Tukey, 1977). 

By way of an example, we return to Iglewicz and Hoaglin's (1993) modified 
Z procedure for defining the degree to which scores are outliers, with the proposed 
cutoff value of 3.5 or higher suggesting an outlier. We gave a simple example of a 
set of five scores (10, 12, 14, 16, 26), in which the score of 26 was an outlier by 
Iglewicz and Hoaglin's definition, earning a modified Z score of 4.05. Table 10.4 
shows the results of that analysis as well as three additional modified Z scores 
computed for (a) the square roots of the original data, (b) the logs of the original 
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TABLE 10.4 

Reeling in outliers by transformations of the original data (X, IX, log X, and -Yx) 

Transformations of X 

Original 
data Log 
(X) Ideviationl" IX Ideviationl" X Ideviationl" -Yx Ideviationl" 

10 (4) 3.16 (.58) 1.00 (.15) -.100 (.029) 

12 (2) 3.46 (.28) 1.08 (.07) -.083 (.012) 

14 (0) 3.74 (.00) 1.15 (.00) -.071 (.000) 

16 (2) 4.00 (.26) 1.20 (.05) -.062 (.009) 

26 (12) 5.10 (1.36) 1.41 (.26) -.038 (.033) 

Median 
(Mdn) 14 (2b) 3.74 (.28b) 1.15 (.07b) -.071 (.012b) 

Possible 
outlier (Op) 26 5.10 1.41 -.038 

MdnADb 2 .28 .07 .012 

Zmodifiedc 4.05 3.28 2.51 1.85 

'Absolute deviations of scores from their median. 
bMedian of 5 absolute deviatious about the median. 
cBased on Equation 10.9, and the idea that larger values of Zmoo'fied, especially greater than 3.5, are defined as more outlying. 

data, and (c) the negative reciprocals of the original data. The table shows very 
clearly how the modified Z score decreases in a linear way (r = .9993) as we go 
from the original data (X), to the square root (IX), to the logarithm (log X), and, 
finally, to the negative reciprocal (-Yx). 

If the data were real, and we wanted to eliminate outliers, we would be content 
to use the negative reciprocal as the appropriate transformation. These same transfor­
mations are also useful when our goal is less specifically dealing with outliers, but 
reshaping our distributions to be more nearly symmetrical and therefore more nearly 
normal. In addition, these transformations tend to increase the homogeneity of the 
variability found in two or more groups or conditions we want to compare or combine. 
The importance of the normality of distributions and the homogeneity of variability 
will be discussed in chapter 12 when we describe the assumptions underlying the use 
of t tests to compare two groups or conditions. 

EXPLORING THE DATA 
I 

We began by mentioning the importance of exploring the data, and we conclude 
with a brief example of a simple exploration of the data found in a scatter plot, a 
correlational diagram consisting of scattered dots, each denoting a score on the X 
axis and the Y axis. In other words, scatter plots show the relation between scores 
on the X axis and scores on the Y axis. Simple as scatter plots may be, we should 
not underestimate their value. They have been described as "the single most 
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powerful statistical tool for analyzing the relationship between two variables, X 
and Y" (Chambers et al., 1983, p .75). 

Figure 10.7 shows a scatter plot of the results of a pilot study in which 10 children 
with reading difficulties were given regular weekly tutoring in reading, each session 
consisting of 1 hour. To learn the degree to which increasing the number of these hourly 
tutorial sessions per week would increase reading improvement scores, two children were 
randomly assigned to one, two, three, four, or five hourly tutorials per week. The hypoth­
esis that more such tutorials would lead to greater reading improvement was supported 
by an impressive correlation between the number of hourly tutorial sessions and reading 
improvement (r = .51). Concentrating only on the correlation, and not also inspecting 
the scatter plot, would have led the researchers to miss an important nuance of the data. 
However, these were patient researchers, and they did explore the data further. 

In examining the scatter plot represented in Figure 10.7, the researchers were 
puzzled by increasing differences between the corresponding data points as the number 
of weekly sessions increased. The differences between the two scores (1, 1, 2, 5, 11) 
corresponded with the number of sessions per week (one, two, three, four, and five, 
respectively). The researchers' initial impression of increasing differences in scores 
as the sessions per week increased was supported by a large correlation (r = .89) 
between difference in scores and the number of sessions per week. Seeking an expla­
nation, the researchers scrutinized the differences between the children whose scores 
were furthest apart (five hourly sessions). For the two children who received five 
hourly tutorials per week, the girl had scored much higher (13) than the boy (2). When 
the researchers also examined the reading improvement scores for the two children 
who received four hourly tutorials per week, there was again a much higher score 
earned by the girl (10) than by the boy (5). The researchers suspected that the benefits 
of tutoring might be different for girls and boys. 

As a way of displaying the different benefits of tutoring for girls and boys, the 
researchers separated the two sets of results, using a small diamond indicator for each 
girl and a small square for each boy in the sample. Figure 10.8 shows the five small 

14 

~ • 
12 

=> ... 
'" 10 ... • 5i e 8 • ... e 

6 ~ • • . 5 • • 
~ 4 
:a • = 2 ... • • ~ 

0 
0 2 3 4 5 6 

Number of hours of tutoring per week 

FIGURE 10.7 
Reading improvement scores for five levels of tutoring (hours per week). 
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FIGURE 10.8 
Reading improvement scores for male and female students for five levels of tutoring. 

diamonds as arrayed in a nearly straight line, reflecting a near-perfect positive correlation 
(r = .99) between reading improvement and number of hourly sessions of tutoring per 
week for the girls. The figure shows that the five small squares representing the boys 
reflected a nonlinear relation between reading improvement and number of hourly 
sessions of tutoring (Pearson r for linear association = - .20). Specifically, the pattern 
for boys can be described as n-shaped, the greatest benefit in reading scores being 
associated with the midmost number of sessions and decreasing as the number of 
sessions became too few (one) or too many (five). Boys' reading gains were correlated 
very highly (r = .95) with the pattern defining a n-shaped curve (using a particular 
statistical procedure described later in this book, which in this case employed contrast 
weights of -2, + 1, +2, + 1, -2 to represent the n-shaped pattern). On the basis of 
having explored the data in their pilot study, the researchers learned the wisdom of 
examining the results of their full-scale study separately for girls and boys. 

In this example of exploring the data, the researchers found Figure 10.8 to be a 
valuable picture of their data. As Tukey (1977) put it, "The greatest value of a picture 
is when it/orees us to notice what we never expected to see" (p. vi). We conclude this 
chapter with two of Tukey's (1977) further insights. The first is that "many problems 
do not have a single 'right answer' ... it will often be quite reasonable for different 
analysts to reach somewhat different analyses" (p. viii). The second is that "to unlock 
the analysis of a body of data, to find the good way or ways to approach it, may require 
a key, whose finding is a creative act" (p. viii). In short, thoroughness in describing, 
displaying, and exploring data requires practice, thoughtfulness, open-mindedness, and 
considerable patience. 



CHAPTER 

11 
CORRELATION 

PEARSON r 

One of file major purposes of all the sciences is to describe relationships among 
variables, and there is no more widely used index of relationship than the Pearson r, 
short for Karl Pearson's product-moment correlation coefficient. The Pearson r 
can take on values between -1.00 and + 1.00. A value of r = .00 means that there 
is no linear relationship between the two variables we are examining. (A linear rela­
tionship is one in which a fixed change in one variable is always associated with a 
fixed change in the other variable.) A value of rxy = 1.00 means that there is a perfect 
positive linear relationship between variables X and Y, so that as scores on X increase, 
there are perfectly predictable increases in the scores on Y. A value of rxy = -1.00 
tells us that there is a perfect negative linear relationship, so that as scores on X 
increase, there are perfectly predictable decreases in the scores on Y. Correlations (rs) 
of + 1.00, .00, and -1.00 are illustrated in Table 11.1 for three sets of four subjects, 
each of whom has been measured on two tests of personality, X and Y. (Also see 
Figure 11.1.). 

Illustration A in Table 11.1 shows that X and Y may be perfectly correlated in 
the sense of Pearson's r even though the scores on X and Y never agree. Thus, were 
we computing the degree of correlation between two judges of classroom behavior 
(e.g., their ratings of teacher warmth), we could achieve a high degree of correlation 
even though one judge rates systematically higher than the other. Inspection of 
Illustration A shows also that the values of Y were chosen to be exactly twice the 
values of X. Had the values of Y been identical with the corresponding values of X, 
the Pearson r would also have been 1.00. Surprisingly to many students, doubling the 
values of one of the variables has no effect on the Pearson r. Thus, even when Y is 
chosen to be equal to 'lX, the Pearson r is still 1. In general, it is the case that multi­
plying the values of either or both variables by any (nonzero) constant number, or 
adding any constant to either or both variables, does not affect the value of the Pearson r. 

314 
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TABLE 11.1 

Illustration of three correlations 

A B C 

r = 1.00 r =.00 r = -1.00 

X Y X Y X Y 

Subject 1 8 16 8 6 8 -4 

Subject 2 6 12 6 4 6 -3 

Subject 3 4 8 4 4 4 -2 

Subject 4 2 4 2 6 2 -1 

L 20 40 20 20 20 -10 

Note: To allow the computation of any correlation coefficient, each sampling unit (e.g., subject) must 
have two scores, one on variable X and one on variable Y. 

Such behavior is what we might expect if each set of scores (X and Y) were standard­
scored (Z-scored) before we computed r. Indeed, that is exactly what is done, because 
r can be defined as 

(11.1) 

where the correlation rxy between X and Y is equal to the sum of the products of the Z 
scores of X and Y, divided by the number (N) of pairs of X and Y scores. Now we can 
see why the r is called a product-moment correlation; the Zs are distances from the mean 
(also called moments) that are multiplied by each other to form products. 

20 

10 

Illustration B, r = .00 

o -----I ------._---
Illustration C, r = -1.00 

_10L---------L-------~L-------~--------~ 
2 468 

Test X 

FIGURE 11.1 
Plots of illustrations A, B, and C in Table 1l.l. 
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TABLE 11.2 

Calculating r on the basis of Equation 11.1 

x Zx y Zy Zx Zy 

Subject 1 8 1.34 16 1.34 1.80 

Subject 2 6 0.45 12 0.45 0.20 

Subject 3 4 -0.45 8 -0.45 0.20 

Subject 4 2 -1.34 4 -1.34 1.80 

L 20 0 40 0 4.00 

M 5 0 10 0 1.00' 

(J 2.24 1.00 4.47 1.00 -

'This is the value of r. 

To use Equation 11.1 for computation, we begin by transforming the X and Y scores 
to Z scores. Returning to Illustration A in Table 11.1, we find (X - Mx)/ax = Zx and 
(Y - My)/ay = Zy for each subject and then compute the products ZxZy as shown in 
Table 11.2. It should be noted that the Z scores for Y (i.e., Zy) are identical with those 
for ~ although Y = 2X. The reason is that multiplying a set of scores by a constant also 
multiplies the standard deviation of that set of scores by the same constant, so that con­
stancy of scale is preserved when Z scores are used. The last column in Table 11.2 shows 
the products of the Z scores and their mean; that is, 

LZxZy _ i-I 00 
N - 4 - . , 

which, as indicated in Equation 11.1, equals r xy. Examining that equation for r 
shows that larger positive rs are found when Z scores far above the mean of X are 
found alongside Z scores far above the mean of Y. Larger positive rs are also found 
when Z scores far below the mean of X are found alongside Z scores far below the 
mean of Y (a large negative Z score multiplied by a large negative Z score yields an 
even larger positive Z score). 

PROPORTION OF VARIANCE 
INTERPRETATION OF CORRELATION 

Although it is very useful to think of r simply as an index number, so that a larger 
positive r represents a higher degree of linear relationship than does a smaller r, a 
number of other interpretations are possible. Perhaps the most common interpretation 
involves the squared correlation (r2) rather than r. The squared r is interpreted as the 
proportion of the variance shared by variables X and Y. That is, r2 is the proportion 
of the variance among the Y scores that is statistically attributable to variation in the 
X scores, as well as the proportion of the variance among the X scores that is 
attributable to variation in the Y scores. This relationship is sometimes expressed as 
r2 + k2 = 1.00, where r2 is called the coefficient of determination (the proportion 
of variance "accounted for"), and k2 is called the coefficient of nondetermination 
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(the proportion of variance "not accounted for"). Although useful in some statistical 
applications (e.g., multiple regression and analysis of variance), the r2 interpretation 
of correlation is only a poor reflection of the practical value of any given effect size 
correlation coefficient (Rosenthal & Rubin, 1982a). 

As an illustration of the r2 interpretation of r, consider two predictor variables, 
Xl and X2, that have been used to predict or explain the dependent variable Y, as 
shown in Part A of Table 11.3. The correlation between the two predictor variables 
is .00, and the correlation (r) between either Xl or X2 and Y is .707. Squaring the 
r of .707 yields .500, the proportion of variance among the Y scores predictable from 
either the Xl or the X2 scores. That this .500 proportion of variance should be found 
seems appropriate, because we actually created variable Y by summing variables 
Xl and X2, and we also saw to it that they would be weighted equally by ensuring 

TABLE 11.3 

Examples of two predictors of a dependent variable 

A. Example with equal variance 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

~ 

M 

Predictor variables 

3 

3 

8 

2 

Xz 

3 

3 

8 

2 

B. Example with unequal variance 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

Predictor variables 

3 

3 

8 

2 

Xz 

4 

o 
4 

I 0 

8 

2 

2 

4 

Dependent variable 

Y 

6 

4 

4 

2 

16 

4 

1.41 

2 

Dependent variable 

Y(XI + Xz) 

7 

3 

5 

16 

4 

2.24 

5 
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that they had equal variances or standard deviations. If they did not have equal 
variances, the predictor with larger variance would correlate more highly with their 
sum, as shown in Part B of Table 11.3, in which we have left the values of Xl intact 
but changed the values of X2 for the sake of illustration. 

Notice that Table 11.3 shows the standard deviation (0) of X2 increasing from 1 
(in Part A) to 2 (in Part B). This change does not affect the correlation between Xl and X2 
(still zero), but the correlation between X2 and Y has increased to .894 (r- = .80), and 
the correlation between Xl and Y has decreased to .447 (r- = .20). This example shows 
that the ratio of the two values of r- (.80/.20) is proportional to the ratio of the variances 
(o~ of the predictor variables (4/1). For either example given in this table (equal or 
unequal r- values), it is useful to note that the proportions of variance in the dependent 
variable (Y) predictable from Xl and X2 are additive and, when added, yield what is 
called the multiple R2. In this case the multiple R2 = 1.00, because .50 + .50 = 1.00, 
and .80 + .20 = 1.00. Whenever we are given predictor variables that are uncorrelated 
(r = .00) with each other, the multiple R2 (which can take any value between 
.00 and 1.00) between the entire battery of predictor variables and the dependent 
variable is simply the sum of the individual r- values. It is not common in practice, 
however, for predictor variables to show a zero correlation with each other. 

We have more to say about multiple correlation and its close relative, multiple 
regression, in chapter 20 (on multivariate procedures). We refer to regression in those 
contexts in which we want to relate changes in the level of one or more predictor 
variables to changes in the level of the outcome variable, and we refer to correlation 
as a more global index of the closeness of relationship. 

BINOMIAL EFFECT-SIZE DISPLAY 

Earlier in this book we mentioned our preference for r as an effect size indicator in 
a wide variety of situations, and we turn to this idea again shortly (and also again in 
the next chapter). A particular reason we prefer r is that it can be easily interpreted 
by a method of displaying the magnitude and, by implication, the practical significance 
of an effect size r, a method called the binomial effect-size display, or BESD 
(Rosenthal & Rubin, 1979b, 1982a; Rosenthal, Rosnow, & Rubin, 2000). When 
variables for which the observations or scores can take one of two possible values, 
they are called binomial, binary, or dichotomous. In the case of the binomial effect 
size display, binomial refers to the fact that the BESD casts the effect size r into 
dichotomous outcomes, such as success versus failure, improved versus not improved, 
or survived versus died. Rosenthal and Rubin (1982a) found that neither experienced 
psychological researchers nor experienced statisticians had a good intuitive sense of 
the practical meaning of such indices of effect size as r2 or such near relatives of r2 

as omega-squared (Hays, 1994) and epsilon-squared (Welkowitz, Ewen, & Cohen, 
2000). The BESD was introduced because (a) its interpretation is quite transparent to 
researchers, students, and policymakers, (b) it is applicable whenever r is used, and 
(c) it is very conveniently computed. 

If we think of "success rate" as a general expression that includes, for example, 
survival rate, cure rate, improvement rate, or selection rate, the purpose of the BESD 
can be understood as addressing the question "What is the effect on the success rate 
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of the institution of a specified treatment or intervention?" The BESD specifically 
preserves the magnitude of the effect size r and demonstrates its practical implications 
in the framework of a 2 X 2 display with uniform marginal values of 100 each. The 
BESD does not, however, require that the raw data be limited to 2 X 2 tables with 
uniform margins, and it should not be confused with the empirical or raw data on 
which the effect size r was originally computed. Although most actual values in the 
margins of empirical 2 X 2 tables are not equal, the BESD helps us to conceptualize 
the practical implications of an effect size r in a standardized context. Some examples 
will illustrate what we mean. 

We begin with a seminal meta-analysis reported by Mary Lee Smith and Gene 
Glass in 1977 (it was Glass who coined the term meta-analysis). That analysis has 
been extended over the years (e.g., Smith, Glass, & Miller, 1980), but for this 
illustration, we focus only on the original results. Smith and Glass systematically 
integrated the results of nearly 400 controlled evaluations of psychotherapy and 
counseling. On average, they found, the typical psychotherapy client was better off 
than 75% of untreated "control" individuals, an outcome that would certainly appear 
to be a pretty convincing argument for the efficacy of psychotherapy. Smith and 
Glass reported their findings in terms of Glass's Ll index of effect size, an effect 
size that was equivalent to r = .32. However, instead of agreeing with Smith and 
Glass's conclusion, some critics argued that the results of this meta-analysis sounded 
the death knell for psychotherapy because of the "modest" size of the effect. 
Viewing the r = .32 in terms of the coefficient of determination (r2), they said the 
observed effect accounted for "only 10% of the variance." To help resolve this 
inconsistency in interpretation, it is instructive to examine the BESD corresponding 
to an r of .32. 

Table 11.4 shows such a BESD, but with the dependent variable defined differently 
than in Smith and Glass's meta-analysis. We return to their result in a moment, but the 
purpose of the strikingly dramatic dependent variable in Table 11.4 (Alive vs. Dead) is 
that it reflects in a most profound way that an r of .32, accounting for "only" 10% of 
the variance, is hardly something to be dismissed as merely a "modest" effect. First, 
however, note that all the row and column totals of the display are set at 100. What this 
table indicates is that the effect size r of .32 amounts to increasing the survival rate from 
34% in the nonintervention condition to 66% in the intervention condition, given that 
half the population received the intervention and half did not, and half the population 

TABLE 11.4 

BESD for effect size r = .32 

Treatment outcome 

Alive Dead Total 

Intervention 66 34 100 

N () intervention 34 66 100 

Total 100 100 200 



320 FUNDAMENTALS OF DATA ANALYSIS 

survived and half did not. To reiterate, these values are not raw percentages in the actual 
data but "standardized" percentages based on setting all marginal values to 100. Clearly, 
an r of .32 can hardly be viewed as modest or as sounding the death knell for psycho­
therapy, because that effect size r would be equivalent to increasing the success rate from 
34% in the controls to 66% in the psychotherapy intervention conditions. 

A great convenience of the BESD is how easily it can be converted to r (or ,-2) 
and how easy it is to go from the r (or ,-2) to the display. Table 11.5 shows systematically 
the increase in success rates associated with various values of ,-2 and r. Thus, an r of 
.30, accounting for 9% of the variance, is associated with an increase in success rate 
from .35 to .65 (or 35% to 65%). The last column of Table 11.5 underscores the idea 
that the difference in success rate proportions is identical to r. Thus, the experimental 
group success rate proportion is computed as .50 + r12, which we then multiply by 100 
to display as a percentage, and the control group success rate percentage is .50 - rl2 
multiplied by 100. Of course, if the empirical results indicated that the control group 
performed better than the intervention or experimental group, we would simply reverse 
the above calculations so that relative relationships are preserved in the BESD. Table 11.5 

TABLE 11.5 

Incre~ses in success rate corresponding to values of r2 and r 

Success rate increased Difference 
in success 

r2 r From To rates (r) 

.00 .02 .49 .51 .02 

.00 .04 .48 .52 .04 

.00 .06 .47 .53 .06 

.01 .08 .46 .54 .08 

.01 .10 .45 .55 .10 

.01 .12 .44 .56 .12 

.03 .16 .42 .58 .16 

.04 .20 .40 .60 .20 

.06 .24 .38 .62 .24 

.09 .30 .35 .65 .30 

.16 .40 .30 .70 .40 

.25 .50 .25 .75 .50 

.36 .60 .20 .80 .60 

.49 .70 .15 .85 .70 

.64 .80 .10 .90 .80 

.81 .90 .05 .95 .90 

1.00 1.00 .00 1.00 1.00 
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also underscores how squaring the r can sometimes make small, but often quite meaning­
ful, effects seem to disappear. We illustrate that idea with some further examples in the 
next section. 

We want to emphasize that the BESD is not limited to dichotomous empirical 
data. In fact, it can be shown that, for many distributions, there is quite good 
agreement between (a) the effect size correlation r between the treatment variable 
and the continuously distributed outcome variable and (b) the correlation (phi) 
between the treatment variable and the dichotomous outcome variable (Rosenthal & 
Rubin, 1982a). One further benefit of the routine use of a display procedure such 
as the 2 X 2 table of the BESD to represent the practical validity of the research 
results is that it provides useful assessments of how well the research is progress­
ing in a given area. The appropriate use of the BESD requires that for any signifi­
cance test computed, the effect size r estimate associated with the test also be 
reported. Interpretation of that effect size r is in terms of the improvement in suc­
cess rates, but we can also represent the confidence level of r by providing BESDs 
for the upper and lower limits. We show how confidence intervals are obtained for 
rs in the next section, but we also want to emphasize that the applicability of the 
BESD is not limited simply to experimental designs. Whatever the nature of the 
study, the essential point here is that the effect size, and in turn the BESD, must 
always be interpreted within the context of the variables investigated and the design 
of the study. 

For example, it is possible to use the BESD to represent effects in correlational 
designs, where we think of the "effects" not in terms of the rhetoric of causal 
inference, but in relational terms. To illustrate, as part of a massive relational study 
conducted by the Centers for Disease Control, a total of 4,462 Army veterans of 
the Vietnamese War era (1965-1971) were examined. Of this group, some 2,490 
had served in Vietnam, and 1,972 had served elsewhere. At the time of the study, 
approximately 13.7% of Vietnam War veterans were identified as having suffered 
from alcohol abuse or dependence, compared with approximately 9.2% of non­
Vietnam veterans (Centers for Disease Control, 1988; Roberts, 1988). Thus, 
Vietnam War veterans were about half again more likely to suffer from alcohol 
abuse or dependence than were non-Vietnam veterans (13.7/9.2 = 1.49). Part A 
of Table 11.6 shows the empirical findings. How do these relational results translate 
into a correlation coefficient and a BESD? 

The correlation between the variable of "being or not being a Vietnam 
veteran" and the variable of "having or not having an alcohol problem" can be 
computed in different ways, to be described in the section on the phi coefficient 
presented later in this chapter. For now we simply note that the correlation r 
(or equivalently, phi) can be obtained from 

,; 

difference between cross products 
r = -.;t=p=ro=dTu=c""t =of;;=;al""'l =;;'fo=ur=m=a=r=g~in=a=;=l=:=to=;t=a;=ls 

_ (341 X 1,791) - (181 X 2,149) 
- ';(2,490)(1,972)(522)(3,940) 

221,762 .0698 
= 3,177,872.7 = 
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TABLE 11.6 
Alcoholism problem in Vietnam veterans study 

A. Empirical findings 

Veteran status Alcohol problem No alcohol problem 

Vietnam 

Non-Vietnam 

Total 

341 

181 

522 

B. BESD corresponding to empirical findings 

Vietnam 

Non-Vietnam 

Total 

Problem 

53.5 

46.5 

100 

2,149 

1,791 

3,940 

No problem 

46.5 

53.5 

100 

Total 

2,490 

1,972 

4,462 

Total 

100 

100 

200 

Thus, the Pearson r (or phi) associated with the difference between 13.7% and 9.2% 
is a\:mut .07, and this r is preserved in the BESD in Part B of Table 11.6. The upper 
left cell was calculated as 50 + 100r/2 = 50 + 7/2 = 53.5, and because rows and 
columns must add up to 100 in a BESD, the other three cell values were then simply 
obtained by subtraction. Our reason for mentioning this study is to illustrate another 
instance in which the BESD is applicable, but in which the term effect is used loosely 
because the study was relational rather than experimental. We cannot conclude that it 
was serving in Vietnam that caused the additional problem of alcohol use. All we can 
conclude is that having served in Vietnam was associated in this sample with a greater 
likelihood of developing problems of alcohol use. 

CONFIDENCE INTERVALS FOR 
EFFECT·SIZE CORRELATIONS 

In chapter 9 we discussed procedures for evaluating the precIsIon with which 
population values of means and proportions have been estimated (Equations 9.1 
and 9.2). We described how to compute the upper and lower limits within which 
there is, for example, a 95% probability of finding the mean (or a proportion) of the 
population from which the sample was obtained. When reporting r, it is generally 
informative to accompany this information with a confidence interval around the r. 
Although confidence intervals for rs (and other effect size measurements) are not yet 
routinely reported in psychological research, when they are reported, the confidence 
interval used is usually the 95% confidence interval. The interpretation of such an 
interval is that there is a 95% probability that the population value of r will fall 
between the upper and lower limits that define the confidence interval placed around 
the r obtained from the sample. 
~ When the population value of r is not zero (and usually it is not), the distribution 

of sampled rs becomes skewed, and the more so the further the population value of 



CORRELATION 323 

r falls from zero. R. A. Fisher devised a transformation of r (known as Fisher's Zr) 

that is distributed more normally than r and defined as 

1 (1 + r) 
Zr = zloge 1 - r . (11.2) 

We use the quantity Zr to get the upper and lower limits of a 95% confidence interval 
around an obtained effect size r by first finding the Zr transformation of the obtained r. 

Equation 11.2 can be used to obtain Zr, but Table B.7 of Appendix B is a more convenient 
way of finding the Fisher Zr corresponding to any r. For example, suppose we obtained 
an effect size r of .77 in a study of 12 SUbjects. Table B.7 shows that an r of .77 
transforms to a Fisher Zr of 1.02 (at the intersection of the row labeled .7 and the column 
headed .07). The 95% confidence interval (CI) is then found from 

95% CI = Zr ± 1.96/IN - 3 (11.3) 

For the obtained r of .77 and N = 12, using Equation 11.3 yields 

95% CI = 1.02 ± 1.96/ 112 - 3 = 1.02 ± .65, 

so the confidence interval ranges from a lower limit of 1.02 - .65 = .37 to an upper 
limit of 1.02 + .65 = 1.67. 

These confidence limits are in units of Zr, but we prefer to express the CI in 
units of r for several reasons. First, most researchers have a good deal more experience 
in interpreting r than in interpreting Fisher's Zr. Second, squaring r gives the proportion 
of variance accounted for, and it can sometimes be useful information (e.g., in a 
context of allocating variance to each of a set of predictor variables). Third, the 
statistical magnitude, and in turn its implications for practical significance, of the 
obtained r can be readily shown in a BESD. And fourth, we can also use the BESD 
for the lower and upper confidence limits. 

For the obtained r of .77, we had found the 95% CI to extend from .37 to 1.67 
in units of Zr. To transform these lower and upper limits back to units of r, we use 
the following equation: 

(11.4) 

or we simply use Table B.8 of Appendix B to find the r transformation of Zr. Using 
Table B.8, we see that the Zr of .37 is equivalent to an r of .354 (at the intersection 
of the row labeled .3 and column headed .07). For the upper confidence limit of 
1.67 in units of Zr, the equivalent in units of r is .932 in Table B.8 (at the intersection 
of the row labeled 1.6 and the column headed .07). To summarize, the obtained r 
of .77 is surrounded by a 95% confidence interval extending from a low r of .35 
to a high r of .93. We should note that, although the lower and upper confidence 
limits in units of Zr are equally far from the obtained Zr (i.e., .65 units of Zr), the 
lower and upper confidence limits in units of r are not equally spaced around the 
obtained r (.77 - .35 = .42 versus .93 - .77 = .16). 

The example of computing a confidence interval around an obtained effect size 
r was for a 95% confidence interval, as shown in Equation 11.3. The quantity 1.96 in 
that equation is the value that yields a 95% CI. That is, it is the standard normal deviate, 
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TABLE 11.7 

BESDs for obtained result (r = .77) and for lower 
(r = .35) and upper limit (r = .93) of 95% 
confidence interval straddling the obtained result 

A. Obtained r = .77 

Improved Not improved l: 

Treatment 88.5 11.5 100 

Control 11.5 88.5 100 

L 100 100 

B. Lower limit r = .35 

Improved Not improved l: 

Treatment 67.5 32.5 100 

Control 32.5 67.5 100 

L 100 100 
~, 

C. Upper limit r = .93 

Improved Not improved l: 

Treatment 96.5 3.5 100 

Control 3.5 96.5 100 

L 100 100 

Z, associated with a two-tailed p of .05 or a one-tailed p of .025. Should we want a 
different CI, such as 80%, 90%, 99%, or 99.9%, we simply replace the Z of 1.96 with 
a Z of 1.28, 1.64, 2.58, or 3.29, respectively. The BESD for the obtained r of .77 is 
shown in Part A of Table 11.7, where we have also labeled the columns as "Improved" 
and "Not improved" to simulate the BESD for the hypothetical effect of a new medical 
intervention on level of health. When we have computed a confidence interval for the 
obtained effect size r, it is often useful to show the BESD for both the lower and upper 
confidence limits. These BESDs give the reader a more concrete picture of a range of 
likely outcomes for population values of r that may not have been very precisely esti­
mated because of small sample size. Thus, Part B of Table 11.7 shows the BESD for 
the lower limit (r = .35), and Part C shows the BESD for the upper limit (r = .93). 

SMALL CORRELATIONS, BUT 
IMPORTANT EFFECTS 

These hypothetical effects are actually substantially larger than what one usually finds 
in calculating rs for observed effects in randomized clinical trials of pharmaceuticals. 
Table 11.8 gives a flavor of a wide variety of effects that we calculated on the basis of 
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TABLE 11.8 

Effect sizes of various independent variables 

Independent variable Dependent variable Irl r2 

Breast implants' Connective tissue disease .00 .00 

Salk vaccineb Paralytic poliomyelitis .01 .00 

Tamoxifenc Major vein blood clots .01 .00 

Tamoxifenc Lung blood clots .02 .00 

Pravastatind Death .02 .00 

Tamoxifenc Uterine cancer .02 .00 

Aspirin" Heart attacks .03 .00 

Beta carotenef Death .03 .00 

Streptokinaseg Death .03 .00 

Estrogen + progestinh Dementia .04 .00 

Plavixi Serious cardiac events .04 .00 

Propranololi Death .04 .00 

Tamoxifenc Breast cancer .04 .00 

Teacher's aidek Achievement scores .04 .00 

Raloxifene1 Breast cancer .05 .00 

Male statusm Self-esteem .06 .00 

Magnesiumn Convulsions .07 .00 

Vietnam veteran statusO Alcohol problems .07 .00 

AZT + ddCP Death .07 .01 

Male statusq Assertiveness .08 .01 

Male statusr Cardiac catheterization referral .08 .01 

White status' Cardiac catheterization referral .08 .01 

Garlic' Death .09 .01 

Vitamin EU Nonfatal heart attacks .09 .01 

Indinavirv Serious AIDS events .09 .01 

AZT + ddlP Death .10 .01 

IntelligenceW Popularity .10 .01 

Classroom sizek Achievement scores .11 .01 

Social support' Health outcomes .11 .01 

DepressionY Death .12 .01 

Testosteronez Adult delinquency .12 .01 

Workshops" Sexually transmitted disease .12 .01 

Compulsory hospitalization 
vs. treatment choicebb Alcohol problems .13 .02 

Physical attractivenesscc Intelligence .14 .02 

Cyclosporinedd Death .15 .02 

I.ow-dose warfarinee Blood clots .15 .02 

(continued . . .) 
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TABLE 11.8 (continued) 

Independent variable Dependent variable Irl r2 

Ganzfeld perceptionff Accuracy .16 .03 

Fingerprint asymmetry" Sexual orientation .18 .03 

Cisplatin + Vinblastinehh Death .18 .03 

Education levelii Volunteering for research .20 .04 

AZT for neonatesll HIV infection .21 .04 

Female statuskk Decoding nonverbal behavior .21 .04 

Ritonavir" AIDS: disease or death .21 .04 

Cholesterol-lowering regimenmm Coronary status .22 .05 

AZT"" Death .23 .05 

Female statusOO Smiling .23 .05 

AlcoholPP Aggression .24 .06 

Group cohesionqq Productivity .25 .06 

Intelligencerr Leadership role .25 .06 

Treatment choice versus AA" Alcohol problems .27 .07 

Myelintt Severity of multiple sclerosis .31 .09 

Interpersonal expectancy effects"" Human and animal behavior .33 .II 

Acupunct~eVV Depression .38 .14 

PsychotherapyWW Improvement .39 .15 

Compulsory hospitalization vs. AAxx Alcohol problems .40 .16 

Viralload" Death .40 .16 

Social supportYY Weight loss .41 .17 

Vaccinationzz SIV health .47 .22 

Anxietya .. Rumormonger .48 .23 

AZTbbb SIV health .48 .23 

Thalidomideccc Severe mouth ulcer .55 .30 

Antibody cA2ddd Rheumatoid arthritis symptoms .58 .34 

Early linguistic ability·ee Alzheimer's disease .65 .42 

Progesteronefff SIV infection .65 .42 

PMPA"g SIV infection .80 .63 

a Kong, 1996. • Cromie, 1996. b Meier, 1978; see also Rosnow & Rosenthal, 2003. 'Altman, 1998. d Knox, 1995. 
, Steering Committee of the Physicians Health Stndy Research Gronp, 1988. f Alpha-Tocopherol, Beta Carotene 
Cancer Prevention Stndy Group, 1994. 'GISSI, 1986. h Shumaker et al., 2003. I Haney, 2001. j Kolata, 1981. 
k Mosteller, 1995. I Altman, 1999. m Feingold, 1994. "Foreman, 1995. 0 Centers for Disease Control Vietnam 
Experience Stndy, 1988. P Holden, 1995b. q Feingold, 1994. 'Schulman et aI., 1999. 'Schulman et aI., 1999. 
t Goldfinger, 1991. "Stephens, N. G. et aI., 1996. v Knox, 1997. w Mann, 1959. 'Smith, Femengel et al., 1994. 
Y Frasure-Smith et al., 1999. 'Dabbs & Morris, 1990. aa Shain et aI., 1999. bb Cromie, 1991. oc Jackson, Hunter, & 
Hodge, 1995. dd Canadian Mu1ticentre Transplant Stndy Group, 1983. eo Grady, 2003. If Chandler, 1993. 
" Holden, 1995a. hh Cromie, 1990. I; Rosenthal & Rosnow, 1975. jj Altman, 1994. kk Hall, 1984. 
Il Cohen, 1996. mm Roberts, 1987. nn Barnes, 1986. 00 Hall & Halberstadt, 1986. PP Bushman & Cooper, 1990. 
qq Mullen & Copper, 1994. IT Mann, 1959. "Cromie, 1991. n Weiner et al., 1993. au Rosenthal & Rubin, 1978. 
vv Allen, Schnyer, & Hitt, 1998. ww Smith, Glass, & Miller, 1980. xx Cromie, 1991. IT Wing & Jeffery, 1999. 
" Cohen, 1993. ... Rosnow, 1991. bbb Van Rompay & Marthas, 1995. oc, Associated Press, 1995. 
ddd Sands & Gillyat, 1996. ,t" Associated Press, 1996 (February). Iff Associated Press, 1996 (May). ggg Tsai 
et aI., 1995. 
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TABLE 11.9 

Vaccination status and diagnostic class of 401,974 children in 1954 
Salk vaccine trial 

Paralytic polio Paralytic 
Condition present polio absent 

A. Raw counts in four conditions 
Vaccination 33 200,712 
Placebo 115 201,114 

B. Percentages in four conditions 
Vaccination 0.016 99.984 
Placebo 0.057 99.943 

C. Binomial effect size display of r = .011 
Vaccination 49.5 50.5 
Placebo 50.5 49.5 

Total 100.0 100.0 

the information in journal articles or newspaper stories, including page-one newspaper 
articles about breakthrough medical findings. Many researchers are surprised to learn 
that biomedical and behavioral interventions and outcomes of possibly great public 
health consequence may be associated with such small correlations as shown in this 
table. The table shows by no means a random sample of biomedical and behavioral 
effect sizes, but it is still noteworthy that only about half of these studies accounted 
for more than 1 % of the variance or showed an effect size r greater than .12. 

One of the effect size rs is for the aspirin study described in chapter 2 (see again 
Part A of Table 2.5), where the effect on preventing a heart attack had an associated 
r of .034, and thus the corresponding r- = .00, or to four decimal places, .0012. An even 
smaller r in Table 11.8 is the second one listed, which we calculated from data in the 
1954 Salk vaccine trial (Rosnow & Rosenthal, 2003), called "the biggest public health 
experiment ever" by Meier (1978, p. 3). The purpose of this famous biomedical experiment 
was to evaluate the effects of inoculating young children with the Salk poliomyelitis 
vaccine versus a placebo consisting of a simple salt solution (Francis, Korns, Voight, 
Boisen, Hemphill, Napier, & Tolchinsky, 1955). Brownlee (1955) noted a number of 
serious problems with the design and implementation of the study but nevertheless 
concluded that there was "convincing evidence for the effectiveness of the vaccine" 
(p. 1010). Part A of Table 11.9 shows the specific raw frequencies to which Brownlee 
was alluding; Part B displays the percentages corresponding to the empirical data in Part 
A, and Part C shows the BESD. i 

The effect size r for the results in Part A of Table 11.9 is .011 (rounded to .01 in 
Table 11.8), and thus the corresponding r2 = .000 or, to four decimal places, .0001. Most 
people would be surprised to learn that an effective biomedical intervention could be 
associated with an r and an r2 this small, but as Table 11.8 shows, rs smaller than .10 
are not at all unusual in biomedical research. In Part C of Table 11.9, the BESD helps 
us to perceive the practical significance of the effect size r corresponding to a vaccination 
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success rate (i.e., paralytic polio absent) of 100(.50 + .005) = 50.5, and a placebo success 
rate of 100(.50 - .005) = 49.5. The difference between these rates, divided by 100 is .01, 
the effect size indexed by r. When we think of r = .011 as reflecting a 1.1 % decrease 
in paralytic polio, the r does not seem quite so "small." This result also makes us more 
sanguine about the magnitude and importance of effect sizes for research findings in 
behavioral science. It is, however, important to remember that everything under the sun 
is defined in part by context, and this is no less true of the interpretation of the practical 
importance of an effect size measure of any particular magnitude. The point is that, 
whereas any effect size is mathematically determined by characteristics of the study 
design and the results, the interpretation of its real-life implications will always depend 
on the nature of the variables and how they were operationalized. 

COUNTERNULL VALUES OF EFFECT SIZES 

Many behavioral researchers (particularly those insensitive to the implications of 
power considerations when doing significance testing) have acquired the unfortunate 
habit of thinking (a) that failure to reject the null hypothesis implies an effect size of 
zero, and (b) that finding a statistically significant p value implies an effect size of 
important magnitude. We have much to say about statistical power in the next chapter, 
but here we want to pick up another thread from chapter 2. In that chapter we briefly 
described another type of interval estimate, called the null-counternull interval 
(Rosenthal & Rubin, 1994). As we illustrate now in more detail, this interval (null 
value to counternull value) can alert researchers to the degree to which their conclusions 
of "no effect" might be in error, and in this way it provides some protection against 
mistaken interpretations of the failure to reject the null hypothesis (Rosenthal, Rosnow, & 
Rubin, 2000; Rosenthal & Rubin, 1994). 

The counternull value of an obtained effect size is the nonnull magnitude of 
effect size that is supported by exactly the same amount of evidence as is the null 
value of the effect size. That is, if the counternull value is taken as the null hypothesis, 
the resulting p value will be the same as the obtained p value for the actual null 
hypothesis. The null-counternull interval can be understood as conceptually related to 
confidence intervals. But whereas confidence intervals provide lower and upper limits 
for such intervals as the 95% or 99% C/, they do not involve the null hypothesis or 
the obtained p value. The counternull, on the other hand, is based directly on the null 
value of the effect size and the obtained effect size. 

The obtained effect size estimate always falls between the null value of the 
effect size and the counternull value. For effect size estimates that are based on 
symmetrical distributions, such as the normal or t distributions (e.g., Cohen's din 
Equation 2.4, Hedges's g in Equation 2.5, or the Fisher Zr in Equation 11.2), the 
obtained effect size falls exactly midway between the null value of the effect size 
and the counternull value. The following equation gives the counternull value for 
any effect size indicator with a symmetrical distribution (e.g., the normal or t 
distribution), no matter what the magnitude of the effect size (ES) is under the 
null: 

EScountemull = 2ESobtained - ESnull. (11.5) 
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Because the effect size expected under the null is zero in so many applications, the 
value of the countemull is often simply twice the obtained effect size, or 2ESobtained. 

As the effect size correlation, r, is not symmetrically distributed, we work 
instead with the symmetrically distributed transformation of r, which is the Fisher Zr. 

Working with units of Zr we find the countemull value of Zr and transform this back 
into units of r. Suppose we have an r of .50 between increasing levels of medica­
tion and the increasing clinical improvement in a sample of 10 patients. With a 
sample this small, the very substantial r of .50 has an associated two-tailed p value 
of .14, and thus, we cannot reject the null hypothesis of r = .00 at the .05 level. 
To avoid concluding that the null value of r = .00 is a plausible estimate of the 
population correlation, we should compute the countemull value of the obtained 
effect size r of .50. From Table B.7 of Appendix B (or computed directly from 
Equation 11.2), we find the obtained effect size r is associated with the Zr value of 
.549. From Equation 11.5, we find EScounternull = 2(.549) - .00 = 1.098 (in units 
of Zr). To find the value of r associated with this countemull Zr, we consult Table B.8 
of Appendix B (or compute it directly from Equation 11.4) and find rcounternull = .800. 
Thus, if someone were tempted to believe that the population value of r is close to 
the null value of .00, we would remind that person that the countemull value 
(rcounternull = .80) of the obtained effect size (r = .50) is exactly as likely as the null 
value of r = .00. 

When the Pearson product-moment correlation is a point-biserial correlation 
(i.e., where one variable is continuous, and the other variable is dichotomous), the 
following formula can be used to estimate rcounternull directly from the obtained r: 

f4r2 
rcounternull = V T+3"T2 . (11.6) 

For example, suppose we obtained a point-biserial correlation of .50. We could directly 
use Equation 11.6: 

rcounternull = 4 (.50)2 
1 + 3 (.50)2 = .756. 

Obtaining rcounternull by way of the Zr transformation for the Pearson r does not 
necessarily yield the same value as Equation 11.6, but the results tend to be 
similar. 

Having computed the countemull value of the effect size estimate, we can create 
u null-countemull interval. This interval spans from the null value of the effect size to 
the countemull value of the effect size. In the example of an obtained effect size 
r =.50 with an associated p value of .14 two-tailed, or .07 one-tailed, the null­
countemull interval extends from an r of .00 (the null value in this example) to an r 
of .80 (the countemull value). We can also express the percentage coverage of the 
null-countemull interval (NC%) using the following equation: 

NC%= 100[1.00 - 2(P one-tailed)], (11.7) 

which for this example yields 

NC% = 100[1.00 - 2(.07)] 100(.86) = 86%. 
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TABLE 11.10 

BESDs for null and counternull results straddling the obtained result 
(86% interval) 

Null result Obtained result (r = .50, Counternull result 
(r = .00) p = .14 two-tailed) r = .80 

MI LI MI LI L MI LI 

T~ T m 100 T 

~ C 50 50 C 25 75 100 C 10 90 

L 100 100 200 

86% null-counternull interval 

i ______________________________________ i 

r = .00 r = .80 

Note: T, C, MI, and LI refer to Treatment, Control, More Improvement, and Less Improvement, 
respectively. 

Our i~terpretation is that there is an 86% chance that the population value of r falls 
between the lower (null) and upper (countemull) limits of this null-countemull interval 
(i.e., between .00 and .80). Just as is the case for the confidence interval, it is often 
instructive to show the BESDs for both the null value and the countemull value. 
Table 11.10 shows these BESDs along with the obtained result they straddle. 

SPEARMAN RANK CORRELATION 

Most of the useful correlation coefficients are product-moment correlations, and they are 
typically the special cases of the Pearson r we have been discussing. When data are in 
ranked form, we apply the Spearman rho (p), but that is nothing more that a Pearson 
r computed on numbers that happen to be ranks. Ranked numbers are more predictable 
than unranked numbers, because knowing only the number of pairs of scores (N) tells 
us both the mean and the standard deviation of the scores obtained. There is a simpler 
computational formula than Equation 11.1 for scores that have been ranked: 

6'f.D2 
p = 1- }/3 -N' (11.8) 

and the only new ingredient is D, the difference between the ranks assigned to the 
two scores representing each of the N sampling units. 

In the example shown in Table 11.11, four schools have been ranked by two 
observers on the warmth of the psychological climate created by the school's principal. 
The column headed D shows the differences between the ranks assigned by Observers 
A and B, and the column headed D2 shows these differences squared. The sum of the 
D2 values ('f.D2) is needed for computation of p from Equation 11.8. The columns 
headed ZA and ZB show the Z scores of the ranks assigned by Observers A and B, 
respectively. The column labeled ZAZB shows the products of the Z-scored ranks 
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TABLE 11.11 

Two observers' rankings of fonr schools 

Observers 

A B D D2 ZA ZB ZAZB 

School I 2 -0.45 -1.34 0.60 

School 2 2 -1 -1.34 -0.45 0.60 

School 3 3 3 0 0 0.45 0.45 0.20 

School 4 4 4 0 0 1.34 1.34 1.80 

L 10 10 0 2 0 0 3.20 

M 2.5 2.5 0 0 0.80 

(J 1.12 1.12 1.00 1.00 

6LD2 6(2) 12 
p = 1 - N 3 _ N = 1 - 43 _ 4 = I - 60 = .800 

_ LZAZB _ 3.20 - 800 
r- N - 4 -. 

assigned by Observers A and B. Ordinarily we would need no Z scores to compute 
p, but here we wanted to illustrate that, when there are no ties in the ranking, p is 
equivalent to the Pearson r on the ranks. 

The equivalence of the Spearman p and the Pearson r computed from ranked 
data holds only when there are no ties in the ranking. As Table 11.12 shows, when 
there are only a few.ties, p tends to be quite similar to r. In Set 1 we see that Observer 
A has equal ranks of 1.5 and 1.5 for the tied ranks of 1 and 2, and we find p = .950 
and r = .949. When a larger proportion of the ranks is involved in ties, the difference 
between p and r tends to be larger, as shown in Set 2, where Observer A has equal 
ranks of 2, 2, 2 for the tied ranks of 1, 2, and 3, and we find p = .800 and r = .775. 
Set 3 is a more extreme case of tied ranks, in that Observer A has equal ranks of 2, 
2, 2 for the tied ranks of 1, 2, and 3, and Observer B has equal ranks of 3, 3, 3 for 
the tied ranks of 2, 3, 4, and now we find p = .600 and r = .333. 

TABLE 11.12 

Further examples of ranked scores 

Set 1 Set 2 Set 3 

A B A B A B 

1.5 2 2 

1.5 2 2 2 2 3 

3 3 2 3 2 3 

4 4 4 4 4 3 

I' = .950 p = .800 p = .600 
,. ~ .949 r = .775 r = .333 
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RANKS AS A TRANSFORMATION 

The Spearman rank correlation coefficient is used when the scores to be correlated are 
already in ranked form, as when raters have been asked to rank a set of sampling units. 
In addition, however, p is sometimes used as a very quick index of correlation when p 
is easy and painless to compute by hand, and r is hard and slow. Consider computing r 
between the pairs of scores shown in Table 11.13 when no calculator is available. The 
computation of r would be arduous, whereas computing p would be easy because ranks 
are so convenient to work with. But suppose both p and r were computed, and the 
researcher wondered, "Which is the better estimate of the 'true' correlation, the r of .627 
or the p of .8oo?" That question cannot be answered readily. 

If, for some reason, we regarded the obtained scores as being on just the scale 
of measurement required, we might prefer r to p. However, if there were nothing 
sacrosanct about the particular scale used (and usually there is not), we might choose 
to transform the scores to achieve greater symmetry (i.e., lack of skewness) of distri­
bution. Such transformations tend to increase the accuracy of statistical analyses, and 
ranking the scores is one form of transforming the data to reduce skewness. In this 
instance we might have decided that the data should be transformed to improve the 
symmetry of our distributions, as symmetrical distributions are generally preferable 
to skewed distributions for subsequent statistical analyses (Tukey, 1977). We might, 
for eXample, have decided to take the square roots of the data obtained. Had we done 
so, as Table 11.14 shows, the r between the square-root-transformed scores would 
have become .799 in this case, essentially the same value we obtained from the rank 
correlation p. 

For the data in Table 11.14, transforming to improve symmetry led to a higher r. 
But sometimes transforming data leads to a lower r. Consider the data in Table 11.15 
and the corresponding plots in Figure 11.2. The correlation between X and Y is .9999, 
but the correlation between the more symmetrical transformed data (logs to the 
base 10 of X and Y) is only .80; this is precisely the value obtained by use of the rank 
correlation p. In this case we find that ranking the data was a better transformation 
than the original data. That is, ranking the data was better from the point of view 
of achieving symmetry. Ranking the data had the same effect as taking the logs of 
the original data. 

TABLE 11.13 

Computation of p 

X Y Rank X RankY D J)2 

Pair 1 6.8 79.713 2 

Pair 2 12.2 47.691 2 -1 1 

Pair3 1.7 28.002 3 3 0 0 

Pair 4 0.3 11.778 4 4 0 0 

6(2) 12 
p = 1 - 43 _ 4 = 1 - 60 = .800 



TABLE 11.14 

Square root transformations 

X y IX 

Pair 1 6.8 79.713 2.61 

Pair 2 12.2 47.691 3.49 

Pair 3 1.7 28.002 1.30 

Pair 4 0.3 11.778 0.55 

r,y = .627 rrx,;y = .799 

P,y = .800 Prx,;y = .800 

TABLE 11.15 

Logarithmic transformations 

Pair 1 

Pair 2 

Pair3 

Pair 4 

x 

100 

10 

1000 

10000 

y 

10 

100 

1000 

10000 

Log X 

2 

3 

4 

JY 

8.93 

6.91 

5.29 

3.43 

OBSERVATIONS OF DISPROPORTIONATE 
INFLUENCE 

Log Y 

2 

3 

4 
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In chapter 10 we discussed the value of examining the data quite closely, for example, 
looking for any anomalies such as outliers in a distribution of scores, or trying to 
understand an odd pattern of scores such as that of Figure 10.7. In that example we 
were able to generate a useful hypothesis by considering a third variable (gender), as 
shown in Figure 10.8. Before leaving the topic of ranks as a transformation of the 
original data for correlational analyses, we want to note that outliers can sometimes 
contribute much more than their "fair share" to the magnitude of a correlation. 
Consider the following pairs of scores on variables X and Y: 

Pairs 

x 
y 

1 

7 

2 

2 

6 

3 

3 

5 

4 

4 

4 

5 

5 

3 

6 

6 

2 

7 

7 

8 

8 

o 

9 

18 

17 

We note for Pair 9 that both values seem far out of line with the rest of the scores 
on the X and Y variables. As a check on our impression of outlier status for the X 
and Y scores of the 9th pair, we can use Iglewicz and Hoaglin's (1993) procedure 
(Equation 10.9) to obtain Zmodified. For variable X of Pair 9 (score of 18), using 
Equation 10.9 we find 



334 FUNDAMENTALS OF DATA ANALYSIS 

10,000 

7,500 

;... 

'" ~ 5,000 ·c 
~ 

2,500 

o 

o 

FIGURE 11.2 

2,500 5,000 

Variable X 

2 

Log variable X 

7,500 

3 

r = .9999; all points 
very close to line 
of best fit 

10,000 

4 

r = .8000; some points 
not very close to 
line of best fi t 

Plots of the relationship between variables X and Y and variables log X and log Y. 

Z .. - 0.6745(X-Mdn) - 0.6745(18-5) - 438 
modlfJed - MdnAD - 2 -., 

and for variable Y of Pair 9 (score of 17), using the same equation (with Mdn now 
at 4, instead of 5) we obtain the same value: 

Z .. - 0.6745(17 - 4) - 438 
modified - 2 -. 
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Figure 11.3 shows these data in a scatter plot where our "doubly outlying" 
(i.e., on both the X and Y variables) observation pulls our eye (and the Pearson 
product-moment r) upward to the right. Computing r yields a value of .588. A simple 
transformation to ranks will bring in the doubly outlying observation close to the bulk 
of the X and Yobservations. Computing rho on the ranked data (using Equation 11.8) 
yields p = - 0400, the same value we obtain computing r on the rank-transformed 
data (using Equation 11.1). 

When a single observation (or more generally, a small proportion of the total 
number of observations) can change a correlation's magnitude so radically (e.g., from 
r = + .59 to r = - 040), we have found an observation of disproportionate influence 
(0001). Dealing with an OODI brings up the same issues raised whenever we find 
outliers, but it is of special concern precisely because such a small number of data 
points can so radically affect our conclusion about the results in the scatter plot. Simply 
dropping the OODI of Figure 11.3 would change the overall correlation from an r of + .59 
to an r of -1.00. Dropping the OODI but trimming more equitably by also dropping 
the observations showing the lowest values on the X and Y variables would also yield 
an r of -1.00. 

In the previous chapter (see again Table lOA), we described three transformations 
for reeling in outliers: square roots, logarithms, and negative reciprocals. Of these 
three, outliers are pulled back to the bulk of the data least by square roots, more by 
logarithms, and most by negative reciprocals. Applying these same transformations to 
the data of Figure 11.3 and then computing correlations (r) on the transformed scores, 
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we find (a) r = + .14 for the square root transformation; (b) r = - .09 for the log 
transformation; and (c) r = -.38 for the negative reciprocal transformation. In this 
example, the "hardest working" of these three transformations gives an r very close 
to that obtained by our use of ranks as a fourth transformation (r = - .40). Our four 
transformations have left the data in a more tractable format, and we might well be 
willing to report the overall results as reflecting, in general, a fairly substantial negative 
correlation (e.g., - .38 or - .40) between the two variables. 

Now that we have coped with the OODI, should we forget about that doubly 
outlying observation? Probably not. After ruling out a clerical or other recording error, 
it will be useful to learn as much about that observation as possible. For all the 
variables for which information is available about the subjects, we should note the 
ways in which the outlier differs from the other units. 

Suppose the data of Figure 11.3 resulted from a pilot study on the relation between 
the dosage of an antidepressant intervention (X) and the degree of patient unhappiness 
(Y). Studying other variables, for which we have data for the patients, may reveal that 
of those nine patients in the pilot study, eight were being seen in a college counseling 
center and the ninth, the doubly outlying OODI, was an inpatient on a psychiatric 
service. Such a serendipitous observation raises the possibility of the patient recruitment 
site's being an important moderator variable, that is, that the relationship of interest (rxy) 
might Qe noticeably different in patients receiving different dosages of antidepressant 
intervention. Thus, merely suggestive data, garnered from our close scrutiny of an 
OODI, may provide interesting new leads for future research. In this example these data 
may suggest that patients with mild levels of depression should be studied separately 
from patients with more severe levels of depression. 

POINT-BISERIAL CORRELATION 

Another case of the product-moment correlation r is the point-biserial correlation, rpb. 

In this case one of the variables is continuous (as are the variables used for the usual 
case of r), whereas the other variable is dichotomous, with arbitrarily applied numer­
ical values, such as 0 and 1 or -1 and + 1. (Such quantification of the two levels of 
a dichotomous variable is often called dummy coding when the numerical values 0 
and 1 are employed.) A typical illustration might have us compare females with males 
on some measure (e.g., verbal skill). Suppose the results were as follows: 

Males Females 

2 4 

3 5 

3 5 

4 6 

Although we see two groups of scores, it does not look like a correlation coefficient situ­
ation, in which we would see pairs of scores (i.e., X and Y) for each unit or subject, not 
just one score for each subject as above. In this example, the scores on variable Y (the 
verbal skill measure) are shown, but X is "hidden." Thereason, of course, is that the group 
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identification (i.e., male vs. female) implies the variable X scores. Rewriting the data array 
into a form that "looks more correlational" is shown in Table 11.16, where the sum of the 
products in the last column is 6.56, and dividing this value by the N of 8 tells us that the 
correlation between verbal skill and gender for these eight pairs is .816. 

Although we will be reviewing the t test in detail in chapter 13, we may note 
here, in anticipation, the special relationship between t and the point-biserial correlation 
rpb. The t statistic enables us to assess the probability that the means of two samples 
may differ by the obtained amount if in nature (Le., the population) there is a zero 
difference between the means, or if the null hypothesis of no relationship between the 
independent variable and the dependent variable is true. The independent variable in 
the case of the t test is membership in one of the two groups being compared (usually 
scored as 0 and 1, or as -1 and + 1), and the dependent variable is the score earned 
on the measures we want to compare for the two groups. Based on the data shown 
in Table 11.17 (which we recognize as a rearrangement of the results in Table 11.16), 
we use the following formula to compute the t statistic: 

Ml-M2 
t=-r~=~~= 

(~l + ~2 )S~Oled 
and substituting the results in Table 11.16, we find 

t = 5 - 3 = 3.46 

j(i + i)0.6667 ' 

(11.9) 

which with 6 df is significant at p < .01, one-tailed test. The symbol df refers to the 
degrees of freedom, that is, the number of observations diminished by the number of 

TABLE 11.16 

Correlation between gender and verbal skill 

Verbal Gender (X) 
skill (y) (0 = male; 1 = female) Zy Zx Zy Z. 

Subject 1 2 0 -1.64 -1 1.64 

Subject 2 3 0 -0.82 -1 0.82 

Subject 3 3 0 -0.82 -1 0.82 

Subject 4 4 0 0.00 -1 0.00 

Subject 5 4 0.00 0.00 

Subject 6 5 0.82 0.82 

Subject 7 5 0.82 0.82 

Subject 8 6 1.64 1.64 

~ 32 4 0 0 6.56 

N 8 8 8 8 

M 4.0 0.5 0 0 

(J 1.22 0.5 
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TABLE 11.17 

Basic data for a t test 

Males Females 

2 4 

3 5 

3 5 

4 6 

L 12 20 

M 3 5 

n 4 4 

~ 0.6667 0.6667 

restrictions limiting the observations' freedom to vary. Thus, the df for a single sample 
of size n is equal to n - 1, as once the mean of the sample has been determined, 
only n - 1 of the observations are still free to vary. Analogously, when two samples 
are inv61ved, as in the case of the t test illustrated here, 1 df is lost or "used up" for 
each of the two samples so df = (nl - 1) + (m - 1) = nl + n2 - 2 = N - 2. The 
result above tells us that a t this large would be obtained less than 1 % of the time if 
we were drawing random samples from the populations of females and males (from 
which these subjects were randomly sampled), if those parent populations of females 
and males showed zero difference between the means or a zero correlation between 
the obtained scores (Y) and the dichotomously scored (e.g., 0 and 1, or -1 and + 1) 
variable (X) of group membership. 

For the same data in Tables 11.16 and 11.17, we now have both a correlation 
rpb of .816 and a t value of 3.46. If it is so easy to obtain either r or t for the same 
data, it must be possible to obtain t directly from r, or to obtain r directly from t, and 
so it is. Indeed, there is an important relation between rs of any form (or any other 
measure of the size of an effect or a relationship) and a test of significance. We intro­
duced this relationship in chapter 2, and it can be understood as another fundamental 
equation of data analysis: 

Significance test = Size of effect X Size of study (11.10) 

Thus, for any given (nonzero) effect size (such as r), the t test, or any other test of 
significance, increases as the size of the study (i.e., the number of sampling units) 
increases. 

The particular index of the size of the study (e.g., N,df,/N,/dJ) varies with the 
particular index of effect size used, which might be r, r, or r / ./1 - r2, depending on the 
test of significance involved. In the case of t and r, the appropriate equation is that listed 
in chapter 2 as Equation 2.2, that is, 

t= b X/dJ. 
l-r 
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In this equation the size of the effect is defined by r I II - r2, and the size of the study 
is defined as /dJ (or, in this application, as N-2). The quantity rill - r2 may be seen 
as the square root of r2 I (1 - r2) which is the ratio of the proportion of variance explained 
by r to the proportion of variance not explained by r, or a kind of signal-to-noise ratio. 
For our example, r was .816, so rill - r2 = 1.41. The df(the number of pairs of scores 
minus 2) for r was 8 - 2 = 6, so t = 1.41 X /6 = 3.46. 

Equation 11.10 follows the scientific logic of first estimating the size of the 
relationship and from that, by using an index of the size of the study, computing the 
test of significance that provides information about the probability that the null 
hypothesis of no relationship between X and Y is true. In practice, however, researchers 
have traditionally computed the significance test before they have computed the size 
of the effect because of the primacy of significance testing (chapter 2). In such cases 
it is easy to obtain the effect size estimate r from the obtained t by means of the 
following relationship: 

r = / t2 + (n\ ~ n2 - 2), 
(11.11) 

where nJ and n2 represent the sizes of the samples on which each of the means being 
compared was based. 

The t test for the significance of a correlation coefficient (Equation 2.2) 
applies not only to the point-biserial correlation (rpb) , but to the Pearson r and to 
the rank-correlation coefficient (p) as well. However, in the case of p, we would 
want to have at least seven pairs of scores to obtain a good approximation-a rule 
of thumb suggested by a comparison of Tables All[i] and All [ii] in Snedecor and 
Cochran (1980). 

EXACT TESTS FOR RHO 

More exact tests of the significance of p, the rank correlation coefficient, are also 
readily available for sample sizes from 4 to 16 pairs of scores (Nijsse, 1988; Zar, 
1984). The logic of these exact tests is illustrated by this small example: Suppose 
two executives have ranked three managers on their suitability for promotion. 
Executive 1 has ranked them as A, B, C. What is the exact probability that the 
correlation between the executives' rankings is 1.00? Executive 2 can rank the 
managers only six ways (not allowing for ties): ABC, ACB, BAC, BCA, CAB, 
CBA. Only one of these rankings (ABC) results in a correlation of 1.00, and under 
the null hypothesis of zero correlation, all six rankings are equally likely. Therefore, 
the probability of a perfect correlation is 1/6, or .167. The probability of a perfect 
correlation for four ranked stimuli is 1 divided by the total number of ways in which 
four stimuli can be ranked, or 1/4! = 1/(4 X 3 X 2 X 1) = 1/24 = .042. The 
expression "4!" is read as "four factorial" and interpreted as 4 X 3 X 2 X 1 or, 
more generally, as N(N - l)(N -2) ... (2)(1). Simply listing all possible rankings 
of N stimuli allows the ready calculation of the probabilities of any outcome or of 
any set of outcomes (e.g., correlations exceeding any given value). Table B.10 of 
Appendix B shows, for various sample sizes, the magnitude of p required to reach 
specific levels of significance. 
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PHI COEFFICIENT 

Another special case of the product-moment correlation r is the phi (<I» coefficient. 
In this case both of the variables are dichotomous with arbitrarily applied numerical 
values such as 0 and 1, or -1 and + 1. As an example, we compare five Democrats 
and five Republicans on a yes-no question that each of them answered. The small 
sample sizes are for pedagogical convenience; we assume that the sample sizes in an 
actual case would be larger. Our hypothetical results are as follows: 

Democrats Republicans L 

::' I 
1 4 5 

4 1 5 

L 5 5 10 

This 2 X 2 table of counts, also called a contingency table, shows that one Democrat 
and four Republicans answered "yes" and that four Democrats and one Republican 
answered "no." 

This is another set of results that does not seem to resemble the typical 
situation for a correlation coefficient, where we would expect to see pairs of scores 
(i.e., X and Y) for each unit. However, dummy-coding the row and column variables 
does immediately produce such a typical correlational situation. That is, we dummy­
code the dichotomous independent variable of party membership as 0 and 1, and 
so, too, the yes-no dependent variable. These results are shown in Table 11.18. 
In our rewriting of the table of counts, Respondent 1 in Table 11.18 was drawn 
from the upper-left cell of the 2 X 2 table (the Democrat who answered "yes"), 
Respondents 2, 3, 4, and 5 are from the upper-right cell (the Republicans who 
answered "yes"), Respondents 6, 7, 8, and 9 are from the lower-left cell (the 
Democrats who answered "no"), and Respondent 10 is from the lower-right cell 
(the Republican who answered "no"). 

U sing Equation 11.1, we obtain the Pearson r between party membership and 
the yes-no responses by dividing the sum of the standard-score products in the last 
column of Table 11.18 (LZxZy = 6) by N = 10, which yields r = .60, suggesting that 
Republicans were more likely to say "yes" to this yes-no question. The obtained r is 
given as phi (<I» to denote the dichotomous nature of both variables. If the sample 
size (N) is not too small (that is, N > 20), and if both variables are not too far from 
a 50:50 split of Os and Is (no greater than 75:25), the significance of a phi coefficient 
can be evaluated by t, once again using Equation 2.2: 

t = r x!{Flf = .60 X /08 2 12 ./1 - r2 yUJ ./1 _ (.60)2 YO = . . 

This application of Equation 2.2 (above) for testing the significance of the phi 
coefficient is not well known, but it is well documented (Cochran, 1950; Lunney, 
1970; Snedecor & Cochran, 1967). The more common test of significance of the 
phi coefficient is chi-square (X2), which is reviewed below (and discussed in more 
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TABLE 11.18 

Correlation between response and party membership 

Standard scores for 
variables X and Y 

Party (X) Response (Y) 
(Rep. = 1; Dem. = 0) (yes = 1; no = 0) Z. Zy Z. Zy 

Respondent 0 -1 -1 

Respondent 2 

Respondent 3 

Respondent 4 

Respondent 5 

Respondent 6 0 0 -1 -1 

Respondent 7 0 0 -1 -1 

Respondent 8 0 0 -1 -1 

Respondent 9 0 0 -1 -1 

Respondent 10 0 -1 -1 

~ 5 5 0 0 6 

N 10 10 10 10 

M .5 .5 0 0 

(J .5 .5 

detail in chapter 19). It comes as a surprise to many to learn that X2 does not 
necessarily yield more accurate tests of the significance of phi than the t test in 
Equation 2.2 (Cochran, 1950; Lunney, 1970). 

So far in our discussion of phi we have treated it no differently from any other 
product-moment correlation. For two reasons, however, it is useful to adopt an alter­
native approach to the phi coefficient. One reason is computational convenience; the 
second, is the availability of other approaches to assessing the significance of <1>. Our 
alternative approach takes advantage of the fact that the data come to us in a 2 X 2 
contingency table. Part A of Table 11.19 shows again the data on the relation between 
political party affiliation and response to the yes-no question. This time, however, we 
have added one of four labels to each of the four cells: A, B, C, D. We now compute 
phi from 

BC-AD 
<I> = J(A + B)(C + D)(A + C)(B + D)' 

(11.12) 

which in this case yields 

(4)(4)-(1)(1) 15 
<I> = ./(5)(5)(5)(5) = 25 = .60, 

Ihe identical value obtained from Equation 11.1. 



342 FUNDAMENTALS OF DATA ANALYSIS 

TABLE 11.19 

Results in 2 x 2 contingency table 

A. Table of counts 

Democrats Republicans 2: 

Yes 

I: 
I 

4 

No 
4 

2: (A + C) = 5 (B + D) = 5 

B. Observed (0) and expected (E) frequencies 

Yes 

No 

Democrats 

0= 1 

E = 2.5 

0=4 

E = 2.5 

2:0 = 5 

2:E = 5 

Republicans 

0=4 

E = 2.5 

0= 1 

E = 2.5 

2:0 = 5 

2:E = 5 

B ICA + B) " , 

D (C + D) = 5 

(A + B + C + D) = 10 

2:0 = 5 

2:E = 5 

2:0 = 5 

2:E = 5 

2:2:0 = 10 

2:2:E = 10 

Returning to the general relationship in Equation 11.10 (between tests of 
significance and measures of effect size and size of experiment), another significance 
test for the phi coefficient is X2 with 1 dj, written here Xfl)' This test of significance, 
previously noted in chapter 2 as Equation 2.1, can be used whenever the N is not too 
small (i.e., N> 20) and the two variables are not too far from a 50:50 split of Os and Is. 
It can be computed as: 

xfl) = <j)2 X N, 

in which cp2 represents the size of the effect, and N represents the size of the study 
(again within the conceptual framework of Equation 11.10). For the data we have 
been examining (in Table 11.19), using the above equation (Equation 2.1) gives us 

Xfl) = (.60)2 X 10 = 3.60, 

which has an associated p value of .058 (obtained from a computer, a hand-held 
calculator, or, somewhat less precisely, Table B.5 of Appendix B). For X2 with dj = 1 
(i.e., based on a 2 X 2, or a 1 X 2, table), these tabled values of X2 are two-tailed 
with respect to the direction of the correlation (plus or minus), so that we divide this 
tabled p value by 2 if a one-tailed test is desired. 

Sometimes, X71) is computed before cp, in which case two equations are available, 
one of which is 

2 _ NCBC - AD'? 
X(1) - (A + B)(C + D)(A + C)(B + D)' 

(11.13) 
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which, for the data in Table 11.19, yields 

2 _ 10[(4)(4) - (1)(1)]2 _ 2250 - 360 
X(I) - (5)(5)(5)(5) - 625 - . , 

where N = A + B + C + D. Alternatively, 

y~ _ ~(O - E)2 
1\.\1) - L... E ' (11.14) 

which is read as the sum of the squared differences between the observed frequencies 
(0) and the expected frequencies (E), with each squared difference first divided by the 
expected frequency. The null hypothesis of zero correlation (i.e., <I> = 0) leads to 
the computation of the expected frequencies. If the observed frequencies are nearly the 
same as those expected under the null hypothesis of zero correlation, then 0 - E will 
be small and xli) will be small, and these results will not strongly suggest that the null 
hypothesis is false. 

We obtain the expected frequency (E) for any cell by multiplying the total of 
the row in which we find the cell by the total of the column in which we find the cell 
and then dividing this product by the total number of observations (N). For the 
data in Part A of Table 11.19, we find the expected frequencies are all alike because 
(5 X 5)/10 = 2.5 for all four cells. Part B of Table 11.19 shows the observed (0) 
and expected (E) frequencies for all four cells. Then, using Equation 11.14, we find 

2 _ (1 - 2.5)2 + (4 - 2.5? + (4 - 2.5)2 + (1 - 2.5)2 - 360 
X(l) - 2.5 2.5 2.5 2.5 -. . 

When Xfl) is computed before <1>, and if the total N is not too small, then <I> 
can be conveniently estimated from an equation previously noted in chapter 4 as 
Equation 4.15, that is, 

The sign we give our <I> depends on how we want to dummy-code the variables. In 
this example we would indicate a positive correlation between being Republican and 
saying "yes" if we score being a Republican as 1 and being a Democrat as 0, while 
scoring a "yes" response as 1 and a "no" response as O. If the balance of the observed 
over the expected frequencies favors the cells agreeing in value of the dummy coding 
(I, 1 or 0, 0), we call phi "positive." If the balance favors the cells disagreeing in 
value of the dummy coding (0, 1 or 1, 0), we call phi "negative." 

Before leaving the topic of Xfl) as a test of significance for <1>, we should mention 
that corrections for continuity are suggested in many textbooks for X2 computed from 
2 X 2 tables. The effect of these corrections is to reduce the size of the Xfl), by diminishing 
the absolute difference between' 0 and E by .5 (before squaring), in order to adjust for 
the difference between discrete and continuous distributions. Some evidence suggests, 
however, that this correction sometimes does more harm than good in terms of yielding 
accurate p values (Camilli & Hopkins, 1978; Conover, 1974, 1999; Fienberg, 1977). In 
any case, the correction described should not be used if the object is to compute phi as 
in the above equation (i.e., Equation 4.15), because this equation requires that Xfl) be 
defined in the standard (not "corrected") manner. 
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Related to the chi-square approach to the testing of the significance of a phi 
coefficient is the approach via the standard normal deviate Z. In this case the 
relationship between the test of significance and the size of the effect and size of the 
study in Equation 11.10 is given by 

Z= <I> X IN. 

For the data we have been using for illustration, with <I> 
Equation 11.15 yields 

Z = .60 X /fO = 1.90, 

(11.15) 

.60 and N = 10, 

which is significant at the .029 level, one-tailed test, from a table of p values associated 
with standard normal deviates (Z), such as Table B.l of Appendix B. That value agrees 
perfectly with the one-tailed p value based on the ?dI) approach to testing the significance 
of phi. It should, because ~ is identical to Z. 

Because it is sometimes necessary to compute someone else's phi from a reported 
p value, it is useful to keep in mind the following relationship: 

(11.16) 

FOf example, suppose a researcher reports p = .005 but neglects to give any effect 
size estimate. As long as we can find N (the total size of the study), it is simple enough 
to estimate phi by using Equation 11.16 and Table B.I in Appendix B. In Table B.I 
we find the areas in the tails of the normal curve, and we find the Z associated with 
a one-tailed p level of .005 to be 2.58. If we found N to be 36, we would be able to 
compute phi from Equation 11.16 as follows: 

'" 2.58 43 '1'=;36= .. 

In a later chapter on chi-square and tables of counts (chapter 19), we will give 
more detail on special problems arising from 2 X 2 tables of counts with small 
expected frequencies. For now, however, we want to provide a cautionary note about 
X? tests of significance based on small sample sizes. Our concern is not so much with 
the errors in obtained p values that we might encounter with small sample sizes. Our 
concern is more with inaccuracies in the estimation of effect size <I> that we might 
compute from our obtained XfI) (and its square root, Z), for example, from Equations 
4.15 and 11.16. Although these equations do provide the accurately computed values 
of r, it has been shown that these rs may be substantial overestimates of the population 
values of r (Rosenthal & Rubin, 2003). 

CURVILINEAR (QUADRATIC) 
CORRELATION 

So far our discussion has been only of linear correlation, in which the dependent 
variable (Y) can be seen to increase regularly as a function of regular increases 
(or regular decreases) in the independent variable (X). Sometimes, however, our 
predictions are not linear but curvilinear, as, for example, if we predicted that 
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TABLE 11.20 

Correlation between performance and arousal 

Arousal Performance 
level (X) level (Y) Z. Zy Z. Zy 

Subject 1 4 -1.24 -1.58 +1.96 

Subject 2 5 6 -1.04 0.00 0.00 

Subject 3 8 9 -0.41 +0.95 -0.39 

Subject 4 11 10 +0.21 +1.27 +0.27 

Subject 5 15 7 +1.04 +0.32 +0.33 

Subject 6 17 3 +1.45 -0.95 -1.38 

L 60 36 0.00 0.00 +0.79 

N 6 6 

M 10 6 

(J 4.83 3.16 

_ LZxZy _ + 0.79 - 13 
rxy - N - 6 -. 

performance (Y) will be better for medium levels of arousal (X) than for either 
high or low levels of arousal. Table 11.20 shows the Pearson r (Equation 11.1) 
between performance level (Y) and arousal level (X) for six subjects. The correla­
tion is quite modest (r = .13), and Figure 11.4 (the plot of the level of performance 
as a function of arousal level) shows why. The relationship between X and Y is not 

10 

8 

~ 6 

~ 
~ 4 &: 

2 

0 
0 2 4 6 8 10 12 14 16 18 

Arousal level 

.'IGURE 11.4 
Curvilinear relationship between arousa11evel and performance. 
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TABLE 11.21 

Correlation between performance and extremeness of arousal 

Extremeness of 
arousal level Performance 

(lX-MI) level (Y) Zx Zy Zx Zy 

Subject 1 6 +0.78 -1.58 + 1.23 

Subject 2 5 6 +0.31 0.00 0.00 

Subject 3 2 9 -1.09 +0.95 -1.04 

Subject 4 10 -1.56 + 1.27 -1.98 

Subject 5 5 7 +0.31 +0.32 +0.10 

Subject 6 7 3 +1.25 -0.95 -1.19 

~ 26 36 0.00 0.00 -5.34 

N 6 6 

M 4.33 6 

(J 2.13 3.16 

_ rZxZy _ - 5.34 - _ 89 
r- N - 6 - . 

I!' 

linear, but noticeably curvilinear. More specifically, it seems to be substantially 
quadratic (the term quadratic means that the nonlinear relationship is U-shaped or 
n-shaped). How can we compute a coefficient of curvilinear (quadratic) correlation 
between X and Y? 

A number of procedures are available, and one of the simplest requires us only to 
redefine the variable X from "amount of X" (low to high) to "extremeness of X" (distance 
from the mean of X). Table 11.21 shows this redefinition. Each value of X is replaced 
by the absolute (unsigned) value of that score's difference from the mean score. Therefore, 
a positive correlation between the extremeness of X and the original score of Y means 
that more extreme levels of arousal are associated with higher levels of performance, 
whereas a negative correlation means that more extreme levels of arousal are associated 
with lower levels of performance. In their original form, the scores for arousal level 
(X) showed little correlation with the performance level (Y). In their redefined form 
(Ix - MI) in this table, the scores indicating absolute distance from the mean were very 
substantially correlated with performance level (r = - .89). This substantial correlation 
is quite consistent with what we can see in Figure 11.4, which is that more extreme 
levels of arousal are associated with poorer performance. Later chapters will deal with 
the topic of curvilinear relationships in more detail. 

FIVE PRODUCT-MOMENT CORRELATIONS 

In this chapter we have described five different product -moment correlations. Table 11.22 
summarizes the chief characteristics of each. In the chapter on contrast analysis 
(chapter 15), we describe additional product-moment correlations. 



TABLE 11.22 

Product-moment correlations 

Correlation 

Pearson r 

Spearman rho (p) 

Point biserial (rpb) 

Phi ($) 

Curvilinear r 

Characteristics of variables 

Both continuous 

Both ranked 

One continuous, one dichotomous 

Both dichotomous 

Both continuous 
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Tests of significance" 

t (or exact probability test if N is 
small, especially if N < 7) 

, Table B.6 of Appendix B shows critical values of p associated with correlations based on varying df, where df = number 
of pairs of observations minus 2. 

COMPARING CORRELATIONS 

It often happens in behavioral research that the primary question is not so much about 
the relationship between two variables, but about the difference in such relationships 
between two groups of subjects or between the same subjects measured under two 
conditions. For example, the superiority of females over males in the decoding of non­
verbal cues is well established (Hall, 1984b). Such superiority can be indexed by the 
correlation between sex (coded as 0, 1) and skill in decoding nonverbal cues (a continuous 
measure; see, for example, Rosenthal, Hall, DiMatteo, Rogers, & Archer, 1979). If we 
are interested in whether this superiority is greater among high school students than 
among college students, we would compare the sex-skill correlations found in high school 
and college samples. Because the two correlations being compared are based on different 
independent subjects, comparisons of this type are called comparisons of independent 
correlation coefficients. If the two correlations being compared are based on the same 
subjects, the procedures are called comparisons of nonindependent (or correlated) 
correlation coefficients. An example is the comparison of the correlation between sex 
and sensitivity to nonverbal cues in the video versus the audio channels of nonverbal 
communication. It turns out, for example, that the correlation between sex and skill is 
higher, on the average, for decoding facial expressions than it is for decoding tone of 
voice (Rosenthal & DePaulo, 1979a, 1979b). Procedures for computing tests of signifi­
cance of the difference between independent or correlated correlation coefficients are 
given in chapter 21. In that chapter we describe procedures for combining as well as 
comparing correlation coefficients and other estimates of the magnitude of effects. 

CONSIDERING THIRD VARIABLES 

We have been concentrating on the degree of association between two variables, X and 
Y. Much later in this book, we describe procedures in which any number of predictor 
variables (e.g., Xl, X2, X3, ... Xk) may be used to predict scores on a single dependent 
variable (e.g., Y) or on any set of Yvariables (e.g.,YI, Y2, Y3, ... Yk). We turn now to 
Iwo common situations in which a third variable (Z) is brought into the analysis for 
one of two different purposes. One purpose is multiple correlation, in which we use 
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two independent (or predictor) variables to learn how well the two predictors, used 
together, do in predicting the dependent variable, especially compared to how well each 
predictor does working alone. The other quite common purpose is learning how a two­
variable correlation changes if we control completely for a third variable. For example, 
suppose we find a correlation of r = .70 between the height and the vocabulary test 
scores of 6- to 12-year-old girls. Our first reaction to such a high correlation might well 
be to suspect that it was the older girls who were both taller and more accurate in 
defining the vocabulary test items, whereas the younger girls were both shorter and less 
accurate in defining vocabulary test items. That very reasonable hypothesis implicates 
age as a "third variable," one that we should control for to learn whether there will still 
be such a high correlation between height and vocabulary test performance after we 
have controlled for the variable of age by computing a partial correlation. 

Computing a Partial Correlation 

We designate our three variables as (1) vocabulary test scores, (2) height, and (3) age, 
and suppose we know the correlation for each pair of variables. The correlation fi2 
between (1) vocabulary test scores and (2) height is .70. The correlation r13 between 
(1) vocabulary test scores and (3) age is .80. The correlation (r23) between (2) height 
and (~) age is .60. To obtain the partial correlation fi2.3 (i.e., the correlation between 
variables 1 and 2, with variable 3 partialed out), we use the following equation: 

r12.3 = / 2 2 (1 - r13)(1 - r23) 
(11.17) 

and find 

r = .70 - (.80)(.60) = .22 = .22 = 458 
12.3 /[1 - (.80)2][1 - (.60)2] /(.36)(.64) .48 . 

From this result we see that the correlation between vocabulary performance and 
height drops from .70 to .46 after we partial out the effect of age. 

Computing a Multiple Correlation 

Suppose we want to know how well we can predict vocabulary test scores from a 
knowledge of students' heights and ages. We will need the three correlations r12, r13, 
r23 defined above and indicated as .70, .80, and .60, respectively. Using the following 
equation, we can compute the mUltiple correlation r1.23, that is, the correlation between 
vocabulary scores (variable 1) and the joint action of our two predictor variables, 
height (variable 2) and age (variable 3): 

and we find 

1j~ + 13 - 2r12 r13 r23 

1 - ri3 

(.70)2 + (.80)2 - 2(.70)(.80)(.60) = /.458 = 846 
1 - (.60)2 .640 . 

(11.18) 
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From this result we see that the multiple correlation predicting vocabulary scores from 
both the variables of height and age yields a higher correlation (.846) than we find 
using only the single variable of height (rl2 = .70) or the single variable of age 
(r13 = .80). 

Although our multiple correlation of r1.23 was indeed higher than either of the 
single predictors' correlations, the single predictors did quite well for themselves 
(rs of .70 and .80) working alone. It is surprising to some to see that adding a second 
variable as a predictor does not raise the multiple correlation more than was the case 
here, where a single predictor's correlation of .80 (r13) was raised only to .846 when 
a second, also very good predictor, was added (r12 = .70). What kept the multiple 
r from showing a greater improvement was the fact that the predictor variables were 
mostly doing the same job. We get our largest benefit in going from one to two good 
predictors when each is predicting different aspects of the dependent variable. As the 
correlation between two predictors gets lower and lower, the predictive benefits of 
adding another good predictor grow increasingly larger. In fact, when the correlation 
between the two predictors is .00, Equation 11.18 simplifies to 

(11.19) 

In short, when predictor variables are uncorrelated with each other, the multiple 
correlation is simply the square root of the sum of the squared correlations of each 
predictor variable with the dependent variable. We gave a simple example of this 
relationship in Table 11.3 earlier in this chapter. 

EFFECTS OF VARIABILITY ON 
CORRELATIONS 

Suppose we are developing a new test to help college admissions committees select 
the students who will be more successful during their first year of college. Among 
the various possible criteria of success, we might choose first-year grade point average 
(GPA). As part of our preliminary validation efforts, we administer our new test to a 
class of graduating high school seniors and correlate these test scores with the seniors' 
overall high school GPA. The correlation we find is impressively high, r = .60, and 
the standard deviation of our new test is 100. 

In a subsequent validation study, we compute the correlation between (a) first­
year college students' scores on our new test and (b) their first year college GPA. We 
lind this correlation to be .35, which is a substantial drop from .60. Should we regard 
this drop in validity coefficients from .60 to .35 as reflecting a "failure to replicate" 
our noticeably higher validity correlation? Probably not. 

On a test designed for high school seniors as part of their college admissions 
process, our test takers include, by and large, all the students who may be applying 
for college admissions. We would expect to find greater variability in those high 
~chool students' test scores (e.g., S = 100) than we would expect to find for high 
Sl"hool seniors who are actually accepted (e.g., S = 50) into the selective college of 
their choice. Correlations usually shrink in magnitude when the samples shrink in 
v"riability on either of the variables being correlated. This fact was recognized long 
"go by Karl Pearson, who proposed a solution to this problem (Guilford, 1950). 
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Correcting for Restriction of Variability 

Pearson's solution was an equation that can be used when the variables being correlated 
are normally distributed. He showed how to compute the predicted value of a correlation, 
R12, based on the full unrestricted variability of the correlated variables from a knowledge 
of three factors: (a) the correlation n2 restricted obtained between the two variables with 
shrunken, restricted variabilities (Srestricted); (b) the standard deviation of the full variability 
(Sfull); and (c) the standard deviation of the shrunken or restricted variability (Srestricted). 

In our example of a new test for college admission, the correlation between the high 
school seniors' test scores and their high school GPA is R12. The variability of the new 
test for these high school seniors is Sfull, and the correlation between first-year college 
students' selection test scores and their GPA is r12 restricted. The following equation shows 
Pearson's solution: 

( Sfull ) 
r12 restricted Srestricted 

R12 full = ~r========~~=~:'===~ 
2 2 (SfUU)2 1 - r12 restricted + r12 restricted S . d 

restncte 

(11.20) 

As an aid to conceptualizing the relationships among the four variables of 
Equation 11.20, we can display them as a 2 x 2 table: 

Variability 

Correlation 

Restricted 

Srestricted 

rl2 restricted 

Unrestricted 

Sfull 

RI 2full 

For our example of a new test for college admission, using Equation 11.20 we find 

R12full = j 2 

1 - (.35)2 + (.35)2 (150g) 
.70 .70 60 

/1 - .1225 +.49 = 1.17 =. , 

which is the value we had originally found when we correlated high school seniors' 
selection test scores with their grade point averages. 

From this result of our application of Pearson's equation, we learn that the 
validity coefficient (r12 restricted) of .35 for the college students was not a failure to 
replicate the validity coefficient (R12 full) of .60, but the simple inexorable conse­
quence of having a more highly selected and therefore a less variable sample of 
students. In fact, knowing of Pearson's correction for restriction of variability, we 
could have predicted the magnitude of the validity coefficient for our college 
sample (i.e., r12 restricted) by rearranging the terms of Equation 11.20 and then solving 
for r12 restricted, as in the following: 

R ( Srestricted ) 
12 full Sfull 

r12 restricted = ~r======~====:'=:'===-
1 R2 + R2 ( Srestricted )2 

- 12 full 12 full Sfull 

(11.21) 
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One example of our use of Equation 11.21 is to recall that we had started the 
validation process for our new test with the high school sample and found for that 
sample a validity coefficient of r = .60. In planning our next study we decide to go 
to a less heterogeneous sample of college students. Given our more heterogeneous 
sample r of .60, and variabilities of (a) college students' Srestricted = 50 and (b) high 
school students' Sfull= 100, we would find 

.60(150~) 
TiZrestricted = )1 _ (.60)Z + (.60)Z (l~~r 

= .30 .30 35 
/1 - .36 + (.36)(.25) = m =. , 

the value we found when we correlated college students' test scores with their grade 
point averages. 

Correcting for Expansion of Variability 

In the early stages of the development of a new test, it is often wise to begin to 
establish criterion validity by administering the test to extreme groups that should earn 
very different average scores on the new test. For example, if a new test of physical 
fitness cannot differentiate Olympic athletes from patients who have been advised to 
begin exercising by their concerned physicians, the new test of physical fitness holds 
little promise. If a new test of anxiety level cannot distinguish patients hospitalized 
for anxiety disorders from well-functioning college students who have never felt 
excessive anxiety, the new test of anxiety holds little promise. But what if the new 
tests do a very good job of discriminating our two extreme groups? What if criterion 
validity correlations are in the .70s? Can this marked success be problematic? It could 
be, if our longer term plan is to use the new tests for the entire population, most of 
whom will have far less extreme scores on the tests. 

To get some sense of how well a new test will do (Le., as an estimate of criterion 
validity) for the overall population of interest, we can use Equation 11.21 rewritten 
with changed, more appropriate subscripts as 

R (Sfun) 1Z extreme Sextreme 
rlZ full = -----;r===============",,< 

Z Z (Sfun)Z 1 - R 12 extreme + R 1Z extreme -s-­
extreme 

(11.22) 

For example, assume a preliminary estimate of criterion validity of r = .70 based 
on extreme groups, with a standard deviation of our measure of Sextreme = 7.0. As an 
estimate of the validity coefficient we might expect when we use the full distribution 
Ilf scores (Stull = 2.0) on our new measure, we find from Equation 11.22: 

. (2.0) (.70) 715 .20 
Tizfun = / Z = ./35 = .27, 

1 - (.70)Z + (.70)Z (~:~) . 
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a remarkable drop in validity levels from r = .70 to r = .27, but one that we could 
have expected had we wanted to use our new test with a full range of scorers rather 
than only with extreme scorers. 

Clarifying Correlations by Subgroup Analysis 

Suppose we have used two measures of communication skill in a pilot study of the 
relationship between language ability and sensitivity to nonverbal communication. 
Scores for the first eight participants are shown in the scatter plot of Figure 11.5. The 
plot suggests a positive linear relationship between these two variables, and when 
computed, we find r = .80, a very substantial degree of correlation. 

While examining this plot to understand it better, we may recall that, in general, 
females perform better than males on various measures of language ability. Suppose our 
records show that Participants a, b, c, and d are males, and Participants e, f, g, and h are 
females. We also note, perhaps as expected, that the females' mean score on variable X 
(language ability) is 3.5 compared to males' mean score of 1.5. We see a similar degree 
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FIGURE 11.5 
Scores of eight participants on two measures of communication skill. 
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of superiority of females over males on variable Y (sensitivity to nonverbal communication), 
with means of 3.5 and 1.5 for females and males, respectively. That our female partici­
pants scored so much higher than the male participants suggests that some of the linearity 
apparent in Figure 11.5 may be due to female superiority on both X and Y variables. In 
fact, when we follow up this hunch with separate correlations between variables X and 
Y, we discover that, for the male participants alone, and for the female participants alone, 
the correlation rxy is exactly zero. 

In this example we found that combining subgroups (females and males) created 
sizable correlations where none were found in the subgroups considered separately. 
We sometimes find the opposite phenomenon: Sizable correlations found in several 
subgroups may shrink. They may sometimes shrink to zero, or even reverse their sign, 
when subgroups are combined. These phenomena often occur because of differences 
in means (on the X and Yaxes) among the various subgroups. 

The concepts and computations of correlations, broadly defined, are so central 
to the data-analytic enterprise that we shall have occasion to refer to those concepts 
and to those computations repeatedly in the chapters that lie ahead. 
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The dual purpose of this chapter is to illustrate how a power analysis is done and to 
delve further into the concept of an effect size indicator. In chapter 2 we first mentioned 
that the power of a significance test (defined as 1 - 13) is the probability that the test 
will reject a null hypothesis (Ho) that is false and should, therefore, be rejected. We 
also introduced the conceptual relationship stating that significance test = size of 
effect X size of study (discussed again in the previous chapter, Equation 11.10). The 
implication is that the larger the observed magnitude of effect, or the greater the total 
number of observations, the larger will be the value of the significance test, and therefore 
the smaller its associated p value. There are a number of strategies for improving 
statistical power, but the one that is probably most familiar to behavioral researchers 
is to increase the sample size. In this chapter we provide simple tables for estimating 
the number of sampling units needed to detect a particular magnitude of effect at a 
given p level and a specified level of statistical power. What if the effect size is so 
small that it may be unreasonable to think that an adequate number of subjects will 
be available? One possibility is to replicate the study and, assuming the results are 
similar, to estimate the overall (combined) p of the original study and the replication 
after pooling the results meta-analytically (illustrated at the end of this chapter). 

354 
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However, you may be wondering why a detailed discussion of statistical power 
is needed, as we also stated that the primary coin of the realm when behavioral 
researchers speak of "the results of a study" should not be whether the p values of 
their tests of statistical significance are .05 or less. Instead, it should be information 
about the magnitude of the research finding (i.e., the effect size) and its accuracy or 
reliability (e.g., a confidence interval around the effect size). Although it is certainly 
true that "the initial emphasis on power analysis spearheaded by Cohen (1962) has 
now given way to a more sophisticated emphasis on precision of estimation," it is 
also true that "there are numerous obstacles to change in behavioral studies practice" 
(Steiger, 2004, pp. 178-179). For example, funding agencies frequently insist that a 
power analysis be included in a grant application to ensure that the resources requested 
will not be wasted in a study that implies the use of significance testing but has little 
chance of statistically detecting an effect that exists. Furthermore, statistical reforms 
regarding the use and interpretation of effect sizes and interval estimates (Wilkinson 
et aI., 1999) have not been fully absorbed into the mainstream of behavioral research 
(Fidler, Thomason, Cumming, Finch, & Leeman, 2004; Thompson, 1999). An unfortunate 
consequence is that researchers sometimes give up prematurely on promising hypoth­
eses when they mistakenly interpret an underpowered significance test's failure to 
detect an existing effect as indicating "no effect." 

Some years ago, Jacob Cohen, in his seminal book Statistical Power Analysis 
for the Behavioral Sciences (1969, 1988), noted that without a conception of the 
relative seriousness of Type I to Type II errors (i.e., the risk of false Ho rejection to 
the risk of false Ho acceptance), researchers who do null hypothesis significance testing 
tend to handicap themselves by working with ridiculously low power. We begin by 
drawing on Cohen's conception to operationalize the effect of the neglect of power. 
How much statistical power is needed? We describe Cohen's benchmark recommendation, 
but the number of units or observations needed depends on the anticipated magnitude 
of the effect, the preferred p level, and the available resources. You may be thinking; 
"Isn't the purpose of doing research to find out the size of the effect? So how can we 
realistically anticipate its size?" There are, in fact, several options. One is to do a 
literature search and, assuming similar circumstances will be operating in the planned 
study, to base our estimate of the anticipated effect size on the average effect size 
reported in the literature. A second option is to rely on preliminary data in a pilot study 
10 help us make a plausible estimate of the size of the effect in the full study. A third 
option is simply to assume that "medium-sized" effects are probably typical in the area 
of investigation, which often seems to be the case in behavioral and social research 
(d. Brewer, 1972; Chase & Chase, 1976; Cohen, 1962, 1973; Haase, Waechter, & 
Solomon, 1982; Sedlmeier & Gigerenzer, 1989). Cohen's definitions of "medium" 
effects (and also "small" and "large" effects) are discussed in this chapter. 

Nonetheless, we cannot stress too strongly our preference for effect sizes and 
confidence intervals rather than the counterproductive practice of interpreting as "anti­
Ilull" any p that is not greater than .05 and as "pro-null" any p that is greater than 
.05. It may not be an exaggeration to say that, for many Ph.D. students, the .05 alpha 
h.IS acquired an ontological mystique. A dissertation p less than .05 means joy, a 
doctoral degree, and a tenure-track position, but a p greater than .05 means ruin, 
despair, and the adviser's suddenly thinking of a new control group that should be 
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run. Gigerenzer (1987) and associates (Gigerenzer & Murray, 1987; Gigerenzer et al., 
1989), in discussions that examined the development of statistical inference, noted 
that the idea of dichotomous significance testing was initially developed out of 
agricultural experimentalists' need to answer questions such as "Is the manure effective?" 
It may be harder to object to the necessity of an accept-reject approach when the 
question is phrased in exactly that way, but the composition of behavioral research 
data, certainly, is substantively different, as is the phraseology of the questions that 
behavioral researchers attempt to address. R. A. Fisher at one point (largely as a 
reaction against the criticisms of J. Neyman and E. S. Pearson) objected to the idea 
of a fixed, dichotomous decision-level approach and instead recommended a cumulative, 
more provisional conception of statistical data analysis in science (Gigerenzer, 1987, 
p.24). 

Fisher's objection is not to imply that confidence intervals around effect sizes are 
unaffected by power. Table 12.1 shows 99%, 95%, and 90% confidence intervals for 

TABLE 12.1 
99%,95%, and 90% confidence intervals (Cl) for r = .1, .3, and .5 in samples of 10 to 800 

N r = .1 r = .3 r = .5 

10 I' 99%CI: -.70 to +.79 99%CI: - .58 to + .86 99%CI: -.40 to +.91 
95%CI: - .57 to + .69 95%CI: - .41 to + .78 95%CI: -.19 to +.86 
90%CI: -.48 to + .62 90%CI: -.30 to +.73 90%CI: - .07 to + .82 

20 99%CI: -.48 to + .62 99%CI: -.31 to +.73 99%CI: - .08 to + .83 
95%CI: -.36 to + .52 95%CI: -.16 to +.66 95%CI: +.07 to +.77 
90%CI: - .29 to +.46 90%CI: -.09 to +.61 90%CI: +.15 to +.74 

30 99%CI: -.38 to +.53 99%CI: -.18 to + .67 99%CI: +.05 to +.78 
95%CI: -.27 to + .44 95%CI: - .07 to + .60 95%CI: +.17 to +.73 
90%CI: -.21 to +.39 90%CI: -.01 to + .56 90%CI: +.23 to +.70 

40 99%CI: -.31 to +.48 99%CI: -.11 to +.62 99%CI: +.13 to +.75 
95%CI: - .22 to +.40 95%CI: - .01 to + .56 95%CI: +.22 to +.70 
90%CI: -.17 to + .35 90%CI: + .04 to + .52 90%CI: + .27 to + .67 

50 99%CI: - .27 to +.44 99%CI: - .07 to + .59 99%CI: +.17 to +.73 
95%CI: -.18 to +.37 95%CI: + .02 to + .53 95%CI: + .26 to + .68 
90%CI: -.14 to +.33 90%CI: + .07 to + .50 90%CI: + .30 to + .66 

100 99%CI: -.16 to +.35 99%CI: + .05 to + .52 99%CI: + .28 to + .67 
95%CI: -.10 to +.29 95%CI: +.11 to +.47 95%CI: +.34 to + .63 
90%CI: - .07 to + .26 90%CI: +.14 to +.44 90%CI: +.36 to + .61 

200 99%CI: - .08 to + .28 99%CI: +.13 to +.46 99%CI: +.35 to + .62 
95%CI: -.04 to + .24 95%CI: +.17 to +.42 95%CI: + .39 to + .60 
90%CI: -.02 to +.21 90%CI: +.19 to +.40 90%CI: +.41 to +.58 

400 99%CI: - .03 to + .23 99%CI: +.18 to +.41 99%CI: +.40 to + .59 
95%CI: .00 to +.20 95%CI: +.21 to +.39 95%CI: +.42 to + .57 
90%CI: +.02 to +.18 90%CI: + .22 to +.37 90%CI: +.44 to + .56 

800 99%CI: +.01 to +.19 99%CI: + .22 to +.38 99%CI: +.43 to + .56 
95%CI: +.03 to +.17 95%CI: + .24 to +.36 95%CI: + .45 to + .55 
90%CI: +.04 to +.16 90%CI: + .25 to +.35 90%CI: + .46 to + .54 
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three levels of effect size rs (.1, .3, and .5), assuming zero effect null hypotheses, with 
samples ranging from N = 10 to N = 800. For example, with a total N of 100 and an 
observed effect size r of .30, we can state with 95% confidence that the true population 
effect size r is between .11 and .47. Given the same observed effect size r of .3, but 
quadrupling the size of the sample to an N of 400, we see that the 95% CI is noticeably 
smaller, from .21 to .39. Within each batch of confidence intervals, it is evident that the 
interval is wider as the confidence level increases from 90% to 95% to 99%. If we 
wanted to be 100% confident, we could say the true population effect size r is between 
-1.0 (the lower limit of r) and 1.0 (the upper limit). 

THE NEGLECT OF STATISTICAL POWER 

Although leading textbooks on psychological statistics in the 1950s and 1960s routinely 
mentioned statistical~ power (e.g., Edwards, 1964; Guilford, 1956; Hays, 1963; 
McNemar, 1962; Siegel, 1956; Walker & Lev, 1953; Winer, 1962), the design implica­
tions of power analysis did not make their way into the consciousness of psychological 
researchers until quite recently. In the 1960s, in a series of articles and invited chap­
ters, culminating in his seminal book published in 1969, Cohen pioneered in demon­
strating that null hypothesis significance testing in behavioral research is conducted 
with a remarkably high risk of committing Type II errors. In an early meta-analysis, 
he reported the median power for detecting what he characterized as "medium" effects 
at Cl = .05 in articles published in the Journal of Abnormal and Social Psychology 
during a single year (1960) was no better than flipping a coin (Cohen, 1962). Indeed, 
the odds were better than 50:50 that the null hypothesis would not be rejected when 
false. In an article entitled "Do Studies of Statistical Power Have an Effect on the 
Power of Studies?" which was published nearly three decades later, Sedlmeier and 
Gigerenzer (1989) reported that the median power of studies in the same journal was 
slightly worse. 

Cohen (1969) proposed a convenient way to operationalize the relative seriousness 
of the neglect of power in any given situation by simply examining the ratio of 13 to 
Cl. For example, suppose a researcher has set Cl at .05 and is conducting a test of 
significance with power = .40, in which case 13 is 1 - .40 (or .60), and the I3/Cl ratio 
becomes .60/.05 = 12. In other words, the researcher ostensibly believes that mistakenly 
rejecting the null hypothesis should be regarded as 12 times more serious than 
mistakenly accepting it. Table 12.2 shows the ratio of I3/Cl for sample sizes from 10 to 
1,000 under the conditions of assumed effect size noted in Table 12.1 (rs of .1, .3, and .5) 
and two levels of statistical significance (p = .05 and p = .10). The generally greater 
weight attached to the avoidance of Type I errors relative to Type II errors clearly 
increases the smaller the effect size r, the smaller the N, and the more stringent the 
level of significance. Some cptics have argued that psychologists working in labs 
typically have ample power to detect even "small" effects (to be defined shortly), on the 
assumption that error terms are usually small in lab studies (because of homogeneous 
samples and highly standardized procedures). However, Table 12.2 shows that at 
r = .1, a small sample (say, N = 20, or 10 per group), and a binary decisional p = .05, 
significance testing will be a precarious exercise (I3/Cl = 19). 
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TABLE 12.2 

Ratios of Type II to Type I error rates (Il/a) for various 
sample sizes, effect sizes, and significance levels (two-tailed) 

EtTect sizes (r) and significance levels (.05 and .10) 

r = .10 r = .30 r = .50 

N .05 .10 .05 .10 .05 .10 

10 19 9 17 8 13" 5b 

20 19 9 15 6 7" 2b 

30 18 8 13 5 3 

40 18 8 10 4 2 * 
50 18 8 9 3 * * 
60 18 8 7 2 * * 
70 17 8 6 2 * * 
80 17 8 4 * * 
90 17 8 4 * * 

100 17 7 3 * * * 
120' 16 7 2 * * * 
140 16 7 * * * 
160 15 6 * * * * 
180 15 6 * * * * 
200 14 6 * * * * 
300 12 5 * * * * 
400 10 4 * * * * 
500 8 3 * * * * 
600 6 2 * * * * 
700 5 2 * * * * 
800 4 * * * 
900 3 * * * * 

1000 2 * * * * 

'Values less than I. 

a For r = .70 these ratios drop to 6 and < I, respectively. 

b For r = .70 these ratios drop to 2 and <I, respectively. 

Given that alpha is typically set at .05, Cohen (1965) recommended .80 as a 
baseline of the statistical power usually needed in behavioral research. With power 
set at .80, it follows that 13 = .2, and the l3/a ratio (.2/.05 = 4) implies that Type I 
error is regarded as 4 times more serious than Type II error. Setting the power higher 
than .80 obviously reduces the l3/a ratio. With power at .90 and a at .05, Type I error 
would be regarded as 2 times more serious than Type II error (.1/.05 = 2). If the 
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effect size is small and recruiting subjects is expensive, the cost in terms of the 
number of sampling units needed may be prohibitive. Nonetheless, it behooves every 
researcher who does null hypothesis significance testing to be mindful of the potential 
constraints imposed by the neglect of statistical power. 

In the next section we describe the principal effect size indices operationalized in 
Cohen's (1988) text on power analysis. Before we do so, however, we want to reiterate 
our suggestion in chapter I that, when it is necessary to make a decision to convert all 
the effect size measures to a particular index (e.g., in meta-analytic work), the correlation 
family is the most generally useful. If our research calls for a comparison of two groups, 
we might use Cohen's d (Equation 2.4), or Hedges's g (Equation 2.5), or Glass's a 
(Equation 2.6). In practice, effect sizes are often needed for comparisons that are based 
on more than two groups, for example, in computing linear trends or any other predicted 
pattern of three or more means (Rosenthal, Rosnow, & Rubin, 2000). In such cases it 
is not as natural to use a two-group-based effect size indicator, but it is quite natural to 
use a member of the r family of effect size indicators (discussed in chapter 15). We will 
note ways of converting certain effect sizes to rand r-type indices (viz., Fisher's Zr), and 
we will show how to conceptualize the study design so that an effect size r can be 
directly estimated. Even when all we have are minimal raw ingredients, we still are able 
to compute an interpretable effect size r, as illustrated next. 

THE Tequivalent STATISTIC 

Suppose all we have are the total sample size (N) and an accurate p value, but nothing 
else. A quite serviceable approach to estimating an interpretable effect size r is the 
requivaIent procedure (Rosenthal & Rubin, 2003). It takes its name from the fact that 
the estimated r is equivalent to a sample point-biserial correlation (rpb) between the 
treatment indicator and an exactly normally distributed outcome in a two-treatment 
experiment with N /2 units in each group and the obtained p value. All that is needed 
to compute requivaIent is to identify the value of t that corresponds to the accurate p 
(usually with df = N - 2) and simply to substitute in the following equation (which 
is a variation on Equation 11.11): 

~ 
r = V f2+dj' (12.1) 

where r in this case refers to requivaIenh and t can be obtained from a standard table 
such as Table B.2 or B.3 in Appendix B. This procedure is especially useful when (a) 
in meta-analytic work, or in other reanalyses of others' studies, neither effect sizes 
nor significance test statistics (such as an obtained t or F value) are provided, but 
only p values and sample sizes are given; (b) no effect size index has yet been 
generally accepted for the data-analytic procedure used (as is true of certain 
nonparametric statistics, such as the Mann-Whitney U test); or (c) an effect size 
estimate can be computed directly from the reported data, but because of small sample 
sizes or severe nonnormality, the estimates may be seriously misleading. 

Say that all we have available from a study report is the result of a Mann­
Whitney U test, which is commonly used in small sample studies by experimenters 
who want to avoid the t test's assumptions. Expert judges were used to rank the 
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performance of nine children on a reading-ability measure. Four of the children were 
randomly assigned to a condition (the treatment) in which they were taught by a new 
method, and five children were taught by an old (control) method. And let us further 
assume that all four treated children were ranked higher than any of the five control 
children. This outcome would yield an exact probability of .008, one-tailed Mann­
Whitney U (Siegel, 1956, p. 271). Given p = .008 and N = 9, ted! = 7) = 3.16, and 
from Equation 12.1 (d! = N - 2) we find 

(3.16)2 

When reporting this result, we would also want to report an interval estimate, 
which is typically the 95% confidence interval. In this case we use the procedure 
described in the previous chapter in connection with Equation 11.3; that is, 95% 
CI = Zr ± 1.96//N - 3. For requivalent = .77, we see in Table B.7 that Fisher Zr = 1.02, 
and so the 95% CI extends from a Zr of .22 to a Zr of 1.82. Using Table B.8 to 
transform this 95% CI into units of r gives us an interval from r = .22 to .95. 

The requivalent method can be used to estimate an effect size r in any two-group 
comparison of means of a normally distributed outcome. As we show in chapter 15, a 
limitation of Equation 12.1 is that with more than two treatment conditions, this formula 
is an estimate of what we call rcontrast. The distinction is that relfect size is the unpartialed 
correlation between group (or condition) membership and individual scores on the 
dependent measure, and rcontrast is the partial correlation (with noncontrast variation 
removed) and therefore tends to overstate what might be viewed as the more natural 
effect size correlation (i.e., relfect size). In any two-group comparison, however, rcontrast is 
equivalent to relfect size because there is no noncontrast variation to be partialed out. 

COHEN'S MULTIPURPOSE POWER TABLES 

The expression power analysis is another umbrella term, as it may refer to estimating 
the number of sampling units needed to detect a particular magnitude of effect at a 
stipulated IX, or to estimating the statistical power of a study already conducted. The 
way these procedures work involves estimating one of four parameters from our 
knowledge of the other three. For example, given a p level, an effect size value, and 
the number of subjects participating in a study, we can estimate the power of an 
already completed study, which we call the effective power. Suppose the study design 
was based on equal sample sizes, but something unexpected happened and we ended 
up with more no-shows in one group. In the next chapter we will show how to 
estimate the loss of power in an unequal-n study relative to an equal-n design. In 
some situations, however, a study may be specifically designed to allocate the subjects 
to various conditions unequally, the objective being to "optimize" statistical power by 
emphasizing some conditions over others. We have more to say about this approach 
in chapter 15, but by far the most common reason for a power analysis is to estimate 
the number of sampling units that will be needed in an equal-n study (given an IX, 

the desired level of power, and an anticipated magnitude of effect). 
Table 12.3 is a composite based on seven of Cohen's (1988) effect size indicators 

for use in a power analysis. In the first column, the effect size d is based on the t test 
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TABLE 12.3 

Multipurpose power tables with sample size estimates 

Statistic 

r rl - rz P - .50 PI - Pz Xz F 

Effect size index d r q g h w f 

Effect size: 

Small .20 .10 .10 .05 .20 .10 .10 

Medium .50 -.30 .30 .15 .50 .30 .25 

Large .80 .50 .50 .25 .80 .50 .40 

A. Sample size (rounded) required to detect "medium" effect at p = .05 two-tailed 

F (df = 1 in 
Power r rl -rz P - .50 PI - Pz x2(df = 1) numerator) 

.25 14 20 40 20 13 18 14 

.50 32 42 88 44 31 43 32 

.60 40 53 112 54 39 54 40 

.70 50 67 140 67 49 69 50 

.75 57 75 157 75 56 77 57 

.80 64 85 177 85 63 87 64 

.85 73 97 203 97 72 100 73 

.90 85 113 236 113 84 117 85 

.95 105 139 292 138 104 144 105 

.99 148 195 411 194 147 204 148 

Definition of n a b c d c d a 

(see note below) 

II. Sample size (rounded) required to detect "medium" effect at p = .01 two-tailed 

F (df= 1 in 
I'ower r rl -rz P - .50 PI - Pz x2(df = 1) numerator) 

.25 31 40 83 44 29 40 31 

.50 55 72 150 74 53 74 55 

.60 66 87 181 88 64 89 66 

.70 79 103 217 105 77 107 79 

.75 86 113 2~8 115 85 117 86 

.KO 95 125 263 127 93 130 95 

.K5 106 139 293 141 104 145 106 

.90 120 158 334 160 119 165 120 

.95 144 189 399 191 143 198 144 

.99 194 254 537 255 192 267 194 

f~~_ ... ':.~ •• ~A\ 
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TABLE 12.3 (continued) 

C. Sample size (rounded) required to detect "small" effect at p = .05 two-tailed 

F (df = 1 in 
Power r rl - r2 P - .50 PI - P2 X2(df = 1) numerator) 

.25 84 168 333 166 83 165 84 

.50 193 386 771 384 192 384 193 

.60 246 491 983 489 245 490 246 

.70 310 617 1,237 616 309 617 310 

.75 348 692 1,391 692 347 694 348 

.80 393 784 1,573 783 392 785 393 

.85 450 896 1,799 895 449 898 450 

.90 526 1,048 2,104 1,047 525 1,051 526 

.95 651 1,295 2,602 1,294 650 1,300 651 

.99 920 1,829 3,677 1,827 919 1,837 920 

Note: The definitions of n indicated at the bottom of Section A are symbolized as follows: a = each group or condition; 
b = n of score pairs; c = n of each sample; and d = total N. 

(The sample sizes are based on tables in Statistical Power Analysis for the Behavioral Sciences (2nd ed.), by J. Cohen, 
1988, Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers, and on Foster's (2003) METASTATS software.) 

;> 

for independent means (e.g., Equation 11.9), where the null hypothesis is Ml - M2 = O. 
The next effect index is 1; the point-biserial correlation discussed in the previous 
chapter. Cohen's recommended test of the null hypothesis that r = 0 is again based 
on the t distribution (e.g., Equation 2.2). The effect size q (in the third column) refers 
to the difference between two independent Fisher Zr transformed correlations. The null 
hypothesis is that Zrl - Zr2 = 0, and the significance test might be Z (as we illustrate 
shortly), from which we get a p value from which we can get the value t that will let 
us use Equation 12.1 to compute the r equivalent statistic. Next in the table is the effect 
size index g, which is different from Hedges's g and is instead the difference between 
an observed proportion (symbolized in Cohen's text by a capital P) and .50. The null 
hypothesis is P - .50 = 0, and Cohen's test of significance is the sign test, which is 
a nonparametric procedure that uses plus and minus signs rather than quantitative 
measures as its data (Siegel, 1956). Next is the effect size index h, which measures 
the difference between independent arcsine-transformed proportions; the null hypoth­
esis is that this difference is zero. The effect size index w is that for the chi-square 
test (Equation 11.13, discussed in more detail in chapter 19), although the sample 
sizes in Table 12.3 refer only to I-df X2 tests. Finally, the effect size f is for F tests 
on means in the analysis of variance, but the sample sizes in Table 12.3 refer only to 
F tests with numerator df = 1 based on a comparison of the means of two samples. 

Cohen's quantitative definitions of "small," "medium." and "large" effect sizes 
are shown in the top panel of Table 12.3, and the values in the body of the table are 
the rounded sample size estimates. In Section A, the statistical power and sample size 
equivalences are given for an alpha level of .05 two-tailed and the assumption of 
"medium" effects. Section B shows equivalences for "medium" effects at ex = .01 
two-tailed, and Section C shows the equivalences for "small" effects at ex = .05 
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two-tailed. One other important feature is that the definition of sample size is not the 
same for all seven statistics. Sample sizes for t and F are for "each group or condi­
tion"; those for r are for "n of score pairs"; those for rl - r2 and PI - P2 are for "n 
of each sample"; and those for P - .50 and X2 are for "total N." 

Whenever Table 12.3 involves a comparison of two samples (e.g., t, F, rl - r2, 
PI - P2), the sample sizes are assumed to be equal. If the sample sizes are unequal, 
we can use the harmonic mean sample size (nh) to provide an approximate n. The 
harmonic mean sample size for two samples of nl and n2 size is obtained by 

(12.2) 

In an equal-n design, the harmonic mean sample size is equal to the arithmetic mean 
sample size, but in an unequal-n design, the harmonic mean sample size is always 
smaller than the arithmetic mean sample size. Suppose we have two groups with 
sample sizes of 12 and 18. The arithmetic mean sample size is n = (12 + 18)/2 = 
15, and the harmonic mean sample size is 

2(12 X 18) 
nh = 12 + 18 = 14.4 

We also want to note that Cohen's benchmark labels of "small," "medium," and 
"large" are for use solely with his power tables. Cohen (1988) advised that effect sizes 
should be interpreted "relative not only to each other, but to the area of behavioral 
science or even more particularly to the specific content and research method being 
employed in any given investigation" (p. 25). Nonetheless, many researchers cite 
Cohen's benchmark labels as if they were context-free, though he specifically cautioned 
that "the meaning of any given ES [effect size] is, in the final analysis, a function of 
the context in which it is embedded" (p. 535). In the previous chapter we showed 
that even small effects (by Cohen's definition) can sometimes be loaded with profound 
practical implications (see again Table 11.8). 

Table 12.3 reveals a number of fundamental relationships in the subtables in 
Sections A, B, and C. First, as the statistical power increases from .25 to .99 in these 
subtables, the sample size needed for each significance test also increases. Second, 
the more stringent or conservative the p value, the more sampling units needed, so 
that more units are needed with p = .01 two-tailed than with p = .05 two-tailed. 
Third, as a comparison of Sections A and C will reveal, the smaller the effect size, 
the more sampling units needed at the same significance level. Fourth, different 
statistics call for different sample sizes to detect the same benchmark levels, so, for 
example, it will take fewer units for r than for n - r2 (we explain why shortly). 

THE t TEST FOR COMPARING 
TWO MEANS 

We have mentioned Cohen's d (Equation 2.4), Hedges's g (Equation 2.5), and Glass's 
A (Equation 2.6) as effect size indices for the difference between two means, but 
another option in some situations is the raw difference itself. Suppose we choose as 
Ihe dependent variable the daily number of cigarettes smoked by experimental and 
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control subjects. The raw difference between M, and M2 (where M is the mean number 
of cigarettes in a group) is intrinsically meaningful. As another example, suppose we 
want to compare a method of vocational rehabilitation to a control, and we have a 
record of the days that workers were reported absent in each condition. If we found 
that workers in the control condition averaged five more absences per month than did 
workers in the rehabilitation condition, this difference would be fraught with practical 
meaning. The point is that raw mean differences can, in some instances, be informative 
and useful as effect size indicators, whether we are analyzing differences in a specific 
study (Rosnow & Rosenthal, 2003) or making cross-study comparisons in the context 
of a meta-analysis (Bond, Wiitala, & Richard, 2003). 

Nonetheless, the most popular measure of effect size for comparing two means 
is Cohen's d, where the effect size is expressed in standard deviation units. Assuming 
two populations with equal variability and equal sample sizes, Cohen recommended 
dividing the difference between the sample means (M, - M2) by the standard deviation 
of either group (i.e., <T, or <T2) to obtain d. With <T, and <T2 unequal, he recommended 
dividing M, - M2 by the square root of the mean of the two variances for the 
denominator, that is, 

(12.3) 

As an all-purpose expression of Cohen's d in the case of two independent means, we 
recommend Equation 2.4: 

where the difference between two independent means is divided by the common 
within-group <T. For the sample sizes in Table 12.3, we see that when the power level 
is no better than a coin flip (.50), we need respective samples of 32, 55, and 193 in 
each group for the three combinations of the stipulated effect size d and the Q in 
Sections A, B, and C. Before we examine an extended power table, it is of interest 
to review how Cohen chose the benchmark values of small, medium, and large ds. 

For d = .2, Cohen (1988) reasoned that "in new areas of research, the effect 
sizes are likely to be small (when they are not zero!)" because "the phenomena 
under study are typically not under good experimental or measurement control or 
both" (p. 25). Assuming the populations being compared are normal and have equal 
variability, then if d is zero, the two distributions will perfectly overlap. With d = .2, 
the amount of nonoverlap will be 14.7%, because the two means are separated by 
one-fifth of a standard deviation difference, a "small" difference. An example was 
the larger size of the difference in mean IQ of non-twins as opposed to twins. 
Another example was the magnitude of the difference between the mean height of 
16-year-old girls and 15-year-old girls (about one-half inch, where <T = 2.1, for a 
rounded d of .2). For d = .5, Cohen (1988, p. 26) thought that a difference just 
"visible to the naked eye" was a good way of thinking about "medium" effects, and 
he theorized that ds of about .5 (one-half a standard deviation difference) should 
be visible, because there is 33% nonoverlap of the normal population curves. An 
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TABLE 12.4 

Sample size per group (n) needed to detect "small," "medium," and "large" 
differences between two independent means at various levels of power and 
statistical significance I 

d =.2 d =.5 d =.8 

.10 .05 .01 .10 .05 .01 .10 .05 .01 two-tailed p 

Power .05 .025 .005 .05 .025 .005 .05 .025 .005 one-tailed p 

.50 136 193 333 22 32 55 9 13 22 

.60 181 246 402 30 40 66 12 16 27 

.70 236 310 482 38 50 79 15 20 32 

.80 310 393 586 50 64 95 20 26 38 

.85 360 450 654 58 73 106 23 29 43 

.90 429 526 746 69 85 120 27 34 48 

.95 542 651 892 87 105 144 35 42 57 

.99 789 920 1203 127 148 194 50 58 77 

Note: The sample size values in this table are based on Foster's (2003) METASTATS program. 

example was the higher mean IQ of managers and professionals versus clerical and 
semiskilled workers (about 8 points, where (J" = 15, rounded to d = .5). For d = .8, 
Cohen (1988) thought that 47.4% nonoverlap of normal population curves might be 
a good indicator of a "large" effect (four-fifths of a standard deviation difference). 
An example was the mean IQ difference of typical Ph.D.s versus typical college 
freshmen, which he said was a "grossly perceptible and therefore large" difference 
(1988, p. 27). 

Table 12.4 focuses in on Cohen's three benchmark levels of d for two groups 
of equal size (nJ = n2). Values indicated in the body of the table refer once again to 
the sample size needed in each group. Suppose the researcher is interested in working 
with power of .80, sets a at .05 two-tailed, and predicts that the difference between 
means will be a half standard deviation (i.e., d = .5). Table 12.4 indicates that the 
researcher will need 64 subjects in each group. Had the researcher predicted the 
direction of the difference, then with a set at .05 one-tailed and statistical power of 
.80, the researcher would need 50 subjects in each group. 

We will provide conversion formulas for Hedges's g and Glass's Ll in the next 
chapter, but assuming equal-sized samples (n] = n2), we can transform Cohen's d into 
r as follows: 

IT 
r=Yd2+4 (12.4) 

Thus, a "medium" Cohen's d of .50 is equivalent to r = .24, which is interpreted as 
the correlation between the independent variable of group or condition (e.g., a 
treatment, usually coded as 1, vs. a control, usually coded as 0) and the score on the 
dependent or outcome variable for sample sizes found, or assumed on theoretical 
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grounds, to be equal. Notice that, although d = .5 is the benchmark level of a 
"medium" d, the r of .24 is slightly smaller than the benchmark level of a "medium" 
r (i.e., .3). We will have more to say about this discrepancy shortly. 

What if the sample sizes were inherently unequal? In that case we could use 
the following formula to convert Cohen's d into r: 

(12.5) 

where P denotes the proportion of the overall total sample (N) or population repre­
sented by the sample in one group (nl), and Q = I - P. Thus, P = (nl)/N, and Q = 
(n2)/N. As an illustration, say that we compare scores from patients with a rare 
disorder to scores from patients with common disorders, or to scores obtained from 
people in general. If the rare disorder occurs in 5% of people, then P = .05 and 
Q = .95. (Of course, when P = Q, then Equation 12.5 is equivalent to Equation 12.4.) 
The r obtained from Equation 12.5 is interpreted as the correlation between the 
independent variable of group or condition (e.g., a treatment, usually coded as 1, vs. 
control, usually coded as 0) and the score on the dependent or outcome variable for 
sample sizes that (a) are observed to be unequal and (b) are assumed on theoretical 
grounds to be inherently unequal. 

THE SIGNIFICANCE OF A 
PRODUCT-MOMENT r 

Cohen's effect size associated with the relationship between two variables is the 
product-moment r (Equation 11.1). Table 12.3 indicates the benchmark levels of small, 
medium, and large rs as .1, .3, and .5, respectively. As noted before, there is not 
consistently an exact correspondence between Cohen's benchmark levels for rand d. 
This fact is illustrated in more detail in Table 12.5, where we see that "small" rs and 
ds do not run afoul of Cohen's labeling convention. However, an r of .3 (a "medium" r) 
corresponds to a Cohen's d of .63, and an r of .5 (a "large" r) corresponds to a Cohen's 
d of 1.15 (a "jumbo" effect). As the third column of Table 12.5 shows, the relationship 
between Cohen's d and r is not a perfectly straight line. It is another reason not to 
mindlessly use the labeling convention when reporting effect sizes, but to specify the 
particular index and its precise value. 

Consulting the sample sizes in Table 12.3, we see that to achieve the "flipping­
the-coin" power level of .50 requires sample sizes of 42, 72, and 386 score pairs, 
respectively, for the three combinations of expected effect size and n shown in Sections 
A, B, and C. Comparing the effect sizes listed for the t statistic (i.e., effect size index d) 
and r reveal the sample sizes required for r to be uniformly higher. However, the entries 
under t are the ns for each of the two groups, whereas the entries for r are the total 
sample size. In fact, for most power levels, and for most effect sizes and n levels, the 
total sample size required by r is smaller than that required by the t statistic. Part of the 
reason for this difference is that the standard independent t test comparing two means 
cannot take advantage of both between-group and within-group linearity of regression. 
In chapter 15 we will describe a t test that does take advantage of this information and 
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TABLE 12.5 

Relation between r and Cohen's d, assuming two conditions 
of equal sample size 

r Cohen'sd d/r r Cohen's d d/r 

.01 .02 2.0 .35 .75 2.1 

.02 .04 2.0 .40 .87 2.2 

.03 .06 2.0 .45 1.01 2.2 

.04 .08 2.0 .50 1.15 2.3 

.05 .10 2.0 .55 1.32 2.4 

.10 .20 2.0 .60 1.50 2.5 

.15 .30 2.0 .70 1.96 2.8 

.20 .41 2.1 .80 2.67 3.3 

.25 .52 2.1 .90 4.13 4.6 

.30 .63 2.1 1.00 00 00 

therefore is more powerlul in multiple comparisons when there is a specific prediction 
about the pattern of the group means. To anticipate a little, the problem is explained by 
Table 12.6, which shows the scores of two subjects each in a control condition and an 
experimental condition, where the means are 3.0 and 7.0, respectively. 

TABLE 12.6 

Comparisons between two sets of scores 

A. No specific prediction other than McDotrol '* Mexperimeotal 

Within-condition 
Subject Condition specific prediction Score M 

Control None 2 
3.0 

2 Control None 4 

3 Experimental None 6 
7.0 

4 Experimental None 8 

B. Linear prediction that Subject 1 < Subject 2 < Subject 3 < Subject 4 

Within-condition 
Subject Condition specific prediction Score 

Control -3 2 

2 Control -1 4 

\ Experimental +1 6 

4 Experimental +3 8 
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Suppose the only prediction is that the means will be different, in which case t = 
2.83, df = 2, and p is approximately .11 two-tailed. In Equation 12.1, the effect size r 
associated with this t test is r = .895. Clearly, it would make no difference to the t 
test whether the two scores in each condition were in the order that is shown in Part A 
of Table 12.6, or if the order had been reversed within conditions (Subject 2 and 
then Subject 1 in the control condition, and Subject 4 and then Subject 3 in the 
experimental condition). The means remain unchanged, and those are what the standard 
t test is focused upon. However, suppose we had predicted (based on some theory) 
that Subject 1 would have the lowest score, Subject 2 would have a higher score, 
Subject 3 would have an even higher score, and Subject 4 would have the highest 
score. We can express this linear prediction by weights of -3, -1, + 1, +3. Correlating 
these four weights with the four individual scores gives r = 1.00, which is what it 
should be, as the prediction of a perfect linear relationship is confirmed by the pattern 
of the scores. The t test of this r is infinitely large, because there is no "within-group" 
variability (the "groups" are the subjects, and there is a single subject in each "group"). 
But if even one of the pairs of numbers of the experimental or control condition is 
interchanged, the r drops from 1.00 to .80 (t = 1.89, df = 2, p approximately .20 
two-tailed). Therefore, where there really is more nearly perfect linear regression 
between the predicted and obtained results, r is likely to be more powerful than the 
;$tandard t test comparing two independent means. The reason is that the t test has 
lost some information in the independent (or predictor) variable by dichotomizing the 
predictor values (-3, -1, +1, +3) into just two levels. 

Before leaving this discussion of 1; see Table 12.7, which is an extended table 
for use when alpha is set at .05 two-tailed (or .025 one-tailed). Suppose we had 
estimated that it was 95% likely that an effect size in the population would be 

TABLE 12.7 

Sample sizes (rounded) to detect r by t test at p = .05 two-tailed or .025 
one-tailed 

Effect size correlation (r) 

Power .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 

.25 664 168 76 44 29 21 16 13 10 9 8 7 6 5 

.50 1,538 386 172 97 63 44 33 25 20 16 14 11 10 8 

.60 1,960 491 218 123 79 55 41 31 25 20 16 14 12 10 

.70 2,469 617 274 154 99 68 50 38 30 24 20 16 14 12 

.80 3,138 784 348 195 124 86 63 48 37 30 24 20 17 14 

.85 3,589 896 397 222 142 98 71 54 42 34 27 22 19 16 

.90 4,200 1,048 464 260 165 114 83 62 49 39 31 26 21 18 

.95 5,193 1,295 573 320 203 140 101 76 59 47 38 31 25 21 

.99 7,341 1,829 808 451 286 196 142 106 82 65 52 42 34 28 

Note: Based on Amo Ouwehand's Power Calculator 2, available via UCLA Department of Statistics (http://calculators. 
stat.ucla.edu). 
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TABLE 12.8 

Planning the sample size 

Power r = .1 r =.2 r =.3 

.80 784 195 86 

.85 896 222 98 

.90 1048 260 114 

between r = .1 and .3. Using the infonnation in Table 12.7, we might create a sum­
mary like that in Table 12.8 to help us plan our study. To work with a power of 
.80 and p = .05 two-tailed, the total number of subjects we need is 784, 195, or 
86, depending on whether we want to place our bet on the r of .1, .2, or .3, 
respectively. If subjects were readily available and not costly to run, we might be 
more comfortable setting the power higher than .80. With the power set at .85, we 
need 896, 222, or 98 total subjects, given an r of .1, .2, or .3, respectively. With power 
set at .90, we will need a total N of 1,048, 260, or 114 subjects, given an r of .1, .2, 
or .3, respectively. 

DIFFERENCES BETWEEN 
CORRELATION COEFFICIENTS 

Cohen operationalized the difference between two independent correlation coefficients 
by the effect size index q, where 

Cohen's q = Zli - Z1'2, (12.6) 

which is the difference between the Fisher Zr transfonnations associated with each r. 
The Fisher Zr (Equation 11.2) makes equal differences between Fisher ir values equally 
detectable, because equal differences between rs are not equally detectable. For 
instance, the difference between .90 and .70 in units of r is much more detectable 
statistically than is the difference between .40 and .20. Tests of significance among rs 
are also more accurate when Fisher's Zr transfonnation is used (Alexander, Scozzaro, & 
Borodkin, 1989). As Table 12.3 shows, to achieve a power level of .80, we would 
need, respectively, 177, 263, and 1573 units for each r for the combinations of expected 
effect size and alpha indicated in Sections A, B, and C. 

Why should it be so difficult to detect the difference between the value of one 
r and another r when it is so much easier to detect the difference between the value 
of one r and zero? The answer lies in the difference between the confidence interval 
around a second observed 11 and that around a theoretical value of zero. The latter, of 
course, has no confidence interval, but the fonner has a real confidence interval "to 
he overcome." Consider an r of .30 based on an N of 45. The t associated with this 
,. is 2.06, and p < .05 two~tailed. The 95% confidence interval around the obtained 
,. is between .01 and .54. There is no overlap with zero. Suppose we wanted to com­
pare this r with another study with an r of zero based on the same sample size of 45. 
The confidence interval of the latter r ranges from -.29 to + .29 and overlaps 
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No overlap with zero; rl = .30. 

TZ vs 

-.30 -.20 -.10 o .10 .20 .30 .40 .50 .60 
''-------.v----'' 

(b) Overlap between rs; r2 = 0, rl = .30. 

FIGURE 12.1 
Comparison of a correlation coefficient with (a) a theoretical value of zero, and (b) a correlation 
coefficient of zero. 

considerably with the confidence interval of our r of .30, as represented in Figure 
12.1. It is this overlap that keeps the rs from being found to differ significantly. 

Table 12.9 is an expanded list of sample sizes needed to detect Cohen's q at 
p = .05 two-tailed. Suppose we hypothesize that the correlation between two tests 
will be higher for younger than for older children, because younger children show 
less cognitive differentiation (DePaulo & Rosenthal, 1979a). For our study we have 
available 30 younger children and 50 older children. We know that much larger sample 
sizes are necessary to obtain significant differences between two rs than to show a 
single r to differ from zero, but these 80 children are all we have. What we want to 
know is the level of power at which we will be operating, assuming various differences 
between our rs (measured in units of Fisher's Zr). To use Table 12.9, we need the 
harmonic mean of the two sample sizes, which we obtain from Equation 12.2: 

- 2nln2 - 2(30)(50) - 375 
nh - n1 + n2 - 30 + 50 - .. 

If we assume a "small" q of .10, then Table 12.9 shows we will clearly be operating 
at a level of power well below .25. With a "medium" q of .30, we are close to power 
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TABLE 12.9 

Sample sizes (n for each of two samples) needed to detect Cohen's q at p = .05 
two-tailed 

Values of Cohen's q 

Power .10 .20 .30 .40 .50 .60 .70 

.25 333 86 40 24 16 12 10 

.50 771 195 88 51 34 24 19 

.60 983 248 112 64 42 30 23 

.70 1237 312 140 80 52 37 28 

.80 1573 395 177 101 66 47 35 

.85 1799 452 203 115 75 53 40 

.90 2104 528 236 134 87 61 46 

.95 2602 653 292 165 107 75 56 

.99 3677 922 411 233 150 105 78 

Note: Based on Statistical Power Analysis for the Behavioral Sciences (2nd ed.), by J. Cohen, 1988, Hillsdale, NJ: 
Lawrence Erlbaum Associates, Publishers. 

of .25, but that is not as good as flipping a coin (50:50). Assuming a "large" q of .50, 
we will be working with power that is only a little better than a coin flip. 

Suppose another researcher has also investigated our hypothesis of different 
correlations for different age groups. By now we know not to take too seriously the 
finding of "no significant difference" apart from the actual effect size obtained. 
Therefore, when we learn of the other researcher's study, we go directly to the effect 
size and assess the power level at which the study was operating, given the obtained 
effect size as the best guess of the population value of the effect size (or given some 
other postulated population effect size). For this example, let us again assume sample 
sizes of 30 and 50 (nh = 37.5), and we now assume the obtained correlations are .60 
and .37. Converting each r into a Fisher Zr gives .69 and .39. In Table 12.9, with a 
population or true effect of q = .69 - .39 = .30, and nh rounded to 38, we conclude 
that the researcher was working with a power level well below .50. 

To operationalize an effect size 1; the one we want in the case of q (or rq) would 
he the correlation between (a) the magnitude of the relationship between two variables 
us computed in two different samples or studies and (b) some attribute that distinguishes 
the samples or studies. One way to conceptualize this idea is in a 2 X 2 analysis of 
variance design where the treatment is crossed by patient gender. The effect size 
indicator q can be viewed as an imlex of the magnitude of the interaction effect. For 
example, if we found a treatment effect of size Tt for the female patients and a 
treatment effect of size r2 for the male patients, the effect size q would index the 
extent to which the treatment effects differ for females and males. As F with df = 1 
in the numerator is equal to fl, given the value of the I-dfinteraction F, we can use 
ElJuation 12.1 to solve for rq• In this case, however, the df in the denominator of 
ElJuation 12.1 is defined as (nl - 3) + (n2 - 3). 
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Another way to estimate rq is by (a) comparing Fisher Zr values by a Z test, (b) 
using the p value of the Z test (and the sample sizes) to get an associated t value, and 
(c) then using Equation 12.1. We can illustrate this procedure with the results above, 
in which the Fisher Zr values of the obtained correlations of .60 and .37 (ns of 30 and 
50) are .69 and .39. To compare independent Zr values, we use a variant of a more 
general expression described later in this book (chapter 21): 

Z = Zrl - Zr2 

/ I l' --+--
nl-3 m-3 

(12.7) 

where Z is the standard normal deviate, and the other symbols are defined as above. 
Substitution gives us 

Z = .~9 -.39 I = 1.24, 

/30 - 3 + 50 - 3 

which we see in Table B.1 has an associated p of .1075 one-tailed. 
When looking up the critical t value, we use df = (nl - 3) + (n2 - 3). With 

df = 74 and p = .1075 one-tailed, we find t = 1.2507. Using Equation 12.1, with df 
now defined as (nl - 3) + (n2 - 3), we find 

rq = j (2 + (nl - :; + (n2 - 3) 

= 
(1.2507)2 _ 

(1.2507)2 + 27 + 47 - .144, 

where rq can be understood as the magnitude of the effect of a moderator variable. 
That is, we think of it as the effect of a third variable on the magnitude of the 
difference between the effect sizes in the different samples or studies. For example, 
think of how a 2 X 2 analysis of variance embodies three I-df comparisons (contrasts) 
that are essentially "wired in" (i.e., they are inherent in the design). One contrast is 
the I-df top-versus-bottom-row effect. The second contrast is the I-df left-versus­
right-column effect. The third contrast is the I-dfrow-times-column-interaction effect. 
It is the third contrast that is most relevant in this case, because it helps us conceptualize 
the moderator effect rq in terms of individual sampling units. This moderator effect 
is the correlation between each sampling unit's raw score and the interaction contrast 
weight (+ 1 or -1) assigned to that unit's condition. 

Before we leave this discussion, we want to say a little more about the idea of 
an effect size r of zero. Suppose that zero is the true population r. With random 
samples of N = 5 units each, the 95% confidence interval would range from - .88 
to + .88. In other words, in 95 out of 100 samples, the observed correlation is expected 
to fall within this range, and thus an effect as large as r = .7 would not be unusual 
in a sample of five observations. With random samples of N = 10 units, the 95% 
confidence interval would be from - .63 to + .63, in which case an effect size r of .7 
would be unusual. The point is that generalizing from one small sample to the 
population value can be perilously imprecise. This is another argument for the importance 
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of replications, as well as for meta-analytic summaries and for confidence intervals 
around the meta-analytically pooled effect sizes (described in chapter 21). 

THE TEST THAT A PROPORTION IS .50 

The difference between an obtained proportion (P) and .50 is denoted as g, but 
Cohen's g should not be confused with Hedges's g (Equation 2.5). Cohen's g is simply 
the distance in units of proportion from .50, that is, 

Cohen's g = P - .50, or .50 - P (ifdirectional) 

= IP - .501 (if nondirectional), 
(12.8) 

with small, medium, and large effects defined in Table 12.3 as corresponding to a raw 
difference of .05, .15, and .25, respectively. As we noted previously, Cohen's 
significance test of choice in this situation is the sign test (see Siegel, 1956, 
pp. 68-75; Siegel & Castellan, 1988, pp. 80--87). To achieve a power level of .80, 
Table 12.3 shows that we would need 85, 127, and 783 total N for the three 
combinations of expected effect size and alpha in Sections A, B, and C. 

It is important not to read too much into the benchmark labels of Cohen's g. 

Suppose that two candidates received all the votes in a U.S. presidential election, and 
that 55% of the electorate voted for the winner, so that Cohen's g = .55 - .50 = .05. 
Although it is called a "small" effect, the difference between a high proportion of .55 
(for the winner) and a low proportion of .45 (for the loser) would be a landslide victory 
in a presidential election. A similar magnitude of Cohen's g might be viewed as far less 
noteworthy if it pertained to an instructional treatment to boost the scores of a class of 
high school students on a true-false test on American history. The lesson, as Cohen (1988) 
cautioned, is that the practical interpretation of the effect size depends on the context. 

There are often alternative ways of thinking about research situations in which 
the variables are dichotomous and we want to test certain observed outcomes against 
a null hypothesis of .50. For example, if we have two classes of events (e.g., vote 
Democrat vs. vote Republican) with PI the proportion of cases in one class and P2 
the proportion in the other class, the null hypothesis is PI = P2 = .50. In this case, 
one possibility is to obtain a p value that we can then use to compute the requivaJent 

statistic (Equation 12.1). Siegel and Castellan (1988, pp. 38-44) described a bino­
mial test that provides accurate p values. Another possibility, also described by 
Siegel and Castellan (pp. 45-51), is a 1 X 2 chi-square (Equation 11.14) goodness­
of-fit test. With large sample sizes, we can use Equation 11.16 (<I> = ZjIN) to 
estimate the effect size r (in this case, phi), as JX11) is distributed as Z when the 
sample size is large. 

THE DIFFERENCE BETWEEN 
PROPORTIONS 

The difference between two obtained proportions is indexed by the difference h 
hctween the arcsin transformations of the two proportions, that is, 

Cohen's h = (arcsin PI) - (arcsin P2) (12.9) 
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Table 12.3 shows that to achieve a power level of .80 requires 63, 93, and 392 units 
for each sample for the three combinations of the expected effect size and alpha 
shown in Sections A, B, and C. We can use Table B.13 (Appendix B) to find the 
arcsin equivalent (a) of each proportion (X). The purpose of this transformation is to 
make the hs comparable, because differences between raw proportions are not all 
comparable (e.g., with respect to power). Thus, a difference between proportions of 
.95 and .90 yields a Cohen's h of .19, whereas the difference between proportions of 
.55 and .50 yields a Cohen's h of only .10 (Cohen, 1988). 

As a further illustration of Cohen's h, suppose that subjects are asked to identify 
four expressions of emotions (joy, anger, disappointment, and fear) in posed photo­
graphs, and the instruction is to choose one of four responses (like a multiple-choice 
test in which one of four answers is correct and its position is assigned at random). 
Guessing should yield an accuracy rate of .25, and suppose the actual observed 
performance is .75. In Table B.13, we find the arcsin value of X = .75 is a = 2.0944, 
and the arcsin value of X = .25 is a = 1.0472. Hence, Cohen's h = 2.0944 -
1.0472 = 1.0472. 

Another effect size index, called Pi (IT), is expressed as the proportion of correct 
guesses (Rosenthal & Rubin, 1989). It enables us to summarize the overall performance 
so that we can compare performance on tests made up of varying numbers of 
alternatives per item. The way it works is that an obtained proportion (P) is compared 
with la proportion expected under the null hypothesis. Pi gives the proportion of hits 
on a scale on which .50 is the null value, and it is found from the following: 

P(k - 1) 
IT = 1 + P(k - 2)' (12.10) 

where P is the raw proportion of hits, and k is the number of alternative choices 
available. For example, if there are four choices, choosing the correct alternative 
.60 of the time is equivalent to choosing the correct alternative .82 of the time 
given only two choices. Power analyses for IT can be carried out on Cohen's h 
(i.e., al - a2), where one of the values of a is a constant. To use Cohen's (1988) 
power tables, we first need to multiply h by ./2 to adjust for the fact that one of 
our proportions is a constant with no sampling variation. For example, with IT = 
.60, the arcsin transformation (Table B.13) is 1.7722. The null constant of .50 has 
an equivalent arcsin value of 1.5708. Thus, Cohen's h = 1.7722 - 1.5708 = 
0.2014, which we multiply by ./2 to obtain .2014 X 1.414 = .2848. This value 
of Cohen's h = .2848 is the one we use in consulting Cohen's (1988) power tables. 
Further details regarding IT can be found in chapter 19 and in Rosenthal and Rubin 
(1989, 1991). 

FOCUSED CHI-SQUARE TEST 

Table 12.3 notes that Cohen's w is the effect size associated with a I-df X2 test, which 
is a focused chi-square. We will have more to say about this distinction in chapter 19, 
but chi-square tests with 1 df are focused, and chi-squares with df> 1 are diffuse or 
unfocused (and are called omnibus tests). Cohen's w is the square root of the sum 
over all cells (of any size table of frequencies) of the square of the difference between 
the proportion expected and the proportion obtained in each cell divided by the 
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proportion expected in that cell, or 

Cohen's w = ~ (Pexpected - P obtained)2 

Pexpected 
(12.11) 

The definition of Cohen's w resembles the square root of the definition of the 
chi-square test in the previous chapter (Equation 11.13), except that the raw frequencies 
used to compute Equation 11.13 have been replaced by the proportions of total N 
found in each cell or expected in each cell. For a 2 X 2 table, Cohen's w is equivalent 
to the phi (<I» coefficient, so 

fiJ:: 
<I> = w = V~NL, (12.12) 

where the subscript in XZI) denotes a 1-df chi-square. To achieve a power level of .80 
for Cohen's w for a 1-df chi-square, Table 12.3 shows that we will require a total N 
of 87, 130, and 785 units, respectively, for the three combinations of effect size and 
alpha in Sections A, B, and C. 

F TESTS FOR FOCUSED COMPARISONS 

Cohen'sfis his effect size index associated with the F test in the analysis of variance, 
and is defined as 

Cohen's f = arneans 
awithin' 

(12.13) 

where the standard deviation of the popUlation means to be compared is divided by 
the pooled standard deviation within conditions. Given our emphasis on focused 
statistical tests, Table 12.3 shows f only for F with numerator df = 1. Achieving a 
power level of .80 (or for that matter, any other power level) when only two groups 
are involved requires sample sizes identical to those required for t. 

When the F has more than 1 df in the numerator, the power decreases in tests 
of main effects as the number of df of the between-groups factor increases for a given 
fixed total N. In addition, the power for an interaction decreases as the number of df 
of the interaction increases for a given fixed total N. When using Cohen's power 
tables, we redefine n to n1 before entering the tables, where 

n1 = d!error + d!effect + 1 
d!effect + 1 

(12.14) 

For example, suppose we were given a 3 X 4 design with the sample sizes (ns) shown 
here: 

Al A2 A3 I 
1 

III 10 10 10 30 

II! 10 10 10 30 

II, 10 10 10 30 

II~ 10 10 10 30 

~ 40 40 40 120 
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In this case we would find the degrees of freedom to be as follows: 

d/error = 120 - 12 = 12(10 - 1) = 108 
d/effect for A = 3 - 1 = 2 
d/effect for B = 4 - 1 = 3 

d/effect for AB = (3 - 1)(4 - 1) = 6 
Therefore, based on Equation 12.l3, we find 

1 108 + 2 + 1 
n for A effect = 2 + 1 = 37, 

and 

1 108 + 3 + 1 
n for B effect = 3 + 1 = 28, 

and finally 

1 108 + 6 + 1 
n for AB effect = 6 + 1 = 16.4. 

Consulting the power tables in Cohen's (1988) text, we would find the power 
levels for a = .05 and a "medium" effect of f = .25 to be .65, .58, and .46 for the 
A, B, and AB effects, respectively. These results illustrate the loss of power involved 
when, "for a fixed total N, the df for various effects show an increase. Here, then, is 
a reason to organize our scientific questions into focused questions such as are 
addressed by t tests, F tests with a single df in the numerator, and chi-square tests 
with 1 df, and, more generally, by contrasts of any type. The details of the use of 
contrasts will be given in later chapters, but here we can illustrate one possible contrast 
among the four means of the B effect. 

Suppose our contrast is to compare the mean of Groups Bl and B2 with the 
mean of Groups B3 and B4. We can compute such a contrast by the procedures in 
chapter 15. Then, using Equation 12.14, we calculate 

1 _ 108 + 1 + 1 - 55 
n - 1+1 - , 

because the df for the effect is always 1 for any contrast. The power level for this 
contrast is .75, noticeably greater than for any of the three effects involving multiple 
df in the numerator of the F test. For X2 tests of df > 1, and for F tests with 
numerator df> 1, we suggest doing power calculations on the contrasts that address 
specific scientific questions whenever possible. If the power calculations must be 
made on X2 tests of df > 1, or F tests with numerator df> 1, tables in Cohen's 
(1988) book provide all the information required. 

ADDITIONAL STRATEGIES 
FOR IMPROVING POWER 

Among the strategies for improving power mentioned in this chapter, we have 
discussed increasing the sample sizes and using focused contrasts rather than omnibus 
tests. In chapter 15 and subsequent chapters, we illustrate contrast procedures and also 



STATISTICAL POWER AND EFFECT SIZE REVISITED 377 

discuss other procedures that improve power. For example, in the next chapter we 
will discuss the standard two-sample t test in more detail, and we know that the 
numerator of such a t test is the difference between two means. Therefore, a treatment 
that is more likely to drive the means further apart will also improve the statistical 
power relative to a weaker treatment. Similarly, because the denominator of the t test 
reflects the variability within the two samples, using a homogeneous population will 
also improve power. 

In discussing Cohen's q, we illustrated the comparison of independent Zr values 
by a variant of a more general meta-analytic equation to be described in chapter 21. 
We can also combine significance levels of independent studies in order to get an 
overall estimate of the probability that the combined effect size (and significance test) 
value may have been obtained if the null hypothesis of no relationship was true. It is 
another way of improving power, and we will also have more to say about it in 
chapter 21. As another preview, suppose Studies A and B predicted the direction of 
a result, and the observed result was in that direction and the effect sizes were similar 
in both studies. In Study A the obtained p was .121, and in Study B it was p = .084. 
We first use Table B.l to find Z values for these ps: Z = 1.17 for the p of .121, and 
Z = 1.38 for the p of .084. Next, we divide the sum of the independent Z values by 
the square root of the number of Z values: 

C b· d Z ZStudy A + ZStudy B 

om me = v'Number of Z values 

- 1.17 + 1.38 - 181 - .fl -.' 

The final step is to consult Table B.l, where we find that the one-tailed probability 
of our combined Z of 1.81 is p = .035. 

When we discuss the factorial analysis of variance, we will show how blocking 
variables is another way of improving power. In the next chapter we elaborate on how 
unequal-n designs are often less powerful than their equal-n equivalents. As implied 
in chapter 11, using reliable measures and instruments also improves power. The lesson 
is that, although increasing the sample size may be the procedure most closely associ­
ated with improving statistical power, it is just one of a number of design and analytic 
alternatives. If you know the old Tarzan movies, where he swings from tree to tree, 
you may also know that Tarzan was originally played by Johnny Weissmuller. Asked 
about his philosophy of life, Weissmuller's response was "The main thing is not to let 
go of the vine." It is also good advice for researchers who do null hypothesis signifi­
cance testing: Pay heed to all the various circumstances that are most and least con­
ducive to statistical power, so you don't let go of good hypotheses prematurely. 
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GOSSET AND THE t TEST 

CHAPTER 

13 
COMPARING 

MEANS BY 
STANDARD 

t TESTS 

Often in behavioral research we want to compare the means of two groups. We 
might want to compare an experimental and a control group, or one diagnostic 
category and another, or one school system and another. The most common 
statistical procedure for comparing two means is the t test. We draw two samples 
to test the hypothesis that there is in the populations from which the samples were 
drawn either (a) no difference between the two means or, equivalently, (b) no 
relationship between the independent variable of membership in one of the groups 
and the dependent variable of score on the response measure. Introduced in 1908 
hy William Sealy Gosset, the t test of significance is predicated on probability 
curves known as Student's distribution, which "revolutionized the statistics of small 
samples" (Snedecor & Cochran, 1989, p. 54). Trained as a chemist, Gosset worked 
for Guinness, the Irish brewery. Staff members were prohibited from publishing 
their research, but Gosset quietly published under the pseudonym Student. The 
name Gosset may not come readily to mind to many researchers, but "the name 
'Student' is one of the most celebrated in the history of statistics" (Wallis & 
Roberts, 1956, p. 417). (See Salsburg, 2001, for a fascinating account.) 

Before Gosset's work on the t test and the t distribution, researchers were in a 
lluandary over the issue of generalizing from treatment procedures in small samples 
with varying effects to populations whose variability was unknown. For example, 
I"csearchers who experimented with fertilizers, crop rotation, and different strains of 
potatoes observed that similar treatments did not produce the same yields. Averaging 
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the yields in the treated plots gave an overall estimate, and it was possible to describe 
the "probable error" (the 50% confidence interval), but this description still did not 
resolve the generalizability issue. Gosset's genius was to perceive a way of testing 
the equality of population means whose variability was unknown, given sample means 
(Gigerenzer et aI., 1989). R. A. Fisher (l973a) wrote of Gosset's contribution that, 
"important as it was in itself, [it] was of far greater importance in inaugurating the 
first stage of the process by which statistical methods attained sufficient refinement 
to be of real assistance in the interpretation of data" (p. 4). Fisher also noted that, as 
a result of Gosset's insight, "by about 1930 all statistical problems which were thought 
to deserve careful treatment were being discussed in terms of mathematically exact 
distributions, and the tests of significance based upon them" (p. 4). 

The focus of this chapter is on two major variants of the t test, including their 
associated effect size indices. In chapter 15 we discuss another use of t when there are 
more than two groups or conditions and we want to test a predicted trend involving all, 
or at least more than two, of those groups or conditions. One of the two kinds of t tests 
discussed in this chapter is the independent sample t, so named because the scores in 
one group are presumed to be unrelated to the scores in the other group. The second 
kind of t test is called a paired sample t, or a one-sample t, or a correlated sample 
t, or a matched pair t, as it is used when the two samples are not independent, or when 
we want to compare a single sample of scores against a theoretical mean. We also 
disc~ss statistical assumptions underlying t, those underlying nonparametric procedures, 
and the nature of certain "resampling" procedures called the bootstrap, the jackknife, 
and permutation tests. We begin, however, by reiterating the relationship between the 
p value and the effect size, as it has specific implications for maximizing the t and is a 
constant reminder of the importance of reporting and interpreting effect size indices. 

TWO COMPONENTS OF t TESTS 

Like any test of statistical significance, the t test consists of two components: the size 
of the effect and the size of the study. In Equation 11.10 we expressed this general 
relationship as 

Significance test = Size of effect X Size of study, 

a relationship that we also mentioned in chapter 12. In our discussion of correlation 
in chapter 11, we saw that when the size of the effect of the independent variable is 
indexed by r, the general relationship above could be rewritten in the form of an 
equation that was introduced in chapter 2 (Equation 2.2): 

t=Rx/dJ. 

Thus, we can compute the point-biserial r between membership in one of the two 
groups (coded, for example, as 0, 1 or -1, + 1) and the dependent variable, and we 
find t for this equation, which requires only that we also know the df for r. For this 
application, the df equals the number of pairs of scores minus 2 (i.e., N - 2). 

We also know that an alternative to indexing the size of the effect by r is to 
index it by the standardized difference between group means, which might be expressed 
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by Cohen's d (Equation 2.4), Hedges's g (Equation 2.5), or Glass's Ll (Equation 2.6). 
The following equation shows the effect size component expressed as Hedges's g, the 
difference between two group means divided by the pooled sample estimate of the 
population standard deviation: 

t = Ml-M2 X 1 
S /1 1 

Vnl+n2 

With Hedges's g again used as the effect size index, an alternative equation is 

t = Ml - M2 X / nl n2 
S nl+n2' 

(13.1) 

(13.2) 

Comparing the three equations above, we note that not only the size-of-effect 
component is defined differently, but so is the size-of-study index. Just as (Ml - M2)/S 
does not equal r/J1 - r2, neither does .jnln2/(nl + n2) = 1dJ. In general, whenever 
we change the size-of-effect index, we must also change the size-of-study index in 
the t-test formula. Suppose we choose Cohen's d for our size-of-effect index, in which 
case: 

t = Ml - M2 X [ v'iiJn2 X 1dJ]. 
<J (nl + n2) 

(13.3) 

When nl = n2, the first term in the brackets in Equation 13.3 simplifies to ,Yz, and 
we can write 

t=dX -If. (13.4) 

MAXIMIZING t 

The equations above also give us an insight into how t is maximized in three ways. 
One way, clearly implied in the numerator of Hedges's g and Cohen's d, is to drive 
the means further apart. A second way, implied in the denominator of Hedges's g and 
Cohen's d, is to decrease the within-group variability. A third way, discussed in the 
previous chapter, and also implied in the size-of-study components of the equations 
above, is to increase the total sample size. Not so intuitively apparent, however, is 
that, given any total N, departures from equal sample sizes can also reduce t. However, 
there are circumstances in which researchers sometimes choose to allocate the sampling 
units to different conditions in unequally sized samples so as to "optimize" power 
(discussed in chapter 15). 

In the first instance, strong treatment effects drive the means further apart and, 
other things being equal, maximi~e the t. Suppose we hypothesized that longer treatment 
sessions will be more beneficial than shorter treatment sessions. In testing this prediction, 
we are more likely to find a statistically significant difference when we compare treatment 
sessions lasting 15 minutes with those lasting 45 minutes than if we compare treatment 
sessions lasting 30 minutes with those lasting 35 minutes. Or suppose we hypothesized 
Ull age trend in performance but have the resources to compare only two age groups. 
'Ine more extreme the age groups we select, the further apart the average performance 
in the two groups should be. Of course, the limitation of this strategy is that we foreclose 
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on the possibility that a more subtle relationship is present. By sampling additional age 
groups, we at least allow a possibily complex pattern to emerge. Moreover, even if all 
we predicted was a linear pattern, observing this relationship across three, four, or five 
different groups (rather than just finding a difference in the predicted direction between 
the two most extreme age groups) lends further credence to our hypothesis because it is 
subjected to a riskier empirical confrontation. 

In the second instance, the t test is maximized by decreasing S or (J, the variability 
within the groups. Thus, the more homogeneous the samples in those characteristics 
that are substantially correlated with the dependent variable, the smaller S or (J will be. 
The more standardized the procedures used in the study, the better we are able to control 
the variability of response. Of course, if every experiment designed to investigate the 
same question uses similar subjects and the same standardized procedure, we may 
increase our understanding of that procedure for those kinds of subjects, but not our 
understanding of the generalizability of the findings beyond the circumscribed design 
and its rigid implementation. 

Finally, we know from the discussion in the previous chapter that, when sample 
sizes (nJ and nz) are increased, the size of the t is also increased. We also alluded to the 
usual advantage of making sample sizes as equal as possible, because t tests are generally 
more effective when the sample sizes are not very different for any fixed total N. This 
premise is illustrated in Table 13.1, where the first two columns show various values of 
nJ and nz, with nJ + nz fixed at N = 100. In the third column we see the arithmetic 
mean of the two sample sizes, that is, n = (nJ + nz)/2, and the next column shows 

TABLE 13.1 

Effects of unequal sample sizes on loss of relative efficiency and the effective 
loss of N 

Sample Arithmetic Harmonic Effective 
size meann meann size of study Loss of 

/Nf; relative Effective 
nl nz (Ii) (n..) nl+n2 efficiency loss of N 

50 50 50 50.00 5.00 .00 0 

55 45 50 49.50 4.98 .01 

60 40 50 48.00 4.90 .04 4 

65 35 50 45.50 4.77 .09 9 

70 30 50 42.00 4.58 .16 16 

75 25 ,50 37.50 4.33 .25 25 

80 20 50 32.00 4.00 .36 36 

85 15 50 25.50 3.57 .49 49 

90 10 50 18.00 3.00 .64 64 

95 5 50 9.50 2.18 .81 81 

99 50 1.98 .995 .96 96 
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hannonic mean sample sizes (defined in Equation 12.2). The fifth column is based on 
the definition of the size-of-study component in Equation 13.2. Calculations for the 
values in the last two columns are described shortly, but shown in the next-to-last column 
is the loss of relative efficiency in t as we have increasing inequality of nl and m, and 
the last column shows the effective loss of total sample size (N) as we have increasing 
ineqUality of nl and n2. Notice that, compared with a study with nl = m = 50, a study 
with nl = 99 and n2 = 1 will show a loss of relative efficiency of .96 (i.e., a 96% 
decrease in effective sample size), the same effect we would have if we had lost 96 of 
our 100 subjects! Put another way, for any given value of the effect size index, the t is 
about the same if we have 99 subjects in one group and 1 subject in the other group as 
if we had 2 subjects in each group. 

EFFECT SIZES AND ADJUSTMENTS 
FOR UNEQUAL SAMPLE SIZES 

In the preceding chapter we described a shortcut formula (Equation 12.1) for obtaining 
an effect size r directly from t as 

r = /t2 :d!' 
where df is the degrees of freedom for the t statistic, equal to N - 2 in the case of 
two groups that are independent of one another, and N = nl + n2. 

Similarly, we can estimate Cohen's d from t and the sample sizes (i.e., nl and m), 

because 

When nl = n2, Equation 13.5 simplifies to another commonly used formula: 

2t 
d = jdJ' 

(13.5) 

(13.6) 

which is useful when the sample sizes are equal, but problematic when they are not. 
As n, and n2 become increasingly different, Equation 13.6 progressively underesti­
mates Cohen's d. This result is indicated in Table 13.2, which shows for eight studies, 
all with t = 3.00 and df = nl + n2 - 2 = 98, the increasing underestimation of d 
for increasingly unequal sample sizes when Equation 13.6 is used. 

A similar problem is evident when the following (equal-n) formula is used to 
calculate Hedges's g from t: 

. H d' 2t , e ges s g = IN' (13.7) 

us this formula also tends to underestimate the actual g as sample sizes grow more 
;md more unequal. Furthermore, even in the presence of a large total N, there may 
he insufficient power to obtain a p value at some predetermined level of significance 
if the sample sizes are unequal. As mentioned in the previous chapter, sample 
sil'.es smaller than 30 have frequently been considered acceptable in psychology. 
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TABLE 13.2 

Underestimation of d by "equal-n" formula 

Study nl n2 Estimated d Accurate d Difference 

50 50 .61 .61 .00 

2 60 40 .61 .62 -.01 

3 70 30 .61 .66 -.05 

4 80 20 .61 .76 -.15 

5 90 10 .61 1.01 -.40 

6 95 5 .61 1.39 -.78 

7 98 2 .61 2.16 -1.55 

8 99 .61 3.05 -2.44 

Note: For all eight studies, t = 3.00 and df = N - 2 = 98. The "Estimated tf' is based on Equation 13.6 (the equaJ-n 
formula), and the "Accurate tf' is based on Equation 13.5 (the general formula). 

However, it would be difficult (power approximately .12) for effects that are commonly 
characterized as "small" (Hedges's g = .20) or "medium" (Hedges's g = .50; 
power = .46) to be found significant at the .05 level when the smaller of the two 
sampfes is less than 30. 

The ratio of the harmonic mean sample size (nh) to the arithmetic mean sample 
size (if) is a useful index of the retention of power in the unequal-n design relative 
to the equal-n design. Subtracting this ratio from unity gives us the proportional loss 
of relative efficiency (the next-to-last column in Table 13.1), that is, 

Efficiency loss = 1 - ( ';; ), (13.8) 

where the harmonic mean sample size in k = 2 samples of nl and Hz size was defined 
in Equation 12.2 as 

Because the harmonic mean sample size equals the arithmetic mean sample size when 
nl = Hz, the ratio of nh to if is always 1.0 in equal-n designs, and Equation 13.8 therefore 
yields a value of zero loss in such designs. In samples of unequal sizes, the harmonic 
mean is less than the arithmetic mean, and so the value given by Equation 13.8 increases 
with corresponding increases in the ineqUality of the sample sizes. We obtain the effective 
loss of total sample size (the last column in Table 13.1) by multiplying Equation 13.8 
by the total N: 

Effective loss of N = N[ 1 - (';; )], (13.9) 

which, as implied before, is relevant to considerations of cost when the cost per 
sampling unit is constant. For example, as shown in Table 13.1, a 60:40 split of 100 
cases is equivalent to losing 4 of 100 total cases, whereas an 85:15 split is equivalent 
to losing virtually half the total N. 
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Regardless of whether the two samples are equal or unequal in size, the valid 
estimate of Hedges's g is always given by Equation 2.5: 

Ml-M2 Hedges's g = , 
Spooled 

and the valid estimate of Cohen's d is always given by Equation 2.4: 

Ml-M2 Cohen's d = . 
O'pooled 

Both these indices of effect size can also be transformed back and forth, whether 
the sample sizes are equal or unequal. We convert Hedges's g into Cohen's d by 

Cohen's d = g /d'! . 
U"wlthm 

(13.10) 

and Cohen's d into Hedges's g by 

Hedges's g = djdf1.Jthin. (13.11) 

Suppose our hypothesis is that treating subjects with a particular clinical inter­
vention (the experimental treatment) will, relative to nonintervention (the control), 
result in improvement on some psychological criterion. There are 50 subjects in each 
randomly assigned condition, with resulting mean scores of Ml = 6.0 and M2 = 4.8, 
respectively, in the experimental and control groups, and we will assume Swithin = 2.0. 
The valid Hedges's g is 

And since 

which gives 

MJ-M2 60-48 
Hedges's g = S =' 2.0' = 0.60. 

- S j dfwithin 
O'within - within ~, 

/ !98 
O'within = 2.0", TOO = 1.98, 

the valid Cohen's dis 

C h ' d - MJ - M2 - 6.0 - 4.8 - 061 o en s - - 1 98 -. 
O'pooled • 

(13.12) 

Transforming our Hedges's g of .60 into Cohen's d by Equation 13.10, we 
lind 

Cohen's d = 0.60j1~~ = 0.61, 

and transforming our d of 0.61 into Hedges's g by Equation 13.11, we find 

Hedges's g = 0.61/ ?o~ = 0.60. 
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However, the expression used to obtain Hedges's g from t (Equation 13.7) needs 
adjustment for the loss in relative efficiency (Rosenthal, Rosnow, & Rubin, 2000). In 
an unequal-n design, we obtain Hedges's g from t by 

Hedges's g = (3*r )~. (13.13) 

Similarly, in an unequal-n design we need an adjustment to obtain Cohen's d from t: 

Cohen's d = (~)~. (13.14) 

In an equal-n design, it makes no difference whether we use the equal-n or unequal-n 
formula. For example, with t = 3.00, df = 98, nl = n2 = 50, and Hedges's g = .60 
from equal-n Equation 13.7, the value of Hedges's g is unchanged by our use of 
Equation 13.13, since n/nh = 1.0 when sample sizes are equal. 

We also require an adjustment when transforming Hedges's g into the point­
biserial effect size r in an unequal-n design: 

(13.15) 

In our example, with means of 6.0 and 4.8, sample sizes of 85 and 15, and valid 
g = 0.60, Equation 13.15 gives 

r = 0.60 = .21. 

/(0.60'1- + 4(2~~5)(1~~) 
To transform Cohen's d into the point-biserial effect size r in an unequal-n 

design, we use the following modification: 

rpb = /~+ 4(~J. 
d (13.16) 

SO with means of 6.0 and 4.8, sample sizes of 85 and 15, and valid d = 0.61, Equa­
tion 13.16 gives 

r = 0.61 = .21 

/(0.61'1- + 4(2~~5) 

INTERPRETING THE INDEPENDENT 
SAMPLE t 

Researchers ordinarily like to get large t values from their investigations, because 
larger t values are rarer events (i.e., they are less likely to occur if the null hypothesis 
is true). As we stated at the beginning of this chapter, two major ways of thinking 
about the null hypothesis for the t test situation are that (a) the means do not differ 
in the popUlations from which we have randomly sampled the subjects, and (b) there is 
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no relationship between the independent variable of group membership and the dependent, 
or response, variable. As an illustration of these two ways of thinking about the null 
hypothesis, imagine that we have two populations of patients requiring treatment for 
some problem. The populations are identical in all ways except that the sampled 
members of one population have received Procedure A, and sampled members of the 
other population have received Procedure B. The null hypothesis would be true in our 
first way of thinking if the mean benefit score of the popUlation receiving A is identical 
to that of the population receiving B. The null hypothesis would be true in our second 
way of thinking if the correlation between the treatment condition (coded, e.g., A = 1, 
B = 0) and the benefit score is exactly zero for the members of Populations A and B 
combined. 

We think of the t test as a single test of statistical significance, and so it is in 
terms of the equations we have described. Gosset's idea, however, was that we should 
think of the t test as a family of tests of significance, a family of infinite size. That 
is, there is a different distribution of t for every possible value of df The two most 
extreme t distributions are those when df = 1 and df = 00. When df = 00, the t 

distribution is the normal distribution. When df = 1, the t distribution is lower in 
frequency in the center and higher in frequency in the tails, so that it takes a larger 
t to reach the same level of significance than it does when df is larger. Figure 13.1 
shows the two most extreme t distributions. 

The vast majority of all t distributions look much more like the normal 
distribution than like the t distribution when df = 1, and it is only when dfis quite 
small that the divergence from normality is marked. All t distributions, however, 
resemble the standard normal distribution in (a) being symmetrical; (b) being 
centered at zero, so that half the values are positive and the other half are negative; 
(c) having their greatest frequency near the center of the distribution; and (d) having 
tails that never quite touch down (the upper and lower limits are ±oo). Table 13.3 
illustrates the differences in t distributions by giving the areas found in the upper 
tail (the right-hand tail) of selected t distributions. (More extensive tables of t 

-4 -3 

"'IGURE 13.1 

-2 -1 o 
Values oft 

The two most extreme t distributions. 

2 3 4 
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TABLE 13.3 

t values required for significance at various p levels 

One-tailed p 

df .25 .10 .05 .025 .005 .001 

1.00 3.08 6.31 12.71 63.66 318.31 

2 .82 1.89 2.92 4.30 9.92 22.33 

3 .76 1.64 2.35 3.18 5.84 10.21 

4 .74 1.53 2.13 2.78 4.60 7.17 

5 .73 1048 2.02 2.57 4.03 5.89 

6 .72 1.44 1.94 2045 3.71 5.21 

8 .71 lAO 1.86 2.31 3.36 4.50 

10 .70 1.37 1.81 2.23 3.17 4.14 

15 .69 1.34 1.75 2.13 2.95 3.73 

20 .69 1.32 1.72 2.09 2.84 3.55 

25 .68 1.32 1.71 2.06 2.79 3045 

30 .68 1.31 1.70 2.04 2.75 3.38 

40 .68 1.30 1.68 2.02 2.70 3.31 

60 .68 1.30 1.67 2.00 2.66 3.23 

80 .68 1.29 1.66 1.99 2.64 3.20 

100 .68 1.29 1.66 1.98 2.63 3.17 

1000 .68 1.28 1.65 1.96 2.58 3.10 

10,000 .68 1.28 1.64 1.96 2.58 3.09 

00 .67 1.28 1.64 1.96 2.58 3.09 

values are in Appendix B, i.e., Tables B.2 and B.3.) Studying Table 13.3, we see 
that for any level of significance (P), the t value that is required to reach that level 
becomes smaller as the value of df increases. Of course, for any given df, a higher 
t value is required to reach more extreme (smaller) p levels. Perhaps the most 
surprising fact about this table is the difference in t values required to reach the 
.001 level. When the df is quite large, a t of only about 3 is required, but when 
df = 1, a t of about 318 is required! 

Another way to think about t is that if the null hypothesis were true (i.e., the 
means of the populations did not differ, or there were an r of zero between group 
membership and scores on the dependent variable), the most likely value of t would 
be zero. But even if the population mean difference were truly zero, we would often 
find nonzero t values by sheer chance. For example, with df = 8, we would obtain a 
t value of 1.40 or more about 10% of the time, or a t of 1.86 or more about 5% of 
the time, or a t of 4.50 or more about 0.1% (one-tenth of one percent) of the time. 

We must decide for ourselves whether we will regard any given t as an event 
rare enough to make us doubt that the null hypothesis is true. The larger the t and 
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the smaller the p, the less likely it is that the null hypothesis is true. As discussed 
earlier, American behavioral researchers have an informal agreement to regard as 
"statistically significant" t values (and other tests of statistical significance) with 
associated p levels of .05 or less (i.e., p :5 .05). There is evidence that decisions 
to believe or not to believe (accept or reject) the null hypothesis are made in a binary 
manner based simply on whether p does or does not reach the .05 level (Minturn, 
Lansky, & Dember, 1972; Nelson, Rosenthal, & Rosnow, 1986; Rosenthal & Gaito, 
1963, 1964; Zuckerman, Hodgins, Zuckerman, & Rosenthal, 1993). As we com­
mented earlier, there is something absurd in regarding as a "real" effect one that 
is supported by p = .05 and as a zero effect one that is supported by p = .06, and 
yet this binary decision process does occur. Thus, it is helpful to keep in mind the 
general relationship that Significance test = Size of effect X Size of study, as it 
is also a reminder that we can achieve any level of significance desired by adding 
to the size of the study so long as the true effect size is not exactly zero. 

COMPUTING THE INDEPENDENT SAMPLE t 

In this chapter we have already provided a number of formulas for computing t, 
namely, Equations 13.1, 13.2, 13.3, and 13.4. Each is useful in a particular situation 
in which we have not the original data, but summary data such as the r, means, S, 
<T, Cohen's d, Hedges's g, sample sizes, or df In chapter 11 we gave a more generally 
useful formula for a t test designed to compare the sample means of two independent 
populations, with the population variability unknown (but presumed to be equal, or 
nearly so, in both populations). That formula (Equation 11.9) was as follows: 

/ t = ~~M~l -~M~2~= 
(1 1) 2 ' 

nl + nZ Spooled 

where SZ is the pooled estimate of the population variance, computed as 

SZ = ~(Xl - Ml'f + ~(Xz - Mz)Z 
nl+nz-2 ' 

or, given the sums of the squared scores, as 

(13.17) 

(13.18) 

Notice that Equation 11.9 is similar to Equation 13.1. However, whereas Equation 13.1 
separates the effect size estimate from the index of the size of the study, Equation 11.9 
is written more compactly, reducing the t to a kind of "signal-to-noise" ratio, where 
the signal refers to the magnitude of the difference between two independent means, and 
the noise is implied by the standard error of the difference. We will see this compact 
formula again in the next chapter. 

The basic data for these computations appear in Table 13.4, which lists the scores 
IIf f()Ur subjects in Group 1 under Xl, and the scores of four independent others in Group 2 
under Xz. The (Xl - MI)Z and (Xz - Mz)z columns list, for each subject, the squared 
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TABLE 13.4 

Basic data for computation of independent sample t 

Group 1 Group 2 

XI XI-MI (XI - MI)2 X2 X2 - M2 (X2 - M2)2 

2 -1.5 2.25 -0.5 0.25 

3 -0.5 0.25 2 0.5 0.25 

4 0.5 0.25 -0.5 0.25 

5 1.5 2.25 2 0.5 0.25 

L 14 0 5.00 6 0 1.00 

M 3.5 0 1.5 0 

deviation of that individual's score from the group mean. In the next to last row we see the 
sum of squares of the deviations of the scores from the group means: ~(Xl - Ml)2 = 5.00 
for Group 1, and ~(Xz - Mz)z = 1.00 for Group 2. From Equation 13.17, we find 

Sz = 5.00 + 1.00 = 1 00 
4+4-2 ., 

and from the more compactly written formula for t (Equation 11.9), we find 

t = 3.5 - 1.5 = ~ = 2 83 
/(i + i) 1.00 13 ., 

which, with 6 df, has an associated one-tailed p of .015. 
For the alternative Equation 13.18, we need the sum of scores and the sum 

of the squared scores in each group. Table 13.4 shows the sum of the scores in 
Group 1 to be ~Xl = 14, and in Group 2 to be ~Xz = 6. Squaring the raw scores 
in Group 1 (2,3,4,5) gives us 4,9, 16, 25, and these sum to ~Xt = 54. In Group 2, 
squaring the individual scores (1, 2, 1, 2) gives us 1, 4, 1, 4, which sum to ~X~ = 10. 
Substitution in Equation 13.18 yields 

[54 - (14f] + [10 _ (6f] 
SZ = 4 4 = 5 + 1 = 1 00 

4+4-2 6· 

REPORTING THE RESULTS 

When reporting the t and related results, we have several options. In all cases, how­
ever, we want to provide sufficient information to give a complete picture of our 
findings. To accomplish this, we should report not only the t, but also the group means, 
the standard deviations, the size of each sample, a confidence interval for each mean, 
and an effect size index (e.g., r, d, or g) and its confidence interval. To illustrate with 
another set of results, suppose that Ml 12 and Mz = 10, the sample estimate of 
the population standard deviation is S = 4 in each group, and nl = n2 = 36. In 
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FIGURE 13.2 
Bar graph emphasizing group means and 95% confidence intervals. 

chapter 9 we described the calculation of a 95% confidence interval of a mean 
(see Equation 9.1). Repeating that procedure, we conclude there is a 95% probability 
that the population mean estimated by Ml = 12 is between 10.65 and 13.35, and there 
is a similar 95% probability that the population mean estimated by M2 = 10 is between 
8.65 and 11.35. Figure 13.2 shows what these results might look like in a sample bar 
graph, where the thin error bars show the 95% confidence limits. The more the overlap 
in the error bars, the less likely it is that the means are significantly different at the 
.05 alpha (see also Masson & Loftus, 2003). The ordinate axis is more compact than 
that generally recommended in the Publication Manual of the American Psychological 
Association (2001), which suggests that the zero point be indicated. 

We have several options in our choice of an effect size index, including r, 
Cohen's d, and Hedges's g, all of which can be directly obtained from t with the 
formulas given earlier, the t being computed as 

lind df = nl + n2 - 2 = 70, p = .019 one-tailed. Thus, we estimate the point-biserial 
effect size r from t by the shortcut formula (Equation 12.1), where 

~ (2.12)2 
r = V f2+(jf = (2.12)2 + 70 = .246. 
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Using the procedure in Equation 11.3 to compute the 95% CI, we first find in Table B.7 
that r = .246 has an equivalent Zr of .25. With N = 72 and critical two-tailed 
Z(.05) = 1.96, we calculate that .25 ± 1.96/ /72 - 3 = .25 ± .24, indicating that the 
95% CI in units of Zr ranges from .01 to .49. Using Table B.8 to convert these Zr 

values back to units of r, we conclude with a 95% probability that the CI ranges 
from r = .01 to .45. 

Suppose instead we wanted to express the size of effect as Cohen's d. We know 
that S = 4 in each group, and we compute <Jpooled from Equation 13.12: 

so 

S j dfwithin 4 FlO 3 944 
<Jwithin = within -r = V 72 =. , 

C h ' d MI - M2 12 - 10 507 
o en s = <Jpooled = 3.944 =. . 

The 95% confidence interval of Cohen's d is computed as 

95% CI = d ± t(.05) (SCahen's d), (13.19) 

where t(.05) is the critical value of t at p = .05 two-tailed for our df of nl + n2 - 2 = 70, 
which Table B.3 indicates as 1.994 (in the column headed p = .025, because this is a 
one-tailed table). We find the square root of the variance of Cohen's d from 

S2 _ [nl + n2 ~ ]nl + n2 
Cahen's d - fii1i2 + 2df -r' (13.20) 

so 

2 _ [36 + 36 .5072 ]36 + 36 _ 
SCahen's d - (36)(36) + 2(70) 70 - .059, 

and then we find SCahen's d = .jS~ahen'sd = ./.059 = .243. Fom Equation 13.19, we find 

95% CI = .507 ± 1.994(.243) = .507 ± .485, 

which tells us there is a 95% probability that the population value of Cohen's d is 
between .022 and .992. 

Had we chosen Hedges's g, we would obtain it directly from 

MI-M2 12-10 Hedges's g = S = 4 = .500, 

and for the 95% CI, we redefine SCahen's d in Equation 13.19 to be SHedges's g. Then, 
because 

2 _ nl + n2 g2 
SHedges's g - fii1i2 + 2df' (13.21) 

we find 

2 36 + 36 .5002 
SHedges's g = (36)(36) + 140 = .057 
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and SHedges's g = /S~edges's g = ./.057 = .239. Hence, the 95% CI = .500 ± 1.994(.239) 
= .500 ± .477, so the lower and upper limits of Hedges's g are .023 and .977. 

Notice that not only is the value of Cohen's d slightly larger than the value of 
Hedges's g, but the confidence interval of d is also larger than that for Hedges's g. 
The reason is that Cohen's d uses N for the denominator of the estimated variance 
to obtain the standard deviation, whereas Hedges's g uses N - 1. Of course, as 
the sample sizes grow larger, the difference between d and g becomes smaller. A 
word of caution: These confidence intervals are based on assumptions about the t 
distribution, which are discussed later in this chapter. Although the t test is a robust 
statistic, serious violations of assumptions may jeopardize the accuracy of these 
estimates. In addition, when the samples are biased in some way (e.g., volunteer 
subject bias), the problem may be compounded. We know it is often possible to 
hypothesize the direction of volunteer bias (chapter 9), but we almost never know 
the magnitude of the actual bias. The good news is that when sampling biases are 
small, even biased samples may provide tolerable estimates of population parameters 
(Snedecor & Cochran, 1989). 

t TESTS FOR NONINDEPENDENT SAMPLES 

So far in our discussion of the t tests used to compare the means of two groups, we 
have assumed the two groups of scores to be independent. That is, we thought of the 
scores in one group as having no relationship to the scores in the other group. Suppose, 
for example, that the members of the two groups are children aged 10 to 11 who have 
been rated by judges on a 5-point scale of sociability. If Group 1 is girls and Group 2 
is boys, might we still not conclude that the children of Groups 1 and 2 are independent 
of each other? But what if the four boys and the four girls all come from just four 
families, as indicated in Table 13.5? 

When we examine the girls' and boys' scores over the four families, we 
lind that a family member's sociability score is to some degree predictable from 
family membership. We see, for example, that the Smith children are judged to be 
most sociable, and the Brown children are judged to be least sociable. For these 

TABLE 13.5 

Sociability scores 

Girls Boys 
"'lImily (Group 1) (Group 2) M 

IImwn 2 1.5 

( 'lurk 3 2 2.5 

Junes 4 2.5 

Sl'lilh 5 2 3.5 

M 3.5 1.5 2.5 
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data, then, common family membership has introduced a degree of relatedness 
between the observations of Group 1 and Group 2. Other ways in which a degree 
of correlation might have been introduced include membership in the same dyad, 
as when female and male couple members are to be compared with each other. 
Perhaps the most common example is a repeated-measures design, in which the 
same subjects are each measured more than once. Suppose they are measured 
twice, for example, once before and once after having been exposed to a learning 
experience, or perhaps once after a treatment condition and once after a control 
condition. 

Whenever pairs of observations could have been lined up next to each other 
because they are from the same family or the same dyad, or are of the same person, 
but were not lined up next to each other, computing an independent t typically results 
in a t value that is too small. The reason is that in these situations there is usually a 
positive correlation between scores earned by the two paired observations. In the 
example in Table 13.5, correlating the scores of 2, 3, 4, 5 (Group 1) with the scores 
of 1, 2, 1, 2 (Group 2) would give us r = .45. Had the correlation been negative 
rather than positive, computing an independent t would give a t value that was too 
large (Kenny & Judd, 1986). 

When computing t tests for correlated data (or matched pairs, or repeated 
measurements), we perform our calculations not on the original nl + n2 scores, but 
on tfie differences between the nl and n2 scores. Table 13.6 shows each difference 
score (D), where D = Xl - X2 for each pair of lined-up scores. For the Brown sib­
lings, for example, Xl = 2 and X2 = 1, and D = 2 - 1 = 1. The mean of the four 
D scores is Mo = 2. The column headed D - Mo shows the differences between the 
D scores and the Mo of 2. For the Brown children, D - Mo = 1 - 2 = -1. The 
last column has the squared differences between the D scores and Mo, with the sum 
of these squared differences indicated as 'L,(D - MO)2 = 4. We perform the following 
calculation of t, with df = N - 1: 

t= Mo 

/(1 )s~' 
(13.22) 

TABLE 13.6 

Basic data for paired sample t test 

Family Xl (girls) X2 (boys) D D -MD (D - MD)2 

Brown 2 -1 

Clark 3 2 -1 

Jones 4 3 

Smith 5 2 3 

Sum 14 6 8 0 L(D - MD)2 = 4 

Mean 3.5 1.5 MD = 2 
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where N is the number of D scores, and sfi is the unbiased estimate of the population 
value of afi, computed as 

Sz _ I.(D-Md 
D - N-l 

Substituting in Equation 13.23, we find sfi = 4/(4 - 1) 
Equation 13.22 we find 

t = 2 = 3.46. 

/(i) 1.333 

(13.23) 

1.333, and then from 

Notice that the Xl and Xz scores in Table 13.6 are identical to those in Table 13.4. 
The difference is that we assumed the two groups were independent in Table 13.4, and 
then found t = 2.83 for independent means, which with 6 dfwas significant at about the 
.02 level, one-tailed test. In the case of the matched-pair t of 3.46 for the same raw 
scores, our df are not nl + nz - 2 = 6, because we operated on only a single sample 
of four difference scores, and so df = N - 1 = 3. For a t of 3.46 and df = 3, our p 
value is still about .02, because our larger t was offset by the loss of 3 df. Ordinarily, 
the sample sizes are larger than in this illustration, and when the data of the two groups 
are highly correlated, we find substantial increases in the value of t accompanied by 
substantially lower (more "significant") p levels. One other point regarding Equation 
13.22: It can also be used when a single set of scores is to be compared with some 
theoretical mean. Then we can form a D score for each subject by subtracting the specific 
theoretical mean from each person's obtained score; that is, D would equal the X obtained 
minus the mean (M) hypothesized by the theory. 

If we are interested in the 95% confidence limits of the mean difference (MD), 

we use the following procedure in a paired design: 

95% CI = MD ± t(0.5) (SD) / IN, (13.24) 

where t(.05) is the critical two-tailed t for df = N - 1, and SD is the square root of sfi 
in Equation 13.23. For the data above, where MD = 2, SD = 1.155, and N = 4, we 
lind in Table B.2 that, with df = 3, the critical value of tis 3.182, and thus 

95% CI = 2 ::!:: (3.182)(1.155)/2 = 2 ::!:: 1.84, 

which gives lower and upper limits of MD as 0.16 and 3.84. 

I·:~'FECT SIZE AND STUDY SIZE 
COMPONENTS OF NONINDEPENDENT 
SAMPLE t 

Just as the independent t was shown to consist of two components, a similar relation­
ship can be shown for the t test for nonindependent samples. Because Significance 
Irl>t = Size of study X Size of effect, one way to show this relationship is by 

t = MD X IN 
SD ' 

(13.25) 
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where the size-of-effect component is the mean of the D scores (MD) divided by SD, 
the square root of the value of S?J computed by Equation 13.23, and this quantity is 
weighted by the square root of the number of difference scores (N). Using the example 
in the previous section, where S?J = 1.333, and thus, SD = 11.333 = 1.155, from 
Equation 13.25 we find 

2 
t = 1.155 X ./4 = 3.46, 

which, of course, is the same value of t that we obtained using Equation 13.22. 
An alternative way of representing the relationship of t for correlated observa­

tions to size of effect and size of study is 

t = d X /df, (13.26) 

where the size-of-effect component is Cohen's d, the mean of the difference scores 
divided by the cJ of the difference scores: 

Cohen's d = MD 
cJD' 

(13.27) 

and because for the data in Table 13.6, cJD = 1.00, therefore Cohen's d = 2/1.00 = 2. 
Keeping in mind that for matched pairs there are N pairs to operate on (rather than nl + m 
oBservations), using Equation 13.25 with df = N - 1, we find t = 2 X J3 = 3.46. 

Our own preference (for the various reasons stated earlier) is to express the effect size 
in units of r, in which case another way of representing the relationship between the 
size of effect and the size of study for the t for correlated observations is the familiar one 
first introduced in chapter 2 and discussed earlier in this chapter (i.e., Equation 2.2): 

When we use this equation in the context of the nonindependent t, the r is understood 
as a partial correlation, that is, the correlation between membership in group (girls 
vs. boys) and observed score corrected for family membership. The r does not refer 
to the correlation between the first and second measurement made within families, 
dyads, or individuals. It also does not refer to the correlation of the eight scores 
"uncorrected" for family membership with membership in the groups (girls vs. boys). 
If we compute this r (scoring, e.g., girls = 1, boys = 0), we obtain the point-biserial 
r corresponding to the t test for uncorrelated observations, with r = .756 rather than 
.894, which we simply calculated from Equation 12.1 (with df = N - 1) as 

r-r r=yf2+dj= (3.46)2 = .894 
(3.46)2 + 3 

As the interpretation of this value is not transparent, it requires some further 
explanation of where we get an effect size r for the treatment or group effect for 
matched pairs. One way to understand where we get this r is by "correcting" the 
original data for the systematic effects of membership in a particular pair (e.g., the 
family, dyad, or individual that generated the two scores). We accomplish this by 
subtracting for each member of a pair the mean of the two pair members, a procedure 
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that eliminates any differences between the means of families, dyads, or individuals. 
Having thus removed statistically (or partialed out) the effect of belonging to a par­
ticular pair, we compute the point-biserial r between group membership (coded as 0, 
1, or as -1, + 1, for example) and the corrected observed score. In the process of 
correcting for pair membership, we lose all the df for pairs, however. Because in our 
example there are four pairs, we lose 4 - 1 = 3 df in the process of computing r 
from our pair-corrected, or residual (i.e., leftover), scores. Part A of Table 13.7 shows 
the calculation of the corrected mean scores for girls (Xl) and boys (X2). Part B of 
this table shows the Z-scored dummy-coded values of gender (the predictor variable, 
designated X) and the Z-scored "corrected" scores of N = 8 subjects (the dependent 
variable, designated as y), and in the last column we see the products of these Z 
scores, which sum to 7.16. Then, from Equation 11.1, we find 

_ ~ZxZy _ 7.16 - 895 
rxy - N - 8 -. . 

TABLE 13.7 

Correlation after correction for family membership 

A. Means corrected for family membership 

.'amily Girls (Xl) Boys (X2) 

Brown 2 

Clark 3 2 

Jones 4 

Smith 5 2 

l: 14 6 

M 3.5 1.5 

8. Z-scored independent and dependent variables 

Gender 
(1 = female; Score 

Child 0= male) (corrected) 
X y 

0.5 

2 0.5 

3 1.5 

4 1.5 

5 0 -0.5 

6 0 -0.5 

7 0 -1.5 

K 0 -1.5 

l: 4 0 

M 

1.5 

2.5 

2.5 

3.5 

10.00 

2.5 

Gender 
Zx 

-1 

-1 

-1 

-1 

o 

Mcorreded 

XI-M X2 -M 

+0.5 -0.5 

+0.5 -0.5 

+1.5 -1.5 

+1.5 -1.5 

4.0 -4.0 

1.0 -1.0 

Score 
Zy ZxZy 

0.45 0.45 

0.45 0.45 

1.34 1.34 

1.34 1.34 

-0.45 0.45 

-0.45 0.45 

-1.34 1.34 

-1.34 1.34 

0 7.16 
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TABLE 13.8 

Table of variance 

Source SS df MS F r 

Pairs 4 3 1.333 

Gender groups 8 8.000 12.00 3.46 .894 

Residual or error 2 3 0.667 

In the next chapter and in subsequent chapters, we turn to analysis of variance, 
which is another way to understand where we get the r for the size of the treatment 
or group effect for the matched-pairs t test. In this approach we compute the "sums 
of squares" for the group or condition effect and for the "error term" for the group 
or condition effect, and then find r as 

SSgroups (13.28) r= 
SSgroups + SSerror . 

For the present data, Table 13.8 shows the table of variance, and from Equation 13.28 
we find 

r = /8 ! 2 = /]0 = .894. 

Therefore, our r based on the computation from residuals (Le., differences between 
scores and family means) agrees within rounding error with our r based on the analysis 
of variance. The process of correcting for pair membership will be described further 
in chapter 16, where we deal with the two-way analysis of variance. 

The estimation of confidence intervals for effect sizes in association with 
nonindependent means is currently a matter of debate, but we can show what the 
effect size would look like as a binomial effect-size display (BESD). This is 
shown in Table 13.9, where once again we see that the BESD sets the marginal 
totals at 100. In the upper left cell, the 95 is calculated as 100(.50 + r/2), where 
r is our effect size of .894 rounded to .90. In the upper right cell, 5 is calculated 
as 100(.50 - r/2). The difference between 95 and 5, divided by 100, is the rounded 
effect size r. 

TABLE 13.9 

BESD for results in Table 13.7 

More sociable Less sociable Row sum 

Girls 95 5 100 

Boys 5 95 100 

Column sum 100 100 
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ASSUMPTIONS UNDERLYING t TESTS 

Several statistical assumptions are made in the use of t tests, and to the extent that 
these assumptions are not met, we may make incorrect inferences from t tests. The 
basic assumptions are sometimes summarized by the statement that errors are lID 
normal, where errors refers to the deviation of each score from the mean of its group 
or condition, and IID normal is read as "independently and identically distributed in 
a normal distribution" (Box, Hunter, & Hunter, 1978, p. 78). The shorthand format 
of IID normal translates into three assumptions about the distribution of observations 
within conditions ("errors"). The same three assumptions underlying the t test are also 
relevant to the F test, which we tum to in the next chapter. 

1. The errors are independent (independence). If the errors are not independent of one 
another, the t we obtain may be spurious. For example, if observations are strongly 
positively correlated, the obtained t may be several times larger than the accurate 
t (Snedecor & Cochran, 1989). Correlations among errors can be introduced in 
many ways. Suppose that we want to compare two types of group therapy. We 
assign 30 patients to each of the two types and within each type assign 10 patients 
to each of three groups. It might tum out that being in the same therapy group has 
made the patients in each group "too much alike," so that they are no longer 
independent or uncorrelated. If that is so, thinking that we had 30 independent units 
in each condition could be quite misleading. In such a situation we may have to 
regard groups rather than persons as our sampling units, and we would then suffer 
a loss of df from 30 + 30 - 2 = 58 down to 3 + 3 - 2 = 4. In this case, each 
person within a group would be seen as a "repeated measurement" of each group. 
The analysis of such data is considered in chapter 18. A valuable discussion of 
problems of independence can be found in the work of Charles Judd and David 
Kenny (1981; Kenny & Judd, 1986). 

2. The errors are identically distributed (homogeneity of variance). For the t test 
situation in which two groups are being compared, the t obtained will be more 
accurate if the variances of the populations from which the data were drawn are 
more nearly equal. Only if the population variances are very different and if the 
two sample sizes are very different is the violation of this assumption likely to 
lead to serious consequences. One approach to this problem is to make the 
variances in the two samples more nearly equal and then perform the t test on 
the transformed data. The most commonly used transformations involve taking 
the square roots, logs, reciprocal square root, and reciprocals of the original data. 
Details are given, for example, in Box, Hunter, and Hunter (1978) and Tukey 
(1977). Tukey described a "ladder of powers" to which to raise and thus 
"reexpress" the raw data, ranging from)(3 to X-3, where X is a raw score. We 
will return to this procedure ~hen we discuss factorial designs in chapter 16, as 
transformations can also be of value in removing complexities and simplifying 
relationships, such as interactions in analysis of variance, which can sometimes 
be simplified to linear relationships by transformations. 

When suitable transformations are unavailable or are ineffective, a service­
able way to make an independent t more accurate is to use Satterthwaite's 
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approximate method (Snedecor & Cochran, 1989). This method can be employed 
either for continuous data or for dichotomous (0, 1) data and involves (a) a 
modified computational formula for t and (b) an estimate of the adjusted 
df with which to enter the t table along with the modified t. We first compute 
t from 

(13.29) 

where Sf and S~ are the within-group sample variances based on n) - 1 and 
n2 - I degrees of freedom, respectively. We then enter a t table with this value 
and with the Satterthwaite-adjusted df, obtained as follows: 

[Sf + S~]2 
n) n2 

df Satterthwaite = [( 2 )2 (2 )2 ] 
S) /n) Sz/n2 
n)-1 + n2-1 

(13.30) 

For an illustration of the use of dichotomous data, consider an experiment 
in which 10 patients were assigned at random to a treatment condition, and 
the remaining 20 patients were assigned to a control condition. Patients who 
improved were scored as 1, and those who did not improve were scored as 0, 
with the summary results shown in Table 13.10. We first compute t from 
Equation 13.29: 

t .50 - .05 2 59 
- ;.2778 .0500 - . . 

10+20 

Before entering a table of t, we must compute the adjusted degrees of freedom 
from Equation 13.30: 

dfSatterthwaite = [(.2778/10) + (.0500/20)2] 

10 - 1 20 - 1 

[.2778 + .0500]2 
10 20 

.000917 
= [.0000857 + .000000329] = 10.6, 

TABLE 13.10 

Results based on dichotomous data 

Treated 

Controls 

Improved 

5 

6 

Not improved 

5 

19 

24 

10 

20 

30 

M 

.50 

.05 

.2778 

.0500 
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which we truncate to the next lower integer, 10. We now enter our t table with 
t = 2.59 and df = 10 to find p = .013 one tailed. Had we computed t from 
Equation 11.9, we would have found 

t = -----r~M~1 =-~M~2;== = .50 - .05 = 3.31 

(~I + ~JS2 /(l~ + 210).1232 ' 

which, with df = nl + m - 2 = 28, has an associated one-tailed p of .0013, a 
substantially more significant value, but inappropriately so. To compute the effect 
size r from t, we use the Satterthwaite t of 2.59, the original degrees of freedom 
(nl + n2 - 2), and Equation 12.1, that is, 

~ (2.59)2 = 44 
r = V f2+dj = (2.59)2+ 28 . 

3. The errors are normally distributed (normality). When there is extreme nonnormality 
in the distribution of the errors, some inaccuracy may be introduced into the t test. 
However, if the distributions are not too skewed, or not too bimodal, there seems to 
be little cause for concern unless the sample sizes are tiny (Hays, 1994). 

NONPARAMETRIC PROCEDURES 

Many experimenters use nonparametric statistical tests to compare treatment and 
control groups in research with small samples. Also called distribution-free, and more 
generally, sturdy statistics, these tests have in common the fact that they make fewer 
assumptions than do such parametric procedures as t and F tests (Mosteller & Rourke, 
1973). Although more rigorous distinctions can be made between the terms nonpara­
metric and distribution-free (e.g., Huber, 1981; Marascuilo & McSweeney, 1977), 
those fine distinctions are not necessary for the purpose of this discussion. The 
assumptions that are made by nonparametric procedures have to do with the shape of 
the underlying distributions from which the samples were drawn, and so they refer to 
Assumptions 2 and 3 in the preceding section. Most nonparametric procedures make 
the independence assumption (Assumption 1), and some make assumptions of identity 
of shapes of distributions or of the symmetry of the population distribution (Siegel, 
1956; Siegel & Castellan, 1988). Nonparametric procedures, therefore, are not at all 
"assumption-free," but they can be useful adjunct procedures when, for example, 
homogeneity of variance (Assumption 2) or crude normality (e.g., absence of serious 
skewness, Assumption 3) cannot be achieved with appropriate transformation. Ordi­
Illlrily, nonparametric procedures are equivalent to parametric procedures applied to 
IIppropriately transformed data (Judd & McClelland, 1989). 

Shapes and Variances of Distributions 

As an example in which differences in the variances and shapes of distributions can 
lelld to erroneous conclusions when nonparametric procedures are used, suppose we 
hllve a sample of 20 patients with severe psychological symptoms. A new, but 
expensive, intervention has been developed to treat s~ch patients. If we could do so, 
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we would prefer to randomly assign half our sample to an experimental group that 
would receive the new intervention and half to a control group that would receive the 
usual treatment procedure. However, because of the expense of the intervention, only 
a single patient can receive it. Thus, at random, we select 1 of the 20 patients to 
receive the intervention. After the results of this experiment become available, and 
we have ranked all 20 patients on the degree of improvement shown, we find that our 
solitary intervention patient has made the greatest gain of any of the 20 patients. 

Applying one of the most powerful of the nonparametric procedures, the Mann­
Whitney U test (for ranked data), we find the one-tailed p = .05 that our lone interven­
tion patient would show the greatest benefit of any of our 20 patients (Siegel, 1956, 
p. 277). If we treat the 20 rank values of outcomes as scores, we find the t test on the 
ranks is also significant at p = .05 one-tailed. These results are quite transparent, and 
even if we use no formal test of significance (e.g., U or t), we can readily see that our 
lone treated patient could occupy anyone of 20 ranks and that only 1 of 20 ranks 
yields the most favorable outcome for the intervention (i.e., p = 1/20 = .05). 

All these procedures, nonparametric as well as parametric, depend on the assumption 
that the intervention will not dramatically affect the shape and variance of the distribution 
of the outcome measures for the intervention condition. Suppose that the effect of the 
intervention is such as to greatly benefit about half the treated patients but to actually 
harm the other half. And suppose also that half the treated patients show greater benefit 
than any of the control patients, but the other half of the treated patients show less benefit 
than any of the control patients. If we find our lone intervention patient to benefit more 
than any of our control patients, the p value for that outcome is not .05, but .50, as there 
is now a 50:50 chance that our lone intervention patient would benefit more (or benefit 
less) than any of our control patients. 

If, in our original sample of 20 patients, we could have administered the treat­
ment to 3 of the patients (instead of only 1), and if all 3 of those patients had shown 
greater benefits than any of our 17 control patients, the Mann-Whitney U test for 
ranked data would be significant at p = .001 (Siegel, 1956, p. 274). Normally that p 
value would be accurate, but if the effects of treatment were such as to drive half the 
treated patients above all the controls in degree of benefit, while driving the remain­
ing half below the controls in degree of benefit, the accurate one-tailed p value would 
be .125 rather than .001. The lesson of this example is that even the more robust 
nonparametric procedures can yield inaccurate p values, given certain underlying 
distributions of treatment and control groups. We can protect ourselves to some degree 
against these inaccuracies by routinely examining the distribution of ranks or other 
scores of all the treatment and control conditions of our research. 

Sometimes, when sample sizes are very small, there is no alternative to some 
form of nonparametric test. That was the situation we encountered in our discussion 
of Spearman's rank-correlation coefficient (chapter 11). When the number of pairs of 
scores being correlated is very small, we are forced to go to nonparametric procedures 
to compute the exact probabilities of various outcomes of rankings. Later in this book, 
we encounter an analogous situation when we discuss tables of counts in which the 
expected frequencies in a 2 X 2 table fall critically low (chapter 19). 

There is now such a rich profusion of nonparametric procedures that even a brief 
discussion of the major ones would require at least a small textbook of its own. Fortunately, 
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a growing list of texts can be recommended, beginning with the classic by Sidney Siegel 
(1956) and its revision (Siegel & Castellan, 1988), and including Bradley (1968), Conover 
(1999), Fraser (1957), Gibbons (1985), Gibbons and Chakraborti (2004), Hollander and 
Wolfe (1999), Lehmann and Dabrera (1998), Marascuilo and McSweeney (1977), 
Mosteller and Rourke (1973), Noether (1967), and Pratt and Gibbons (1981). 

THE BOOTSTRAP, THE JACKKNIFE, 
AND PERMUTATION TESTS 

With the ready availability of high-capacity personal computers, it is now possible to 
obtain accurate estimates not only of significance levels, but of measures of central 
tendency, variability, confidence intervals, simple and complex indices of correlation, 
regression, and more, even when the data are not normally distributed. The estimation 
methods, known as the bootstrap, the jackknife, and permutation tests, all use 
certain resampling procedures. The underlying rationale for these estimation methods 
is not new. 

Jackknifes and Bootstraps 

Histories of the computer-intensive methods of resampling credit the work of Quenouille 
(1949, 1956) as having introduced the idea of estimating the bias of a statistic by deleting 
one observation at a time and recalculating the estimated statistic (Barbe & Bertail, 1995; 
Davison & Hinkley, 1999; Dudewicz, 1992; Efron, 1982; Gray & Schucany, 1972; 
Shao & Tu, 1995). Whereas Quenouille introduced the concept of the jackknife, it was 
Tukey (1958) who named it the jackknife and applied it to estimating standard errors and 
confidence intervals (Efron & Tibshirani, 1993; Gray & Schucany, 1972; Mosteller & 
Tukey, 1977). Although much of the literature on resampling procedures is directed at 
other statisticians, resampling techniques are finding their way into the literature directed 
at behavioral researchers (e.g., Hildebrand, 1986; Myers & Well, 2003; Wilcox, 1996). 

Although the jackknife introduced the idea of resampling from an obtained 
sample to create "replications," it was Efron (1979) who broadened the idea of 
resampling with his introduction of the bootstrap. The bootstrap can be applied to 
more problems than the jackknife but ordinarily requires more computation than does 
the jackknife (Shao & Tu, 1995). Neither the jackknife nor the bootstrap requires 
that the assumption of normality be met, but both procedures work better if the data 
lire at least independent and identically distributed. However, with some complica­
tions, they can be used with data not meeting even those assumptions. In any case, 
hoth the jackknife and the bootstrap are more robust than more traditional methods. 
The more the assumptions of lID normal are violated, the more we benefit from the 
rcsampling procedures of the jackknife and the bootstrap (Shao & Th, 1995). 

Although we speak of "the" jackknife and ''the'' bootstrap, there are many versions 
tlf each, and those different versions serve different purposes, with varying degrees of cost 
in computer time. For example, we may be able to compute some standard errors more 
efficiently using the jackknife, whereas for other computations the bootstrap may be more 
IIccurate though requiring more computations (Shao & Th, 1995). The actual computation 
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of jackknifes and bootstraps may require heavy-duty computational resources. To give 
readers an intuitive feel for resampling, we provide a very small example. Created to 
illustrate bootstrap procedures, this example benefited greatly from our reading of the 
very clear exposition of Efron and Tibshirani (1993). 

The Bootstrap: An Example 

For a sample of size N for which we want an estimate of, say, the standard error of the 
median (or of some other statistic), we repeatedly draw samples of size N - S, where S 
refers to the number of elements of the sample to be set aside. Suppose we have a 
sample of the following N = 10 scores: 1, 2, 3, 4, 6, 7, 13, 14, 15, 27. We decide to 
draw samples of size 7 (i.e., N - S = 10 - 3 = 7). We would then draw a large number 
of samples of size 7 from our N = 10 scores, perhaps several hundred or more such 
samples. Our sampling would be with replacement, meaning that after every score 
selected by the computer, that score is put back into the pool from which we are sampling. 
Thus, it could easily happen (e.g., 10% of the time) that we will draw the replaced score 
as our second draw. In this example, if the first random draw is a sample score of 27, 
our second draw is as likely to be another 27 as any other of our N of 10 scores. 

Tables 13.11 and 13.12 illustrate bootstrapping from a tiny sample of just 3 
observations. Table 13.11 shows our 3 scores, their median, mean, S, 52, and the 
standard error [(S2/N)1I2] of the mean. Table 13.12 shows 27 possible subsamples 
blised on the data in Table 13.11. The first listed subsample (1, 1, 1) implies that in 
one of our 27 random samplings with replacement, the first drawn, the second drawn, 
and the third drawn values were all scores of 1. Subsamples can take on such values 
only because we replace each drawn score before we draw the next score. Of our 
27 possible samples, only 6 contain our original sample scores of 1, 2, and 9. 

For each of our 27 resamplings, Table 13.12 shows the median, mean, S, and 
52 values, and Table 13.13 summarizes each of the four columns of Table 13.12 by 

TABLE 13.11 

Dlustrative bootstrapping from a sample of N = 3 

Sample 

2 

9 

Median 2 

Mean 4 

S 4.36 

S2 19.00 

~ 2.52" 

"Standard error of the mean. where the 90% CI around the mean extends from 

-3.35 to 11.35. computed from M± t('05)~ = 4 ± (2.92)(2.52) = 4 ± 7.35. 
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providing that column's median, mean, S, S2, 95th percentile score, and 5th percentile 
score. The bootstrap estimate of the standard error is the standard deviation of the 
bootstrap samples. Thus, the standard errors of the median, mean, and S are 3.31, 
2.09, and 1.92, respectively. 

Bootstrap procedures have many more applications than those illustrated here. We 
can form confidence intervals for various measures of central tendency, variability, 
correlation, and linear and nonlinear regression. Indeed, we can use bootstrap procedures 
to help us estimate any kind of statistic, its variability, and its degree of bias. 

TABLE 13.12 

Median, mean, S, and S2 for 27 resampled sets of three scores 

Resampled 
scores Mdn M S S2 

1. 1, 1, 1.0 0 0 

2. 1, I, 2 1.33 0.58 0.33 

3. I, 1, 9 3.67 4.62 21.33 

4. I, 2, 1.33 0.58 0.33 

5. I, 2, 2 2 1.67 0.58 0.33 

6. I, 2, 9 2 4.0 4.36 19.00 

7. 1, 9, 3.67 4.62 21.33 

8. I, 9, 2 2 4.0 4.36 19.00 

9. I, 9, 9 9 6.33 4.62 21.33 

10. 2, I, 1.33 0.58 0.33 

II. 2, I, 2 2 1.67 0.58 0.33 

12. 2, 1, 9 2 4.0 4.36 19.00 

13. 2, 2, 2 1.67 0.58 0.33 

14. 2, 2, 2 2 2.0 0 0 

15. 2, 2, 9 2 4.33 4.04 16.33 

16. 2, 9, 2 4.00 4.36 19.00 

17. 2, . 9, 2 2 4.33 4.04 16.33 

IK. 2, 9, 9 9 6.67 4.04 16.33 

II). 9, 1, 3.67 4.62 21.33 

20. 9, I, 2 2 4.0 4.36 19.00 

21. 9, I, 9 9 6.33 4.62 21.33 

22, 9, 2, 2 4.0 4.36 19.00 

!.I. 9, 2, 2 2 4.33 4.04 16.33 

24. 9, 2, 9 9 6.67 4.04 16.33 

2~. 9, 9, 9 6.33 4.62 21.33 

./ .. 9, 9, 2 9 6.67 4.04 16.33 

n. 9, 9, 9 9 9.00 0 0 
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TABLE 13.13 

Summary statistics for the four columns of data in Table 13.12 

Mdn M S 82 

Median (Mdn) 2.00 4.00 4.04 16.33 

Mean (M) 3.56 4.00 3.02 12.66 

S 3.31 2.09 1.92 9.13 

~ 10.95 4.38 3.67 83.31 

95th percentile* 9.00 8.07 4.62 21.33 

5th percentile** 1.00 1.13 0.00 0.00 

• Found at the location of the .95(N + I)th score . 

•• Found at the location of the .05(N + 1)'h score. 

Permutation Tests 

In addition to the jackknife and the bootstrap, there is a third set of procedures that 
has benefited greatly from the availability of high-capacity personal computers. These 
are the so-called permutation tests, which are also referred to as randomization tests, 
rerandomization tests, and exact tests (Good, 1994). Although these tests were 
descrt'bed as early as 1935 by R. A. Fisher and were incorporated into the basic 
statistical procedures used by behavioral researchers (Siegel, 1956), they could be 
used in practice only with small data sets. 

The basic idea of permutation tests is simply to count the total number of permuta­
tions or rearrangements of the data obtained and determine from the list of all possible 
permutations the "rareness" of the obtained result. For example, if we have control group 
scores of 1, 3, 4, and treatment group scores of 5, 9, 76, we can find 20 possible rear­
rangements of these six scores. Because our obtained data show the arrangement or 
permutation most favorable to our hypothesis (that treatment scores would be higher than 
control group scores), our obtained p = 1/20 = .05 one-tailed. When sample sizes grow 
very large, it is no longer practical to list all the permutations possible even with high­
capacity personal computers, and it is necessary to draw repeated samples of permutations 
from our obtained sample much as we would when using bootstrapping. 

The jackknife, the bootstrap, and the permutation tests are all considered 
relatively robust when compared to the more traditional distribution-based statistics 
(e.g., t, F, Z, and X2). None of the resampling techniques described, however, are 
assumption-free. Although the assumption of an underlying normal distribution need 
not be met, failure to meet the assumptions of independence and identical distributions 
can be troublesome in various conditions for all three of our resampling approaches 
to estimating various statistics (Hayes, 1996; Shao & Tu, 1995). 

Computer Programs 

All of the resampling procedures were described as computer-intensive, and several 
of the sources cited in this section provide listings of appropriate computer programs 
(e.g., Davison & Hinkley, 1999; Efron & Tibshirani, 1993; Good, 1994; Mooney & 
Duval, 1993; Wilkinson & Engelman, 1999). 



THE F TEST AND THE t TEST 

CHAPTER 

14 
ANALYSIS OF 

VARIANCE 
AND THE 

FTEST 

Along with William Sealy Gosset's t test, Ronald A. Fisher's F test is at the top of the 
list of popular statistical procedures in behavioral research. In chapters 16-18 we shift 
our attention to more complex designs, but we focus here on single-dimensional (or 
"one-way") designs in which there are two or more groups. The F test can be used to 
lest the hypothesis that there is, in the popUlation from which we have drawn two or 
more samples, (a) no difference between the two or more group means or, equivalently, 
(h) no relationship between membership in a group and the score on the dependent 
measure. The F test, like the t test, is another test of significance and, as is true of all 
such procedures, comprises two components, the size of the effect and the size of the 
sludy. When there are just two means to be compared, we can rewrite the general 
relationship Significance test = Size of effect X Size of study more specifically as 

2 

F=~Xdf (14.1) 
1-r 

We can therefore compute the point-biserial r between membership in one of the two 
~ruups (coded, for example, as 0, \1 or -1, + 1) and the dependent variable and find 
,." from Equation 14.1, which requires only that we also know the df for r. For this 
IIpplication, df = the number of pairs of scores less two, or N-2. 

Taking the square root of both sides of Equation 14.1, we have 

./P = r X M. 
11- r2 

(14.2) 

409 
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The right-hand side of Equation 14.2 equals not only IF, but t as well (see again 
Equation 2.2). For the special case of the comparison of two groups, then, F = P, or 
IF = t. Therefore, we can use either test to investigate the plausibility of the 
hypothesis that, in the population from which we have drawn two samples, there is 
no relationship between the independent variable and the dependent variable (i.e., Ho 
is that r = 0). Just as is true of t, the distribution of F is readily available in tables 
for r = 0 (called the central F distribution). Thus, we can look up the probability 
that an F as large as or larger than the one we obtained could have occurred if r were, 
in fact zero. How, then, shall we decide whether to use t or F? 

The advantage of t is that it is a signed statistic. That is, it can be positive or 
negative in value, so that we can tell whether r is positive or negative or, put another 
way, whether the mean of the first group is greater than or less than the mean of the 
second group. The F test operates on -?-, or on the squared difference between the 
means, so the F is the same whether the obtained r is positive or negative, or whether 
one group mean is smaller or larger by the obtained amount than the mean of the 
other group. The limitation of the standard independent t test (Equation 11.9) is that 
it is for use only when there are just two means to be compared, whereas F can oper­
ate just as well for three groups, or four, or any number of groups as it does for just 
two groups. However, as we show in the next chapter, we can adapt both t and F to 
use as focused significance tests when we want to investigate a specific prediction 
a;nd there are more than just two means to be compared. 

When the F test is used to make a diffuse (unfocused) comparison among three 
or more groups, we describe it as an omnibus F. We can easily recognize omnibus F 
tests from the fact that their numerator degrees of freedom (d/numerator) exceed 1, 
whereas focused F tests have d/numerator = 1 even when they focus on more than two 
means. When the F test is used to make a diffuse comparison of three or more groups, 
the relationship between that omnibus F test and the size of effect and size of study 
is generalized to 

F = ~ X d/error 
1 - 1]2 d/means ' 

(14.3) 

where 1]2 is a correlation index (eta2) defined as the proportion of variance in the 
dependent variable attributable to group membership, d/error is analogous to the term 
d/when we were discussing the t test, and the d/means is the number (k) of means being 
compared less one, or k - 1. (Later in this chapter we are more precise about the 
definition of 1] and d/error.) 

THE ANALYSIS OF "VARIANCES" 

In our discussion of t in the previous chapter, we noted that the size of the effect could 
be indexed by r or by an index of standardized distance between the group means, 
such as Hedges's g (Equation 2.5) or Cohen's d (Equation 2.4). In the case of Hedges's 
g, the difference between means is divided by S, the sample estimate of the population 
standard deviation, or the square root of the unbiased estimate of the population vari­
ance (S2) pooled from the two groups. How might we incorporate the idea of standard­
ized distances among means when more than two means are to be compared? We might 
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take all k(k - 1)/2 possible pairs of absolute distances between means and find their 
average. With three means (M], M2, and M3), the average absolute distance between 
all the means is [1M - M21 + 1M2 - M31 + 1M] - M31l! 3, which we then divide by S to 
yield an index of heterogeneity in the spirit of Hedges's g. Such an index would be 
fairly informative, but it turns out to be less useful in subsequent statistical procedures 
than an index focused on the squared differences among means, defined as 

2 _ ~(U -lVf? 
Smeans - k _ 1 ' (14.4) 

where k is the number of means being compared, and the other terms are defined as 
above. 

A large S~eans implies that the means are far apart in the sense of squared 
distances from the grand mean. However, the precise meaning of far depends on the 
particular metric used in the research, and thus, we want to standardize the distance 
index, S~eans, by the unit of measurement used. We can do this by dividing S~eans by 
S2, the variance computed separately within each group and averaged from all groups. 
When we want to compare the means of any number of independent groups, we can 
also define F in terms of this new effect-size estimate and n, the number of sampling 
units in each of the groups when all the groups have the same n: 

F = S~eans X 
S2 n. (14.5) 

When the ns of the groups are not equal, n may be replaced (for a conservative 
estimate of F) by the harmonic mean of the sample sizes. The estimate of the F 
based on the harmonic mean of unequal sample sizes is always conservative in the 
sense that the harmonic mean of unequal sample sizes is always smaller than 
the arithmetic mean of the same sample sizes. The harmonic mean (nh) of two 
sample sizes was defined in Equation 12.2. A general equation for two or more 
sample sizes is 

nh = 1 / ~(~ + ~ + ... + ~) = kl(~ + ~ + ... + ~), 
'/ k n] n2 nk n] n2 nk 

(14.6) 

where n) to nk are the sizes of the samples on which the various means are based, 
and k is again the number of means being compared. 

Studying closely the definition of F in Equation 14.5 will solve a mystery that 
plagues students beginning their study of the analysis of variance (abbreviated 
ANaYA). The mystery is Why do we call it analysis of variance when what we are 
"really" doing is comparing means? Of course, we are doing both. We are comparing 
variances, in that the variance among means is compared with the variance within 
conditions (i.e., the basic level, of variation or "noise" in the system) in order to find 
out how far apart the means are on average (the "signal"). For any given size of 
sample n, the F will be larger if the S~eans grows larger relative to the S2 (the 
denominator value). It should also be pointed out that ANaYA is used in situations 
olher than the comparison of means (e.g., in regression analysis, discussed in a later 
rhapter) and that F tests are sometimes actually used to compare variabilities of 
groups rather than their means (discussed later in this chapter). 
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ILLUSTRATION OF AN OMNIBUS F 

Suppose we have 12 patients available for an experimental study in which we are 
comparing four treatment conditions, with three patients randomly assigned to each 
of the four conditions. The (hypothetical) improvement scores are shown in 
Table 14.1. On the basis of these scores, we find M = (8 + 4 + 4 + 2)/4 = 4.5. 
Because in this illustration we are using Equation 14.5 to solve for F, we begin 
by computing Equation 14.4: 

2 _ (8 - 4.5)2 + (4 - 4.5)2 + (4 - 4.5)2 + (2 - 4.5)2 
Smeans - 4 - 1 

(3.5)2 + (- 0.5)2 + (- 0.5)2 + (- 2.5)2 19 
= 3 = 3 = 6.33. 

Next we want S2, the pooled within-group variance collected over all groups, com­
puted as 

(14.7) 

where ni is the number of observations in the ith condition and Sf is the variance of 
the 11h condition, so we find 

r 

2 _ (2)(1.0) + (2)(4.0) + (2)(1.0) + (2)(4.0) _ 20 _ 
S - 2 + 2 + 2 + 2 - 8 - 2.50. 

And finally, from Equation 14.5 we find 

F = S~eans X n 
S2 

= 6.33 X 3 = 7.60. 
2.50 

We now refer this result to a table of the F distribution to find the p level associated 
with an F of this magnitude or greater. (We return shortly to the use of F tables.) 

TABLE 14.1 

Improvement scores in four conditions 

Psychotherapy Psychotherapy No psychotherapy No psychotherapy 
plus drug plus no-drug plus drug plus no-drug 
treatment treatment treatment treatment 

9 6 5 4 

8 4 4 2 

7 2 3 0 

L 24 12 12 6 

M 8 4 4 2 

S2 1.0 4.0 1.0 4.0 
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DIVIDING UP THE TOTAL VARIANCE 

Although Equation 14.5 is conceptually instructive for showing F to be a product of 
the size of the effect (S2 means/ S2) and the size of the study (n), there is something 
more about the analysis of variance that is of greater interest than the computation of 
F. The major purpose of an ANOVA is to divide the total variance of the observations 
into a number of separate sources of variance that can be compared with one another 
for purposes of both effect size estimation and significance testing. In our illustration 
above comparing the means of four groups, the total variation among 12 scores was 
divided into two sources of variation: (a) that between groups or conditions and 
(b) that within groups or conditions. 

It will be useful to look again at the basic idea of variance (Equation 10.6), 
defined here as 

2 _ ~(X_M)2 
S - N-l ' 

where S2 is the unbiased estimate of the population value of (}"2, and (}"2 for a sample 
differs from S2 only in that the denominator N - 1 is replaced by N. Particularly in 
the context of analysis of variance, the quantity S2 is referred to as a mean square 
because the sum of the squares of the deviations [i.e., the ~(X - M)2] is divided by 
N - 1 (or d/), yielding the squared deviation per df, or a kind of average. 

In the analysis of variance we are especially interested in the numerators of 
quantities of S2, as in (a) the variation between conditions and (b) the variation within 
conditions. The reason has to do with the additive property of the numerators, or 
sums of squares of deviations about the mean. These sums of squares add up to the 
total sum of squares in that Total sum of squares = Between-conditions sum of 
squares + Within-conditions sum of squares. Because the standard abbreviation for 
the sum of squares is SS, a simpler way of expressing that relationship is 

Total SS = Between-conditions SS + Within-conditions SS, 

or more succinctly as 

Total SS = Between SS + Within SS. 

The analysis of variance generally begins with the computation of these three 
sums of squares, defined as follows: 

Total SS = ~(X - M?, (14.8) 

where X is each observation, and M is the mean of the condition means, and we add 
up as many squared deviations as there are scores altogether: 

Between-cohditions SS = ~[ni (M - M?] (14.9) 

where ni is the number of observations in the i th condition, Mi is the mean of the i th 

condition, and M is the mean of the condition means. Here we add up as many 
quantities as there are conditions. 

Within-conditions SS = ~(X - Mi)2, (14.10) 
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where X is each observation, Mi is the mean of the condition to which X belongs, and 
we add up as many quantities as there are scores altogether. 

For the data in Table 14.1, using Equation 14.8 we find 

Total SS = (9 - 4.5)2 + (8 - 4.5)2 + (7 - 4.5)2 + (6 - 4.5)2 + (4 - 4.5)2 
+ (2 - 4.5)2 + (5 - 4.5)2 + (4 - 4.5)2 + (3 - 4.5)2 + (4 -4.5)2 
+ (2 - 4.5)2 + (0 - 4.5)2 

= 77. 

Then, from Equation 14.9 we find 

Between-conditions SS = 3(8 - 4.5)2 + 3(4 - 4.5)2 
+3(4 - 4.5)2 + 3(2 - 4.5)2 

= 57. 

And finally, using Equation 14.10 we find 

Within-conditions SS = (9 - 8)2 + (8 - 8)2 + (7 - W + (6 - 4)2 
+ (4 - 4)2 + (2 - 4)2+ (5 - 4)2 + (4 - 4)2 
+ (3 - 4)2 + (4 - 2)2 + (2 - 2)2 + (0 - 2)2 

= 20. 

Because they are sums of squared deviations, the sums of squares can take on only 
values ~f zero or above. Sums of squares are never negative, and thus, F tests are also 
never negative. As a check on our arithmetic, we can total the results of Equations 14.9 
and 14.10 to make sure they sum to the result of Equation 14.8, that is, 

Total SS = Between-conditions SS + Within-conditions SS 
77 = 57 + 20. 

ANOVA SUMMARY TABLES 

The results of an analysis of variance are often reported in a summary table so as to 
avoid cramming too many statistics into the narrative text. Table 14.2 shows such an 
ANOVA table of summary results, in which the first column gives the source of variance, 
and the second shows the sum of squares (SS) for each source of variance. The third 
column is the degrees of freedom (df) for each source. As four conditions are being 
compared, or four means, three of those means are free to vary once the mean of the 
means is determined. If there are k conditions, the df for conditions is k - 1, or 3 in this 

TABLE 14.2 

Summary ANOVA table 

Source SS df MS F 1J P 

Between conditions 57 3 19.0 7.60 .86 .01 

Within conditions 20 8 2.5 

Total 77 11 7.0 
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case. We obtain the df within the conditions by determining the df within each condition 
and then adding those values. Within each condition we have ni - 1 degrees of freedom, 
because within each condition of n scores there are only n - 1 that are free to vary once 
we determine the mean of the condition. Thus, the value of the df within conditions is 
L(ni-1), which in our present illustration is 

L(ni - 1) = (3 - 1) + (3 - 1) + (3 - 1) + (3 - 1) = 8. 

When we compute the df for between and within conditions as shown, we can 
check our arithmetic by summing those df to make sure that they agree with the df for 
the total, computed directly as N - 1 (i.e., the total number of observations less 1). In the 
present case we have 

df total = df between + df within 
11=3+8 

The fourth column of Table 14.2 provides the mean squares (MS), which we 
obtained by dividing the sums of squares by the corresponding df The mean 
squares can be seen as the amounts of the total variation (measured in SS) attribut­
able per df The larger the MS for the between-conditions source of variance relative 
to the within-conditions source of variance, the less likely it is that the null hypoth­
esis of no difference between condition means is true. If the null hypothesis were 
true, then the variation per dfshould be roughly the same for the dfbetween groups 
and the df within groups. 

The fifth column of Table 14.2 shows F, obtained, in applications of this type, 
by division of the mean square between conditions by the mean square within 
conditions. Another name for an F test is F ratio, because we generally obtain F 
by forming a ratio of two mean squares. The denominator mean square, often 
referred to as the mean square for error, serves as a kind of base rate for "noise 
level," or typical variation, and the numerator mean square serves to inform us 
simultaneously about the size of the effect and about the size of the study. Thus, 
a numerator MS can be large relative to a denominator MS because the effect-size 
index (defined in Equation 14.3 as 1]2/(1 - 1]2), and in Equation 14.5 as S;;'eans/S2) 
is large, or because the n per condition is large, or because both of these components 
have large values. It follows that we cannot simply interpret a large F as reflecting 
a large effect. Any conclusion about the size of the effect must be based on the 
direct calculation of an effect size estimator. 

The American Psychological Association (2001), which is the arbiter of publication 
style for many journals, recommends that an index of effect size or strength of relationship 
routinely be reported. The APA publication manual also properly cautions that, "as a 
general rule, multiple degree-of-freedom effect indicators tend to be less useful than effect 
indicators that decompose multiple degree-of-freedom tests into meaningful one degree­
of-freedom effects" (p. 26). We also are rarely interested in multiple degree-of-freedom 
effect-size indicators, and in the next chapter we will describe a family of effect size 
correlations for use with focused statistical tests to assess predicted trends in three or more 
group or condition means. Nonetheless, we see in Table 14.2 that the effect size measure 
(II) is for a multiple degree-of-freedom F (i.e., an omnibus F with numerator df = 3), 
lind there is a similar example in the APA manual (p. 162). Although we can usually do 
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better than this, the effect size eta (1]) and its squared value (1]2) are frequently used for 
multiple degree-of-freedom F tests, and thus need some explanation. 

Eta can be defined as 

/ SSbetween 
1]= , 

SSbetween + SSwitbin 
(14.11) 

or the square root of the proportion of the sums of squares (between + within) associated 
with the between-conditions source of variation. An equivalent formula that is convenient 
when we have access to an F but not to the original sums of squares is 

F (d/between) 
1]= 

F(d/between) + dfwithin . 
(14.12) 

In the present illustration, Table 14.2 shows 1] computed from Equation 14.11 as 

1] = j 57 ~ 20 = ;.7403 = .86, 

or from Equation 14.12 as 

1]= 
7.6(3) / 22.8 

----= = 86 
7.6(3) + 8 22.8 + 8 . . 

The 1]2 is interpreted as a "proportion of variance accounted for," and the range, 
therefore, is like that for ?, which is 0 to 1. However, r represents an index of linear 
relationship, whereas 1]2 can serve as an index of any type of relationship. When there 
is only 1 dfbetween conditions (as when there are only two conditions being compared), 
1] and r are identical, and both are regarded as indices of linear relationships. As noted 
above, we are only rarely interested in etas based on more than a single df or in squared 
indices of effect size. The reason we are rarely interested in etas based on more than a 
single df is that, like other omnibus measures, they are difficult, if not impossible, to 
interpret in a substantively meaningful way. Furthermore, they tend to be overestimates 
of population values of eta-sometimes gross overestimates. The overestimation is more 
severe when the numerator df of F is large relative to the denominator df (Guilford & 
Fruchter, 1978). One problem with squared effect-size indices (discussed in chapter 11) 
is that they lose their directionality and thus are of little use in scientific work for which 
information on directionality is essential. Another problem is that the implications of 
squared indices of effect size are likely to be misconstrued as being much less important 
than is often true, and in Table 11.8 (chapter 11) we illustrated how r2 is susceptible to 
the expository problem that very small, but quite meaningful, biomedical effects may 
seem to essentially disappear. 

The last column of Table 14.2 indicates the probability (p) that an F of the size 
obtained or larger could have been obtained if the null hypothesis were true and there 
actually were no differences in the population between the means of the conditions of 
our research investigation. An alternative interpretation is that the p expresses the prob­
ability that an eta of the size obtained or larger could have occurred if the relationship 
between the independent variable of condition membership and the dependent variable 
of score on the response variable were actually zero in the population. 
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DISTRIBUTIONS OF F 

In our discussion of the interpretation of t in the previous chapter, we noted that there 
is a different distribution of t values for every possible value of nl + m - 2 (i.e., d/). 
The situation for F is similar but more complicated because for every F ratio there 
are two relevant df to take into account: the df between conditions (dfbetween) and the 
df within conditions (dfwithin). For every combination of dfbetween and dfwithin, there is a 
different F distribution. Whereas t distributions are centered at zero, with negative 
values running to negative infinity and positive values running to positive infinity, F 
distributions begin at zero and range upward to positive infinity. Also, whereas the 
expected value of t is zero when the null hypothesis is true, the expected value of F 
when dfwithin is greater than 2 is dfwithin/ (dfwithin - 2). For most values of dfwithin, then, 
the expected value of F is a little more than 1.0. Just as is true of t, values of F closer 
to zero are likely when the null hypothesis of no difference between groups is true, 
whereas larger values are less likely and thus are used as evidence that the null 
hypothesis is probably false. 

Inspection of a large number of F distributions reveals that the critical values 
of F required to reach the .05, .01, and .001 levels of p decrease as the dfwithin increases 
for any given dfbetween. Similarly, the critical values of F decrease as the dfbetween 

increase for any given dfwithin, except for the special case of dfwithin = 1 or 2. For 
dfwithin = 1, a substantial increase in the value of F is required to reach various criti­
cal levels as the dfbetween increases from 1 to infinity. For dfwithin = 2, only a very small 
increase in the value of F is required to reach various critical levels as the dfbetween 

increase from 1 to infinity. In practice, there are very few studies with large dfi,etween 

and only 1 or 2 dfwithin. A sample F distribution is shown in Figure 14.1 with the 
dfbetween = 3 and the dfwithin = 16. Were we to hold the dfbetween constant and 
simultaneously vary the dfwithin, we would see only slight changes in the shape of the 
F distribution. But a substantial increase in the dfbetween results in the F distribution's 
becoming noticeably less asymmetrical, morphing into a kind of bell shape, but retaining 
its right-skewness and still ranging from zero to infinity. 

o 

... GURE 14.1 

1.0 ; 2.0 

Values ofF 

F distribution for dfbetween = 3 and dfwitltin = 16. 

3.0 4.0 
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Table 14.3 further illustrates the differences in various F distributions by giving 
the areas found in the upper tail of selected distributions. For each combination of dJbetween 
and dJwithin, two values are given: the F values required to reach the .05 and the .01Ievels, 
respectively. A much more detailed table of F values is found in Table BA of Appendix 
B. In the example of the ANOVA we have been discussing, we found F = 7.60, with 3 dJ 
in the numerator (between) and 8 dJ in the denominator (within or error), a result we 
write as F(3, 8) = 7.60. Referring this value to Table 14.3, we find at the intersection 
of 3 dJfor between conditions and 8 dJfor within conditions the values 4.07 and 7.59. 
Our obtained F, therefore, is substantially larger than an F required to be significant at 
p = .05 and almost exactly the size required to be significant at p = .01. The p value 
of .01 implies that we would obtain an F of this size or larger (for numerator dJ = 3, 
and denominator dJ = 8) only once in 100 times if (a) we repeatedly conducted a study 
of four groups of n = 3 each, and (b) in the population there were no differences among 
the four means or no relationship between group membership and the response or depen­
dent variable. 

Before leaving our discussion of the distributions of F, we should note that 
the F values computed in actual research situations are usually distributed only 
approximately as F. The assumptions to be met before we can regard the computed 
F to be actually distributed as F were abbreviated as lID normal in our discussion 
of the t test in the previous chapter. That is to say, (a) the units (or errors) are 
assumed to be independent of one another, (b) the population variance is the same 
in each group, and (c) the unit values are normally distributed in each group. Of 
these three assumptions, the independence of the sampling units is considered most 
important, because if it is badly violated, our interpretation of F can be very wrong. 
Violations of the homogeneity of variance and normality assumptions are less 
serious, in that F tends to be robust in the face of even some fairly serious violations 
of these assumptions. 

One final point is simply a reminder that, in both the previous chapter and this 
chapter, we assumed that the t or F is being used to test the null hypothesis of no 
difference between the means or, equivalently, no relationship between group 
membership and score on a dependent measure. The null hypothesis in this case is 
sometimes described as the "nil" hypothesis. But what if a nonzero difference or 
nonzero relationship is specified in the null hypothesis? In that case, the usual t or F is 
referred not to the central distribution we have been discussing, but to a noncentral t or 
noncentral F distribution or to a doubly noncentral distribution (see, e.g., Bulgren & 
Amos, 1968; Bulgren, 1971; Schefft\ 1959). The noncentral F, for example, is more 
complex, with a family of distributions for the different values that treatment effects 
can take, and in general it is shifted to the right of the usual (central) F distribution 
(Keppel, 1991; cf. Thompson, 2002). 

AFTER THE OMNIBUS F 

Now we know that for the data of our example the group means are not likely to be 
so far apart if the null hypothesis is true. What does that tell us about the results of 
our experiment? By itself, not much. After all, we conducted our study to learn about 
the effects of psychotherapy and drug therapy separately and together. Knowing that 



TABLE 14.3 

F values required for significance at .05 (upper entry) and .01 a level 

Degrees of freedom 
Degrees of freedom between conditions (numerator) 

Expected 
within conditions value of F 
(denominator) 1 2 3 4 6 00 when Ho true 

161 200 216 225 234 254 

4052 4999 5403 5625 5859 6366 

18.5 19.0 19.2 19.2 19.3 19.5 

2 98.5 99.0 99.2 99.2 99.3 99.5 

10.1 9.55 9.28 9.12 8.94 8.53 

3 34.1 30.8 29.5 28.7 27.9 26.1 3.00 

7.71 6.94 6.59 6.39 6.16 5.63 

4 21.2 18.0 16.7 16.0 15.2 13.5 2.00 

6.61 5.79 5.41 5.19 4.95 4.36 

5 16.3 13.3 12.1 11.4 10.7 9.02 1.67 

5.99 5.14 4.76 4.53 4.28 3.67 

6 13.7 10.9 9.78 9.15 8.47 6.88 1.50 

5.32 4.46 4.07 3.84 3.58 2.93 

8 11.3 8.65 7.59 7.01 6.37 4.86 1.33 

4.96 4.10 3.71 3.48 3.22 2.54 

10 10.0 7.56 6.55 5.99 5.39 3.91 1.25 

4.54 3.68 3.29 3.06 2.79 2.07 

15 8.68 6.36 5.42 4.89 4.32 2.87 1.15 

4.35 3.49 3.10 2.87 2.60 1.84 

20 8.10 5.85 4.94 4.43 3.87 2.42 1.11 

4.24 3.38 2.99 2.76 2.49 1.71 

25 7.77 5.57 4.68 4.18 3.63 2.17 1.09 

4.17 3.32 2.92 2.69 2.42 1.62 

30 7.56 5.39 4.51 4.02 3.47 2.01 1.07 

4.08 3.23 2.84 2.61 2.34 1.51 

40 7.31 5.18 4.31 3.83 3.29 1.81 1.05 

4.00 3.15 2.76 2.52 2.25 1.39 

60 7.08 4.98 4.13 3.65 3.12 1.60 1.03 

3.92 3.07 2.68 2.45 2.17 1.25 

120 6.85 4.79 3.95 3.48 2.96 1.38 1.02 

3.84 2.99 2.60 2.37 2.09 1.00 

6.63 4.60 3.78 3.32 2.80 1.00 1.00 

419 
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the four groups probably differ does not tell us whether psychotherapy helps, whether 
drugs help, whether both together help, whether one helps more than the other, and 
so on. At the very least, we need now to examine the means of the four groups in 
Table 14.1, as follows: 

Psychotherapy 

Drug 

(PD) 

8 

No drug 

(P) 

4 

No psychotherapy 

Drug 

(D) 

4 

No drug 

(0) 

2 

Clearly, the greatest difference between means is that between the group receiving 
both psychotherapy and drug therapy (MPD = 8) versus the group receiving neither 
psychotherapy nor drug therapy (Mo = 2). To find the statistical significance of this 
difference we can compute t using Equation 11.9: 

In this application of t as a follow-up to an analysis of variance, we compute 
S~ based on all the groups of the experiment, not just those directly involved in the 
t test. If we return to the definition of our mean square within (SSwithin/ dfwithin), then 

I:(X-U? 
MSwithin = N - k ' (14.13) 

where N is the total number of sampling units in the study, and k is the number of 
conditions. We see that MSwithin is the S2 pooled over, or collected from, all the 
conditions of the analysis. Then, for the means of interest 

which is significant at p < .001 one-tailed or .002 two-tailed, when we refer to a 
table of the t distribution with df = 8. Because we have based our computation of S2 
(i.e., MSwithin, or MSerror) on all the data of the experiment, not just on the data of 
the two groups being compared, our t test is made on the t distribution with df 
equal to that of the S2, not in this case on nl + n2 - 2. For many applications of 
the analysis of variance we assume homogeneity or similarity of variance from 
condition to condition, so that an S2 (or MSwithin) based on more groups is more 
likely to be a better estimate of the population value of 0"2. Therefore, the df 
available to estimate 0"2 defines the t distribution to which we refer our obtained t. 
The nl and n2 of the denominator of the t test still reflect the actual number of 
cases per group on which the t is based. Thus, it is not the sample sizes that are 
increased by our using a more stable estimate of 0"2, but the df used for referring 
to t tables. 
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We might also want to compare the benefits of receiving both psychotherapy 
and drug (MPD = 8) with the benefits of receiving either psychotherapy alone (Mp = 4) 
or the drug alone (Mo = 4). In both cases 

8-4 4 
t = j( 1 1) = 1.29 = 3.1 0, 

3 +3 2.5 

which is significant at p < .01 one-tailed when we refer to the t distribution with 8 df 
We might want to compare the benefits of receiving either psychotherapy alone 

(Mp = 4) or the drug alone (Mo = 4) with the no-treatment control condition (Mo = 2). 
Both comparisons yield 

4-2 2 
t = j( 1 1) = 1.29 = 1.55, 

3+3 2.5 

which is significant at about the .08 level, one-tailed. 
We have now compared each group with every other, except for psychotherapy 

alone (Mp = 4) versus the drug alone (Mo = 4), which must yield a t of O. Other 
comparisons are possible, taking more than one group at a time. Identifying the four 
groups as PD, P, D, and 0, so far we have made the following comparisons: 

(PD) versus (0) 

(PD) versus (P) 

(PD) versus (D) 

(P) versus (0) 

(D) versus (0) 

(P) versus (D) 

But other comparisons are also possible: 

(PD + P) versus 

(PD + D) versus 

(PD + 0) versus 

(PD + P + D) versus 

(PD + P + 0) versus 

(PD + D + 0) versus 

(P +D + 0) versus 

I'ROTECTING AGAINST 
"TOO MANY t TESTS" 

(D + 0) 

(P + 0) 

(P + D) 

(0) 

(D) 

(P) 

(PD) 

So far, then, 13 fairly obvious comparisons are possible. If we make them all, we 
""pcet some of those t tests to yield significant results even if the null hypothesis is 
IllIC. For example, for six independent comparisons, each with alpha set at .05, the 
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probability of one or more significant results is something like 6 X .05 = .3, or almost 
one chance in three. For 13 comparisons, with alpha at .05, the chances are something 
like 13 X .05 = .65, or about two chances in three (Dawson & Trapp, 2004). In general, 
as more tests of significance are computed on data for which the null hypothesis is 
true, more significant results will be obtained (i.e., more Type I errors will be made). 
We deal with this issue again in the next chapter, where we show that it is not always 
necessary to do so many a posteriori t tests, or even to do a preliminary omnibus F 
test. There are circumstances nonetheless in which we might wish to compute an 
overall F, particularly when lots of t tests are calculated. 

Suppose we have actually planned a number of t tests before collecting or seeing 
the raw or summary data. A rule of thumb in this case is to perform all those planned 
t tests whether or not an overall (omnibus) F test is significant. Our reason for computing 
the omnibus ANOVA is simply to reap the benefit of a more stable estimate of the (52 

required in the denominator of our t tests. Each t test will still be based on the nl and 
n2 of the two groups being compared. But because we have an omnibus F with a pooled 
error term, the t distribution to which we refer when looking up the p values will be 
the one with the df of our pooled error term (i.e., the MSwithin), usually N - k. 

Alternatively, suppose we have unexpected but interesting results, and we want 
to run a number of a posteriori t tests just to explore some comparisons. It is custom­
ary to compute an overall (omnibus) F as insurance against the problem of "capital­
izirfg on chance." If the overall F is significant, the idea is that some of the exploratory 
t tests must be "legitimately" significant, because the significant F tells us there are 
some nonchance variations among the means somewhere in the batch of means that 
we compared. For most practical purposes, the use of these "protected t tests" is 
considered at least an adequate solution and, quite possibly, an optimal one (Balaam, 
1963; Carmer & Swanson, 1973; Snedecor & Cochran, 1989). 

In both situations above, or even if many t tests are computed and the overall 
(omnibus) F is not significant and we are worried about the risk of capitalizing on chance, 
we can use another simple and conservative procedure to adjust the interpretation of the 
p values obtained. The basic idea of this approach, called the Bonferroni procedure, is 
simply to divide the alpha level we selected by the number of tests performed explicitly 
or implicitly (Harris, 1975, 1985; Hays, 1981, 1994; D. F. Morrison, 1976, 2005; 
Myers, 1979; Rosenthal & Rubin, 1983, 1984; Snedecor & Cochran, 1989). It makes no 
difference whether the tests performed are independent or not. 

BONFERRONIPROCEDURES 

Suppose, for example, that we plan to perform four t tests but want to keep the overall 
alpha at the .05 level. Dividing .05 by the number of tests planned (four), we find .0125 
to be the adjusted level we want to obtain to declare any of the four t tests significant. 
If we have no planned t tests and include only the largest obtained t tests, then we divide 
the preferred alpha level (usually p = .05) by the number of implicit t tests. For example, 
if we have five groups to compare and decide to test the three largest differences, we 
divide the .05 level not by 3, but by (5 X 4)/2 = 10, which indicates the number of 
possible pairwise comparisons of five means. In this instance we would require a p of 
.05/10 = .005 before declaring a t test significant at an "adjusted" .05 level. 
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The Bonferroni approach does not require us to set the same alpha level for 
each t test, so we can allocate the total alpha (say, .05) unequally. For example, sup­
pose we plan to do eight t tests but want greater power for four of them because they 
address the questions of our major interest. We can set the alphas for these four t tests 
at .01 and set the alphas for the remaining four t tests at [.05 - 4(.01)]/4 = .0025. 
The eight t tests are now tested at .01, .01, .01, .01, .0025, .0025, .0025, .0025, 
respectively, which sum to p = .05, the overall preferred alpha level (Harris, 1975; 
Myers, 1979; Rosenthal & Rubin, 1983, 1984). Or suppose we plan 11 t tests but 
have an overwhelming interest in only one of them. Setting the alpha level at .04 for 
that t, and dividing the remaining .01 by 10, means that the alphas will become .04 
for the prime t test and .001 for each of the remaining 10 t tests. 

Basically, then, we have been adjusting the obtained p values associated with 
each t test for the number of t tests carried out, with the option of weighting the t 
tests unequally. We can assign a weight to each t test reflecting the importance of that 
test. Then the general procedure for adjusting alpha for the various weighted-for­
importance t tests is 

(14.14) 

where aj is the adjusted alpha level for the jth t test (i.e., the one in question), a is 
the overall probability of Type I error (usually .05), Wj is the weight reflecting the 
importance of the jth t test, and LW is the sum of the weights of all the t tests 
(Rosenthal & Rubin, 1983). Suppose we plan to examine six t tests, weighted in 
importance as follows: 12, 6, 3, 2, 1, 1. The adjusted a levels for each are shown in 
Table 14.4, and we see that they sum to .05, the overall alpha level. 

TABLE 14.4 

Adjusted alpha levels for t tests with 
differeut weights 

I test Wj Adjusted (l 

12 .052~2) = .024 

2 6 .0~~6) = .012 

3 3 .0~~3) = .006 

4 2 .05(2) = 004 
; 25 . 

5 . 0~~1) = .002 

() ;.0~~1) = .002 

"'nlal LW= 25 LCXj = .050 
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TABLE 14.5 

Ensemble-adjusted p values 

t test Ensemble-adjusted p value 

.00i?5) = .010 

2 .07~25) = .292 

3 .08j25) = .667 

'Values exceeding 1.00 are interpreted as 1.00. 

t test Ensemble-adjusted p value 

4 .11 i25 ) = 1.00' 

5 .00\(25) = .025 

6 .0041(25) = .100 

Although we know how to adjust our alpha levels, it is usually much more 
informative to report the actual P level of each t test (adjusted for the number of 
t tests and their weights) rather than to report only whether a t test comparison 
did or did not reach the adjusted alpha level. The adjusted P value achieved (the 
ensemble-adjusted P value) is readily obtained from the following (Rosenthal & 
Rubin, 1983): 

p·"L,w 
P adJ'usted = _J -

Wi' 
(14.1S) 

where Pi is the actual (i.e., unadjusted) p obtained for the jth t test (the one in 
question), "L,W is the sum of all the weights, and Wj is the weight of the 
specific t test in question. Suppose that we obtain the following unadjusted 
p values for six t tests: .OOS, .07, .08, .11, .001, .004. The corresponding ensemble­
adjusted p values, which are listed in Table 14.S, reflect the conservative nature 
of the Bonferroni adjustment. Where three of the original six t tests showed 
p :S .OOS, none of the adjusted p values are that low, and only two remain at 
p < .OS. 

Although it is often useful to weight t tests by their importance, it is not 
necessary to do so. If we prefer no weighting, which is equivalent to equal weight­
ing, all our Wj values become 1, and "L,W becomes the sum of the k weights of 1 
each, where k is the number of t tests. Therefore, in the unweighted case, we 
find 

. pj"L,W Pik(1) 
P adjusted = --w;- = -1- = Pik. (14.16) 

For the six t tests we have been discussing, the unweighted ensemble-adjusted 
P values would simply be the unadjusted P multiplied by 6, or .03, .42, .48, .66, 
.006, .024, respectively. Note again that the particular weighting chosen to reflect 
the importance of each t of a set of t tests must be decided before the results of 
the t tests are known so that we cannot inadvertently assign importance weightings 
as a function of the results obtained. When using any of the Bonferroni procedures 
we have described, researchers should routinely report both the adjusted and the 
original P values. 



ANALYSIS OF VARIANCE AND THE FTEST 425 

BONFERRONI TOLERANCE VALUE 

We have assumed all along that either we have planned all the t tests or, if not, we 
can calculate the number of implicit t tests computed. In large and complex data sets, 
it is sometimes difficult to calculate the number of implicit t tests. In such cases it is 
useful to compute an accurate p value for the most significant result of any interest 
in the data set (p max) and then to divide this p into IX (usually .05) to yield a tolerance 
value (kt ) for the number of t tests computed, that is, 

a 
kt = pmax' (14.17) 

where the quantity kt gives the number of t tests that could have been computed 
to keep the most significant result still properly adjusted within the IX level chosen 
(usually .05). 

For example, suppose a very complex study in which perhaps dozens, or even 
scores, of sensible t tests are possible. The most statistically significant result is sig­
nificant at .00015. From Equation 14.17, we find kt = .05/.00015 = 333.3. This tells 
us that we would have to carry out more than 333 implicit t tests to decide that the 
p max of .00015 is perhaps not significant after all. Whether such a number seems 
too high to be plausible depends on the research design used. In this application of 
the Bonferroni, as in all others, it makes no difference whether the tests being con­
sidered are independent of one another or not. 

COMPARING TWO INDEPENDENT 
VARIABILITIES 

There are both methodological and substantive reasons to compare the variabilities or 
dispersions of two groups we are comparing. Methodologically, we may be concerned 
about the homogeneity of the variance assumption underlying the use of t and F tests. 
We discussed this issue earlier but did not describe a procedure for comparing two 
independent variances to determine the degree to which the homogeneity assumption 
has been met. We now describe such a procedure, but first, we want to emphasize 
that there are often strong substantive grounds for comparing variances as well (Bryk & 
Raudenbush, 1988). 

Suppose we theorize that a particular treatment will lead to greater variance than 
a control condition, that is, regardless of whether we have also predicted a difference in 
the group means. For example, suppose our hypothesis is that a moderate degree of stress 
will increase the variability of performance of an experimental group relative to a zero 
control group, on the assumption -that moderate stress will energize some subjects to 
perform better but will upset and demoralize others. The predicted net effect will be to 
increase the variability of the experimental group. Or suppose that we want to know the 
variability of some new psychological treatment procedure to make sure that it is not 
simply helping a few patients a lot while also harming a few patients a lot. We cannot 
address this issue simply by comparing the mean performance of the two conditions. 

Whatever our reason for wanting to compare the variabilities of two groups or 
conditions, the procedure is the same. We divide the larger of the two variances 
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(Starger) by the smaller of the two variances (S;maller) and refer the quotient to an F 
table, that is, 

F - Starger 
- 2 

Ssmaller 
(14.18) 

There are some subtleties in the use of the standard F tables (e.g., Table B.4 in 
Appendix B) for this purpose of comparing variabilities. First, we determine the 
df associated with Starger and find the column of our F table corresponding to that 
value of df. Next, we determine the df associated with S;maller and find the row of our 
F table corresponding to that value of df. Now we use the F table in the usual way 
except that we must first double the p levels shown. Thus, a p of .001 becomes .002, 
and a p of .005 becomes .01, and so forth, so that .01, .025, .05, .10, and .20 become 
ps of .02, .05, .10, .20, .40, respectively. The reason is that standard F tables are set 
up on the assumption that we will always have a particular S2 in the numerator, for 
example, S~tween (or MSbetween), and a particular S2 in the denominator, for example, 
S~ithin (or MSwithin). However, when using the F table for the purpose of comparing 
variabilities, the researcher does not usually decide beforehand which S2 (or MS) will 
be the numerator but puts the larger S2 over the smaller one. Doubling the p values 
shown in the standard F tables merely takes into account this unspecified direction of 
difference, or "two-tailed" feature of the F test when used in this way. Of course, if 
we have specifically predicted which particular variability will be larger, we need not 
double the p values shown, as we are now making a one-tailed test. 

ILLUSTRATION USING TRANSFORMATIONS 

By way of a detailed example, we turn to the experimental results shown in Table 14.6, 
where the question was whether the experimental group would show greater or less vari­
ability than the control group. The variability is noticeably greater in the experimental 
group (S2 = 83) than in the control group (S2 = 3), and using Equation 14.18 we find 
F = 83/3 = 27.67. Given four subjects in each group, the df are 4 - 1 = 3 for both 

TABLE 14.6 

Illustrative results 

Experimental Control 

4 

16 4 

9 

25 4 

~ 54 10 

n 4 4 

M 13.5 2.5 

S2 83 3 
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the larger and smaller S2. Consulting Table BA, we find at the intersection of dfl = 3 
and dfz = 3 that an F of 29046 is required for statistical significance at the .01 level, and 
an F of 15.44 is required for significance at the .025 level. For the present application, 
however, in which we did not specifically test the one-tailed hypothesis that the experi­
mental group would be more variable, we need to double the tabled values of p. Therefore, 
our F is significant between the .02 and .05 levels, two-tailed. 

Suppose we are also interested in comparing the means of our two groups and, 
in doing so, find 

with 6 df, p = .03 one-tailed, and this t is associated with an effect size r = .70 or 
a Cohen's d = 1.94. Now we have learned that our experimental group scored 
significantly higher (from t) and more variably (from F) than our controls. But we 
may have a problem here. 

Our F test comparing variabilities was quite large and, even with a very small 
sample size, statistically significant. We computed a t to compare means, a t that 
depends for its proper use on the assumption of equal variances for our two groups. 
Yet we know the variances to be unequal. It seems prudent here to transform our data 
in hopes that our transformation will make our variances more nearly equal. For data 
of this kind, a square root transformation often helps because it tends to pull the large 
outlying values close to the bulk of the scores, and we will try it here. The square 
roots of the original scores are shown in Table 14.7. Using Equation 14.18 to test 
the difference between the larger variance (S2 = 1.6667) and the smaller variance 
(S2 = .3333), we find F = 1.6667/.3333 = 5.00, with 3 df for both the numerator 
and the denominator. Table BA shows that F values of 5.39 and 2.94 are required to 
reach the .10 and .20 levels, respectively, which are equivalent to ps of .20 and AD in 
our present application. 

TABLE 14.7 

Square root transformation of 
scores in Table 14.6 

Experimental Control 

2(= A) 1(= If) 

4(= M) 2(= 1'4) 

3(= /9) 1(= If) 

5(= 125) 2(='1'4) 

~ 14 6 

/I 4 4 

M 3.5 1.5 

S2 1.6667 0.3333 
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Our p value now is not very small, and we may be satisfied that our transformation 
has worked quite well. Computing our t test to compare means using these transformed 
scores, we find 

and with 6 df, p = .02 two-tailed, the effect size r = .76, and Cohen's d = 2.31. 
This t test based on the square roots of the original scores is somewhat larger and 
more significant than was the t test based on our original scores (t = 2.37), and we 
see that the effect size is somewhat larger as well. These results are probably more 
accurate than those based on the original (i.e., untransformed) scores, because we have 
better met the assumption of homogeneity of variance on which the use of t distributions 
depends to some extent. 

When our original scores were transformed to their square roots, the F for 
comparing the two variabilities (Equation 14.18) was not statistically significant. But 
the F was 5.00, perhaps a bit larger than we might like. Perhaps a different 
transformation would shrink that F even closer to the value of 1.00 we would obtain 
if the variabilities were the same. Thus, we will try a 10gIO transformation, which we 
can make as easily as a square root transformation by pushing a single key of an 
inexpensive handheld calculator. This particular transformation tends to pull large 
outlying values in more sharply than does the square root transformation. The 10gIO 
values of the original scores are shown in Table 14.8, and we observe that the 
variances are now identical in the two groups (S2 = .12), so using Equation 14.18 
gives us F = .12/.12 = 1.00, with 3 dJfor both the numerator and the denominator. 
Table BA shows that an F of 2.94 is required to reach the p = .20 level, which is 
equivalent to p = 040 in the present application, in which we are comparing 
variabilities without having made a specific prediction about which variability will 
be larger. Our 10gIO transformation has worked very well indeed in achieving 
homogeneity of variabilities. We now compute t in order to compare the two means 

TABLE 14.8 

Log transformation of scores in Table 14.6 

Experimental Control 

.60 (= log 4) .00 (= log 1) 

1.20 (= log 16) .60 (= log 4) 

.95 (= log 9) .00 (= log 1) 

1.40 (= log 25) .60 (= log 4) 

L 4.15 1.20 

n 4 4 

M 1.04 .30 

S2 .12 .12 
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TABLE 14.9 

Comparison of Tables 14.6, 14.7, and 14.8 

Data F(3,3) 1(6) P r d 

X 27.67 2.37 .03 .70 1.94 

v0[ 5.00 2.83 .02 .76 2.31 

log X 1.00 3.02 .015 .78 2.47 

based on the transfonned scores: 

.74 = 3.02 

j(i + i).12 
and with 6 df, p = .015 one-tailed, the effect size r = .78, and Cohen's d = 2.47. 
This t test, based on the logs of the original scores, is somewhat larger and more 
significant than was the t test based on the square-root-transfonned scores, and the 
effect size is somewhat larger as well. 

Of these three sets of results-based on the original scores (X), the square roots 
of scores (JX), and the logs of scores (X\oglO)-the log-transformed results are 
probably most accurate, as they best meet the assumption of homogeneity of variance. 
In the present example, however, all three expressions of the data yield quite comparable 
results (summarized in Table 14.9). The table illustrates the general finding that t tests 
and F tests used to compare means are not very badly affected by even substantial 
heterogeneities of variance, a finding that holds especially when sample sizes are equal 
(Hays, 1981, 1994; Scheffe, 1959). 

COMPARING TWO CORRELATED 
VARIABILITIES 

Our reasons for wanting to compare correlated variabilities are the same as for 
wanting to compare uncorrelated, or independent, variabilities. That is, we want to 
check the reasonableness of our assumption of homogeneity of variance, and we 
want to learn whether variabilities of the same sampling units differ under differ­
ent conditions. For example, we may measure subjects before and after a treatment 
condition to learn whether the variability of their responses increased over time. 
(Of course, we cannot confidently ascribe such a change to the treatment unless 
we also have a randomized control.) We may want to learn whether two raters of 
children's behavior differ with,respect to the variability of the scale points used. 
Or we may want to compare the variability of boys and girls in a sample of pairs 
of fraternal twins. 

In all these cases, we would use the same procedure. We compute S2 for each 
of the two variabilities to be compared. We also compute the correlation between 
the pairs of measurements made for our sample of N persons or other sampling 
units measured twice. If our sampling units are N subjects measured twice, we 
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correlate the first and second measurements. If our sampling units are N children 
or N patients, each measured (rated) by two raters, we correlate the N pairs of 
ratings generated by the first and second raters. If our sampling units are N pairs 
of twins, we correlate the scores obtained by the girl and the boy members of the 
N pairs. 

The statistical test we use for the comparison of correlated variabilities is t, 
computed as follows: 

(14.19) 

where Sl and S2 are the two variabilities to be compared (Sl referring to the larger 
value), N is the number of pairs of scores, and r is the correlation between the N 
pairs of scores as described in the preceding paragraph (McNemar, 1969; Walker & 
Lev, 1953). The value of t obtained from Equation 14.19 is entered into a t table 
with df = N - 2. 

As an illustration, suppose we have measured the same 18 sampling units 
twice (e.g., the same 18 persons pre and post, or the brothers and sisters of 18 
pairs of siblings) and found the values of S2 to be 64 and 36 for the two sets of 
scores, with a correlation of .90 between the 18 pairs of scores. Then, using 
Equation 14.19, we find 

t = (64 - 36)Jf8=2 = 112 = 2.68, 
2(8)(6)/1 - (.90)2 96/19 

which, with 16 df, is significant at p = .02 two-tailed. Inspection of Equation 14.19 
suggests that for any two different, nonzero values of S2 and for N > 2, the larger 
the r, the larger also the t (i.e., r is an index of the sensitivity to differences 
between values of S2). For the present example, Table 14.10 shows that rs from 
zero to .95 yield t values from 1.17 to 3.74, with associated p levels from .26 
to .002. 

TABLE 14.10 

Associated t and p of r values from 
.00 to .95 

r p (two-tailed) 

.00 1.17 .26 

.20 1.19 .25 

AD 1.27 .22 

.60 1.46 .16 

.80 1.94 .07 

.90 2.68 .02 

.95 3.74 .002 
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COMPARING THREE OR MORE 
INDEPENDENT VARIABILITIES 

Just as for the comparison of two variabilities, there are methodological and substantive 
reasons for comparing three or more variabilities. The methodological reason again 
has to do with checking on the reasonableness of the assumption of homogeneity of 
variance. The substantive reason again has to do with the conditions that may increase 
or decrease the variabilities of some groups relative to others. The procedures described 
in this section (Hartley's Fmax, Cochran's g, Bartlett's test, and Levene's test) permit 
us to evaluate the homogeneity of variance by procedures that take into account the 
number of implicit comparisons among the variabilities. 

For example, suppose we have two variabilities, with values of S2 of 64 and 4, 
each based on n = 5 (thus, df = 4). Using the procedure of comparing two independent 
variabilities, we find F = 64/4 = 16. Reference to Table BA for df = 4 for both the 
numerator and the denominator S2 shows F to be significant at p = .02 two-tailed. 
(We doubled the p from the tabled value of .01 to .02, as explained earlier.) However, 
if the S2 values 64 and 4 are the largest and smallest of several, or k, conditions, there 
is a total of k(k - 1)/2 possible comparisons of variabilities. The larger the k for any 
given sample size n (or df = n - 1), the larger we expect the largest obtained F to 
be, even if the null hypothesis of no differences among variances is true. The procedures 
we describe next are designed to adjust for this problem (Snedecor & Cochran, 1989; 
Walker & Lev, 1953; Winer, 1971). 

Hartley's Fmax 

This procedure is elegantly simple, in that we again divide the largest by the smallest 
variability. Similar to Equation 14.18, but with terms redefined as follows, Hartley's 
procedure is 

D _ Sii.ax 
rmax - S~' (14.20) 

where Sii.ax is the largest variability, and S~in is the smallest variability. The result­
ing F is then looked up in a special table that takes into account the number of 
groups being compared and the df of each group. (If the ns are unequal, but not 
very unequal, the harmonic mean of the df can be used as a reasonable approxima­
tion.) Suppose we have six conditions to compare, each with the n, df, and S2listed 
in Table 14.11. From Equation 14.20, F max = 64/4 = 16. We refer this value to 
Table B.ll of Appendix B, where the columns list the number of conditions being 
compared (6 in this case), and the rows list the df for each condition (4 in this 
case). The two entries at the iritersection of the column headed 6 and the row 
headed 4 are 29.5 and 69, respectively. Thus, had Fmax reached 29.5, it would have 
been significant at p = .05, and had it reached 69, it would have been significant 
at p = .01. Our Fmax of 16 is not even close to being significant at the p = .05 
Icvel. Looking again at the row headed 4, we see that if the number of conditions 
(k) were only two or three, an Fmax of 16 would be significant at the p = .05 
Icvel. 
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TABLE 14.11 

Illustrative results of six conditions 

Condition n df S2 

5 4 25 

2 5 4 36 

3 5 4 9 

4 5 4 49 

5 5 4 4 

6 5 4 64 

Total 30 24 187 

Cochran's g 

Cochran's g is a useful alternative to Hartley's Fmax especially when we do not have 
access to the individual S2 values of each group, but we do have the pooled S2 for 
all the groups in the fonn of the MSwithin. If we know the largest of the S2 values, we 
can ;test for its size relative to the sum of all the S2 values. The sum is equivalent to 
MSwithin multiplied by k (i.e., the number of conditions). Thus, 

, Sihax Sihax 
Cochran s g = 1:S2 = k (MSwithin)' (14.21) 

Once again, tables are available that allow us to determine the significance of the 
obtained Cochran's g (Eisenhart, Hastay, & Wallis, 1947; Winer, 1971). For the 
example of six groups in Table 14.11, using Equation 14.21 we find 

, Sihax 64 
Cochran sg = 1:S2 = 187 = .3422, 

which Table B.12 of Appendix B shows is not large enough to reach the p = .05 
level. With k = 6 groups, df = 4 per group, we need Cochran's g = .4803 to reach 
the p = .05 level. 

Bartlett's Test 

Bartlett's test can be used even when the sample sizes of the various groups are 
very unequal. However, it is not recommended for checking the reasonableness of 
the assumption of homogeneity of variance. The reason for this cautionary note is 
that Bartlett's test is likely to yield more significant results than it should, relative 
to the substantial robustness of the F test that relies on the assumption of 
homogeneity of variance (Snedecor & Cochran, 1989). Therefore, we omit the 
computational details, which are available in Snedecor and Cochran (1989), 
McNemar (1969), Walker and Lev (1953), Winer (1971), Winer et aI., (1991), and 
elsewhere. 
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Levene's Test 

When we have access to the raw data, Levene's test can be very useful no matter 
how unequal the group sizes. For each observation in each group, we simply compute 
the absolute difference between the obtained score and the mean score of the condition. 
The absolute differences will be large when variabilities are large. But because no 
squaring is used, this procedure is robust if the observations come from distributions 
with long tails (extreme values). Levene's test is simply the F test of the analysis of 
variance of the absolute deviation scores. If F is statistically significant, the variances 
are judged as significantly heterogeneous (Snedecor & Cochran, 1989). 

COMPARING THREE OR MORE 
CORRELATED VARIABILITIES 

There is little discussion in textbooks of the comparison of three or more variabilities 
that are not independent, for example, a sample that is measured under three or more 
conditions. If such a test is needed, we recommend a natural extension of Levene's test, 
in which, for each sampling unit, we create a new score. This new score is the absolute 
difference between the original score and the mean of the condition. We then compute 
an analysis of variance on the new scores, which provides an F test of the null hypoth­
esis of the homogeneity of variances of the original scores. Computational procedures 
for the required repeated-measures analysis of variance are described in chapter 18. 

SUMMARY OF PROCEDURES FOR 
COMPARING VARIABILITIES 

Table 14.12 provides an overview of these various procedures for comparing two or 
more independent or correlated variabilities. 

TABLE 14.12 

Tests for comparing variabilities 

Number of 

variabilities 

Independence of variabilities 

Two 

Three or more 

Independent 

F test 

Hartley's Fmox' 

Cochran's g' 

Bartlett's test 

Levene's test 

'Sample sizes of the groups should not be very different. 

Correlated 

t test 

Extension of Levene's test 



FOCUSING OUR QUESTIONS 
AND STATISTICAL TESTS 

CHAPTER 

15 
ONE-WAY 

CONTRAST 
ANALYSES 

This chapter describes basic computations for focused F tests (i.e., F with numerator 
df = 1) and t tests for one-dimensional (one-way) between-subjects designs in which 
we want to ask a specific question of more than two groups. These focused statistical 
tests, called contrasts, use weights to represent the hypothesized effect. If the effect 
truly exists, we are much more likely to detect it and to believe it to be real if we 
use contrast F or t tests rather than unfocused tests, such as omnibus F tests (i.e., F 
with dfnumerator > 1) that address only vague or diffuse questions. We also describe a 
family of effect size correlations (designated as ralerting, rcontrast, reffect size, and limSD) for 
use with contrasts, and we illustrate procedures for comparing and combining con­
trasts when appropriate. The chapter concludes with a brief discussion of optimal 
design and the differential allocation of sample sizes. In later chapters we discuss the 
use of contrasts in higher order designs, in designs with repeated measures, and in 
tables of counts. (For more detailed discussions of the issues that are raised in this 
chapter, as well as related issues in the use of contrasts and effect size indices in these 
and other designs, see Rosenthal, Rosnow, & Rubin, 2000.) 

We begin with the hypothetical example of a one-way analysis of variance 
based on the research results in Table 15.1. In this study, children were adminis­
tered a cognitive task and the dependent variable was a performance measure. 
The table shows the mean (M) performance score for each of five age groups 
(8,9, 10, 11, 12), given equal sample sizes of n = 10 per age group. Table 15.2 
shows the overall ANOVA, where we see that the omnibus F for age levels 
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TABLE 15.1 

Performance scores at five age levels 

Age level 

M 

n 

TABLE 15.2 

8 

2.0 

10 

9 

3.0 

10 

10 

5.0 

10 

Summary ANOVA of study in Table 15.1 

Source SS df MS 

Age levels 260 4 65 

Within error 2835 45 63 
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11 

7.0 

10 

F 

1.03 

12 

8.0 

10 

P 

040 

equals 1.03, and the p of .40 for the differences among the five means is far from 
significant. Based on that omnibus F, should we conclude that age was not an 
effective variable? If we did so, we would be making a grave error, although, 
unfortunately, a fairly common one. 

Figure 15.1 plots the performance means of the five age levels. We see quite 
clearly that the pattern of group means is not at all consistent with the conclusion that 
age and performance are unrelated. Furthermore, if we correlate the levels of age and 
the levels of performance, we find r = .992, and with df = 3, p < .001 two-tailed. 
How can we reconcile the clear and obvious results of the plot, the r with 3 df, and 
the p associated with the r with the omnibus F telling us that age did not matter? The 
answer, of course, is that the omnibus F in Table 15.2 addressed a question that was 
of little interest. The question was diffuse and unfocused, asking simply whether there 
were any differences among the five groups, and disregarding entirely the arrangement 
of the ages that constituted the levels of the independent variable. Rearranging those 
ages in any other order (e.g., as 12, 11, 10, 9, 8, or as 10, 9, 11, 12, 8), we would 
still find the same omnibus F of 1.03. 

Suppose, however, the researcher who designed and conducted the study was 
very much interested in whether the children's performance scores were associated 
with the variable of age. The researcher might have predicted that the scores would 
increase linearly with age, or perhaps that the scores would be associated with age in 
some other way. The correlation we computed addressed the question of whether 
performance increased linearly with age, and that r worked pretty well even though 
we had only 3 df for testing its sign~ficance. What we would like is a way of asking 
more than one focused question of the data, a way that is more general, flexible, and 
powerful. These are precisely the characteristics of contrast analyses, and with such 
a procedure there should be relatively few circumstances in which we would prefer 
an unfocused, diffuse, omnibus test. Contrasts, as we will illustrate, give us not only 
greater statistical power, but also greater clarity of substantive interpretation of the 
research results. 



436 ONE-WAY DESIGNS 
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FIGURE 15.1 
Mean performance score at five age levels. 

CONTRAST F TESTS ON ORIGINAL DATA 

Contrasts are comparisons, using two or more groups, set up in such a way that 
the fesults obtained from the several conditions involved in the research are com­
pared ("contrasted") with the predictions based on theory, hypothesis, or hunch. 
The predictions are expressed in the form of lambda (A) weights, also referred to 
as lambda coefficients or contrast weights. They can take on any convenient 
numerical value, as long as the sum of the weights is zero for any given contrast 
(i.e., 1:A = 0). To illustrate, we will assume that the study results in Table 15.1 
are based on our own original data, and that we predicted a linear increase in 
performance as the age of the children increased. Instead of relying on the omnibus 
F of Table 15.2, we compute a focused F that will directly evaluate the specific 
linear question we put to our data. 

To compute the mean square (MS) or the sum of squares (SS) attributable to 
our contrast, we use a basic formula for equal sample size (n) per condition: 

nL2 
MScontrast = SScontrast = 1:Ar (15.1) 

where L equals the weighted sum of all condition means (MD, and the weights are 
the corresponding lambda weights (Ai), or 

(15.2) 

where k equals number of conditions (or groups), and 1:A = O. Notice in Equation 15.1 
that MScontrast = SScontrast. the reason being that all contrasts are based on only 1 df. 
Thus, dividing the MScontrast or SScontrast by the appropriate MSerror yields an F test of the 
contrast. 

To illustrate with the results of Table 15.1, our prediction is a linear trend, that is, 
a regular increment of performance for every regular increment of age. We might think 
of using age levels as our A weights, and they would be 8, 9, 10, 11, 12. However, the 
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sum of these values is not zero, as required, but 50. Fortunately, that is easy to correct. 
We simply subtract the mean age level of 10 (i.e., 50/5 = 10), which gives us (8 - 10), 
(9 - 10), (10 - 10), (11 - 10), (12 - 10), or -2, -I, 0, + I, +2, a set of weights 
that does sum to zero. To save ourselves the effort of having to calculate these 
weights, Table 15.3 (after Snedecor & Cochran, 1967, p. 572) provides them for 
linear, quadratic, and cubic orthogonal (i.e., independent) trends, curves, or polyno­
mials (algebraic expressions of two or more terms). (Later in this chapter, we describe 
these orthogonal polynomials in more detail.) 

The basic data for computing our linear contrast F are shown in Table 15.4. The 
first row repeats the group means from Table 15.1. The second row shows our linear 
contrast weights, and the row total shows that they sum to zero. The third row displays 
the products of multiplying the means and their corresponding lambda weights, 
where the row total is symbolized as L = 16. The fourth row shows the squared lambdas, 
and the row total shows that 1:1.2 = 10. The bottom row shows the equal n per condition, 

TABLE 15.3 

Weights for orthogonal polynomial-based contrasts 

ka Polynomialb 1 2 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Linear 

Linear 
Quadratic 

Linear 
Quadratic 

Cubic 

Linear 
Quadratic 

Cubic 

Linear 
Quadratic 

Cubic 

Linear 
Quadratic 

Cubic 

Linear 
Quadratic 

Cubic 

-1 

-1 
+1 

-3 
+1 
-1 

-2 
+2 
-1 

-5 
+5 
-5 

-3 
+5 
-1 

-7 
+7 
-7 

+1 

o 
-2 

-1 
-1 
+3 

-1 
-1 
+2 

-3 
-1 
+7 

-2 
o 

+1 

-5 
+1 
+5 

Linear -4 -3 
Quadratic +28 +7 

Cubic -14 +7 

Linear -9 -7 
Quadratic +6 +2 

Cubic -42 +14 

'Number of conditions. 

·Shape of trend. 

3 

+1 
+1 

+1 
-1 
-3 

o 
-2 
o 

-1 
-4 
+4 

-1 
-3 
+1 

-3 
-3 
+7 

4 

+3 
+1 
+1 

+1 
-1 
-2 

+1 
-4 
-4 

o 
-4 

o 
-1 
-5 
+3 

-2 -1 
;-8 -17 

+13 +9 

-5 -3 
~1 -3 

+35 +31 

Ordered conditions 

5 

+2 
+2 
+1 

+3 
-1 
-7 

+1 
-3 
-1 

+1 
-5 
-3 

o 
-20 

o 
-1 
-4 

+12 

6 

+5 
+5 
+5 

+2 
o 

-1 

+3 
-3 
-7 

+1 
-17 
-9 

+1 
-4 

-12 

7 

+3 
+5 
+1 

+5 
+1 
-5 

8 

+7 
+7 
+7 

+2 +3 
-8 +7 

-13 -7 

+3 +5 
-3 -1 

-31 -35 

9 10 

+4 
+28 
+14 

+7 +9 
+2 +6 

-14 +42 
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TABLE 15.4 

Basic data for linear contrast F 

Age level 8 9 10 11 12 Row totals 

Mi 2.0 3.0 5.0 7.0 8.0 

Ai -2 -1 0 +1 +2 LA = 0 

M;Ai -4.0 -3.0 0 7.0 16.0 L = 16.0 

Ar 4 0 4 H2 =10 

ni 10 10 10 10 10 N = 50 

TABLE 15.5 

Summary ANOVA showing linear contrast 

Source SS df MS F p 

Age levels 260 4 65 1.03 .40 

Contrast 256 256 4.06 .05 

Noncontrast 4 3 1.33 0.02 

Within error 2835 45 63 

~ 

Total 3095 49 

which total N = 50. Substituting in Equation 15.1, we find 

nL2 10 X (16)2 = 256 
MScontrast = --2 = 10 ' 

LAi 

or working directly with the individual group values in Table 15.4, we find 

MS - 10[(2.0)(-2) + (3.0)(-1) + (5.0)(0) + (7.0)(+1) + (8.0)(+2)]2 
contrast - (-2)2+(-1)2+(0)2+(+1)2+(+2)2 

10(16.0)2 2560 
= 10 = 10 = 256. 

To compute the F test for our contrast, we need only divide MScontrast = 256 by 
the MSwithin of 63 shown in Table 15.2, that is, 

R _ MSconstrast 
contrast - MSwithin' 

(15.3) 

which yields Fcontrast = 256/63 = 4.06. This value of Fcontras!, with dfnumerator = 1 and 
d/denominator = 45, has p = .05. Table 15.5 provides a summary of what we have found 
so far, showing the sum of squares of our linear contrast carved out of the overall 
between-conditions sum of squares. As all Fs used to test contrasts have only 1 df in 
the numerator, we can take the square root of our Fcontrast to obtain the t test for our 
linear contrast, should we want to make a one-tailed t test. In this instance, a one­
tailed t test would be quite sensible, and we find t( 45) = 2.02, p = .025 one-tailed. 
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It is characteristic of contrast sums of squares that they are identical whether 
we use a given set of weights or their opposite (i.e., the weights multiplied by -1). 
Thus, had we used the weights + 2, + 1, 0, -1, - 2 instead of the weights - 2, - 1, 
0, + 1, + 2, we would still have obtained the same results from Equation 15.1, 
namely, SScontrast = 256, and F(1.45) = 4.06, p = .05. This p value, though one-tailed 
in the F distribution (in that it refers only to the right-hand portion of the F 
distribution) is two-tailed with respect to the hypothesis that performance increases 
with age. If we take IF contrast = f, as we did above, we must be very careful in mak­
ing one-tailed t tests to be sure that the results do in fact bear out our prediction and 
not its opposite. A convenient device is to give t (and any associated effect-size 
estimates) a positive sign when the result is in the predicted direction and a negative 
sign when the result is in the opposite direction of what was predicted. 

Of course, we are not limited to testing a linear trend, though it is certainly a 
natural procedure for developmental researchers. However, other contrasts may be pre­
ferred in other circumstances. Suppose, for example, we predicted only that I2-year-olds 
would exhibit superior performance to 8-year-olds. In that case we would have chosen 
weights of -1, 0, 0, 0, + 1 for our five age levels. Multiplying the five group means by 
these five corresponding A weights would give us MiAi scores of -2, 0, 0, 0, 8, which 
sum to L = 6. Squaring our five A weights would give us 1, 0, 0, 0, 1, which sum to 
~A2 = 2. Substituting the values into Equation 15.1, again with n = 10, we find 

nL2 10 X (6)2 
MScontrast = --2 = 2 = 180, 

~Ai 

which, when divided by the mean square for error of our earlier ANOVA, yields 

F, - MScontrast = 180 = 2 86 
contrast - MSwithin 63 ., 

and with dfnumerator = 1 and dfdenominator = 45, P = .098. Alternatively, because 
IF contrast = fcontrast. and 12.86 = 1.69, we have the option of reporting tcontrast = 1.69, 
and with df = 45, one-tailed p = .049. 

Or suppose our prediction was that both the 8- and 9-year-old children would score 
lower than the 12-year-olds. We could then have chosen lambda weights of -1, -1, 0, 
0, +2 (recall that our lambdas must sum to zero, so the +2 of the I2-year-olds is needed 
to balance the -1 and -1 of the 8- and 9-year olds). Multiplying the group means by 
these five corresponding A weights would give us MAi scores of -2, -3,0,0, 16, which 
sum to L = 11. Squaring our five A weights would give us 1, 1, 0, 0, 4, which sum to 
~A2 = 6. Substituting these values in Equation 15.1, again with equal n = 10, we find 

nL2 10 X (11)2 
MScontrast = ~Ar = 6 = 201.67, 

which, when divided by the mean square for error of 63, yields 

MScontrast 20167 
Fcontrast = MS.. = -_.- = 3 20 

wlthm 63 ., 

and p = .08. Alternatively, as 13.20 = 1.79, we have the option in this case as well 
of reporting t(45) = 1.79, p = .04 one-tailed. 
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CONTRAST t TESTS ON ORIGINAL DATA 

We can also compute t directly, where the advantage of the procedure we now describe 
is that it can be used whether the ns are equal or unequal. The general expression for 
a contrast t is 

(15.4) 

where L = I[U AJ as defined in Equation 15.2, and the degrees of freedom for tcontrast 

are the degrees of freedom in MSwithin. 
Using Equation 15.4 with the data in Table 15.4, and given the prediction of a 

linear increment in performance scores, we find 

t - (2.0)(-2) + (3.0)(-1) + (5.0)(0) + (7.0)(+1) + (8.0)(+2) 
contrast - [2 2 2 2 2] 

63 (-2) + (-1) + (0) + (+1) + (+2) 
10 10 10 10 10 

= 16.0 = 2.02, 
/63 

which; not unexpectedly, is the identical value of f we obtained previously by taking 
the square root of Fcontrast. The appealing feature of Equation 15.4 is that we can use 
it even when we have different sample sizes in the various conditions and have only 
the mean and standard deviation for each condition. We can estimate the error term 
(MSwithin) by weighting each squared standard deviation by its df(ni - 1) and dividing 
the quantity I[(ni - 1)(SD)2] by the sum of the df Furthermore, we can always square 
fcontrast to find Fcontrash a fact that is useful to remember when we discuss the calculation 
of effect sizes for contrasts. 

CARVING CONTRASTS OUT 
OF PUBLISHED DATA 

So far, we have concentrated on the computation of contrasts when we have the 
original data. Often, however, we want to compute a contrast based on other people's 
published data. As useful as Equation 15.4 is, not every study reports the within 
error, whereas many researchers report omnibus F tests quite routinely. Even if all 
we know are the results of the omnibus F, the df with which the F is associated, and 
the group means, we can easily compute a contrast. Suppose that all we know is that 
the overall F(4,45) = 1.03, and the group means on which that F was based are 2.0, 
3.0, 5.0, 7.0, 8.0. The number of possible five-group sequences of the five group 
means is 120 (i.e., 5! = 5 X 4 X 3 X 2 X 1 = 120), and any of these 120 permu­
tations will yield the same omnibus F. Because we are specifically interested in 
whether there was any evidence of a linear progression as a function of age levels, 
we decide to compute a linear contrast, which we can do in three easy steps: 

First, we determine the size of the maximum possible contrast F (symbolized 
as FMPC) by multiplying the reported overall Fby its numerator df This FMPC represents 
the largest value of F that any contrast carved out of the sum of squares of the 
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numerator of the reported overall F can possibly achieve. It can achieve this value 
only if all of the variation among the means tested by the overall F is associated with 
the contrast computed, with nothing left over. 

Second, we identify the proportion of variation among the means that is accounted 
for by our linear contrast as defined by its lambda weights. To do this, we simply cor­
relate the means (MD and their respective lambda (AD weights by punching a few keys 
of a good handheld calculator. This correlation is an alerting r (designated as either 
ralerting or rM)J Squaring this value (r;lerting, or r~)J immediately gives the proportion 
of variation among means that is accounted for by our contrast weights. 

Third, we multiply the results of the first and second steps to obtain our contrast 
F, that is, 

Fcontrast = FMPC x r;lerting. (15.5) 

To illustrate with our continuing example, first, we compute FMPC = 1.03 X 4 = 
4.12. Next, we correlate the means of 2.0, 3.0, 5.0, 7.0, 8.0 with the lambdas of 
-2, -1, 0, + 1, +2 and find that ralerting = .992 and r;lerting = .984. The final step, 
described in Equation 15.5, is to multiply those results (4.12 X .984), yielding Fcontrast = 4.05 
(which, within rounding error, is the value of Fcontrast that we computed from the original 
data). And, of course, .; Fcontrast = tcontrast. 

If we have an omnibus F and enough information to solve for the sum of squares 
between conditions, it is easy enough to estimate the sum of squares within conditions. 
That is, we simply rearrange the F ratio of MSbetween/MSwithin, so that we solve for 
MSwithin by dividing the value of MSbetween by F. But suppose we do not have a reported 
omnibus F, but we know the group means and the n per group and can estimate 
MSwithin from the reported standard deviations (as we described in the preceding 
section). An alternative formula for Fcontrast is 

r;lerting X SSbetween 
Fcontrast = MS . . wlthm 

(15.6) 

We compute r~lerting as before, and we can obtain the between-sum-of-squares from 

SSbetween = 1:[ni (M - MfJ. (15.7) 

where M is the mean of the group means, and Mi is any group mean. With the 
results in Table 15.1, in this approach the first step is to obtain r alerting, the correlation 
between the five group means and their corresponding lambda weights 
(ralerting = .992), and then to square this value, which gives us r~lerting = .984. Step 2 
is to compute the between-conditions sum of squares. Substituting in Equation 
15.7, with M = (2.0 + 3.0 + 5.0 + 7.0 + 8.0)/5 = 5.0, we find 

SSbetween = 10(2.0 - 5.0)2 + 10(3.0 - 5.0)2 + 10(5.0 - 5.0)2 
+ 10(7.0 - 5.0)2 -h 10(8.0 - 5.0)2 

= 90 + 40 + 0 + 40 + 90 = 260. 

The final step is to substitute in Equation 15.6: 

.984 X 260 
Fcontrast = = 4.06. 

63 
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ORTHOGONAL CONTRASTS 

When we consider a set of results based on k conditions, it is possible to compute up 
to k - 1 contrasts, each of which is uncorrelated with, or orthogonal to, every other 
contrast. Contrasts are orthogonal to each other when the correlation between them is 
zero. The correlation between them is zero when the sum of the products of the 
corresponding lambda weights is zero. For example, Table 15.6 shows two sets of 
contrast weights (AI set and A2 set) as orthogonal. The Al set can be seen to represent 
four points on a straight line. The A2 set can be seen to represent a concave, or U-shaped, 
function, also called a quadratic trend. Shown in the bottom row are the products of 
those linear and quadratic weights, which sum to zero and thus are orthogonal. 

A particularly useful set of orthogonal contrasts based on the coefficients of 
orthogonal polynomials (curves or trends) should be considered whenever the k 
conditions of a study can be arranged from the smallest to the largest levels of the 
independent variable, usually when age levels, dosage levels, learning trials, or some 
other ordered levels constitute the independent variable. Returning to Table 15.3, we 
see that, when there are three levels or conditions (represented as k = 3), the weights 
defining a linear trend are -1, 0, + 1. We also see that orthogonal weights defining 
a quadratic trend for k = 3 ordered conditions are + 1, -2, + 1. No matter how many 
levels of k there are in Table 15.3, the linear trend lambdas always show a consistent 
gain (or loss), and the orthogonal weights defining a quadratic trend always show a 
charl'ge in direction from down to up in a U-shaped curve (or up to down in an-shaped 
curve). Cubic trends, which can be assessed when there are four or more conditions, 
show two changes of direction, from up to down to up (or down to up to down). 

Figure 15.2 shows the results of three hypothetical studies that were (a) perfectly 
linear, (b) perfectly quadratic, and (c) perfectly cubic. The three plots show idealized 
results. In most real-world applications we find combinations of linear and nonlinear 
results. For example, the results in Figure 15.3 show a curve that has both strong 
linear and strong quadratic components. 

We have noted that it is possible to compute up to k - 1 orthogonal contrasts 
among a set of k means or totals. For example, if we have four conditions, we can 
compute three orthogonal contrasts, each based on a different polynomial or trend: the 
linear, the quadratic, and the cubic. The sums of squares of these three contrasts would 
add up to the total sum of squares among the four conditions. Although there are only 
k - 1 orthogonal contrasts in a given set, such as those based on orthogonal polynomials, 
an infinite number of sets of contrasts can be computed, each comprising k - 1 orthogonal 

TABLE 15.6 

D1ustration of orthogonal contrast weights 

Condition 

Contrast A B C D I 

f\l set -3 -1 +1 +3 0 

A2 set +1 -1 -1 +1 0 

Al X A2 -3 +1 -1 +3 0 
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contrasts. The sets of contrasts, however, are not orthogonal to one another. This point 
is illustrated in Table 15.7, in which both sets consist of three mutually orthogonal con­
trasts. However, none of the three contrasts in Set I is orthogonal to any of the contrasts 
of Set II. 
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Illustrations of (a) linear, (b) quadratic, and (c) cubic trends. 
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+2 

9 10 11 12 

Age JeveJ 

FIGURE 15-3 
Curve showing linear and quadratic components. 

TABLE 15.7 

Further illustrations of sets of contrasts 

Contrast Set I Contrast Set II 

A B C D A B C D 

1\1 -3 -1 +1 +3 Al -1 -1 -1 +3 

A2 +1 -1 -1 +1 A2 -1 -1 +2 0 

A3 -1 +3 -3 +1 A3 -1 +1 0 0 

NONORTHOGONAL CONTRASTS 

The advantage of using orthogonal contrasts is that each contrast addresses a fresh 
and nonoverlapping question. Nonetheless, there is no a priori reason not to use 
correlated (or nonorthogonal) contrasts. An especially valuable use of these contrasts 
is in the comparison of competing hypotheses. Suppose a researcher is interested 
in evaluating two theories and a pair of hypotheses based on those theories. Each 
theory-and each hypothesis, in turn-implies a different pattern of psychological 
benefits as the number of counseling sessions is varied from one to four. Hypothesis I 
predicts there will be gradual improvement continuing over the four levels of session 
frequency. Hypothesis II predicts no difference in benefits except that people given 
four sessions will show greater benefits than those given fewer sessions. To assess 
the competing predictions, the researcher designs a fully randomized experiment 
consisting of four groups, corresponding to one, two, three, or four sessions of 
counseling, with three people in each group. Table 15.8 shows the hypothetical 
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TABLE 15.8 

Hypothetical study of the effects of number of counseling sessions on 
psychological functioning8 

Number of counseling sessions 

1 2 3 4 

Means 2.0 3.0 4.0 7.0 

Hypothesis I (AS) -3 -1 +] +3 

Hypothesis II (AS) -1 -1 -] +3 

nL2 n[LMiAd2 3[(2.0)( -3) + (3.0)( -1) + (4.0)( +1) + (7.0)( +3W 
SSI =. LAr =. nr =. (-w + (_1)2 + (+1)2 + (+w =. 38.4 

nL2 n[LMiAiF 3[(2.0)(-1) + (3.0)( -1) + (4.0)( -1) + (7.0)( +3)]2 
SSn =. - =. =. =. 36.0 LAr nr (_1)2+ (_1)2+ (_1)2+ (+w 

~ 

]6 

0 

0 

SSbetween =. L[n(Mi - M )2] =. 3(2.0 - 4.0)2 + 3(3.0 - 4.0)2 + 3(4.0 - 4.0)2 + 3(7.0 - 4.0)2 =. 42.0 

'n = 3 in each group 

results, the contrast weights used to test each hypothesis, the sums of squares associated 
with each contrast (Equation 15.1, with L defined in Equation 15.2), and the sums of 
squares between all conditions (Equation 15.7) with df = k - 1 = 3. 

Both contrasts do an impressive job of fitting the data. The sum of squares 
of Hypothesis I (SS,) accounts for 100(38.4/42.0) = 91.4% of the SSbetween, and 
the sum of squares of Hypothesis II (SSn) accounts for 100(36.0/42.0) = 85.7% 
of the SSbetween. Hypothesis I did a little better than Hypothesis II, but Hypothesis II 
did well enough that the researcher is reluctant simply to abandon the underlying 
theory. That both hypotheses did well should not surprise us much, as the correlation 
between the weights representing the two hypotheses was quite substantial (r = .77). 
We will have more to say about comparing contrasts (as well as combining them 
when it appears useful to do so), but first, we turn to the issue of effect size indices 
for contrasts. 

EFFECT SIZE INDICES FOR CONTRASTS 

So far in our discussion of contrasts, we have mentioned only one effect-size indicator, 
the alerting r (i.e., ralerting or rMi\), or the correlation between the group or condition 
means and their associated lambda weights. In previous chapters we described the effect 
size correlation between group (or condition) membership and individual scores on the 
dependent measure in two-group (or two-condition) designs. Besides those two effect­
size indices, two others that are informative in the interpretation of contrasts are the 
contrast r and the binomial effect-size r. We begin in this section by discussing three 
members of this correlational family (ralerting, rcontrast, and reffect size), and in the follow­
ing section we discuss the binomial effect-size r. In these and subsequent discussions, 
we will draw on some of our earlier writing (Rosenthal, Rosnow, & Rubin, 2000; 
Rosnow & Rosenthal, 1996a, 2002; Rosnow, Rosenthal, & Rubin, 2000). 
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The Alerting Correlation 

As we have already seen, the alerting r is a convenient way of evaluating the "success" 
of any contrast, because the squared alerting correlation (i.e., r~erting or r~0 immediately 
tells us the proportion of the between-conditions sum of squares (SSbetween) that is 
accounted for by the particular contrast. That is, 

2 SSeontrast 
ralerting = 

SSbetween' 
(15.8) 

Suppose we have k = 5 groups, and therefore dfbetween = k - 1 = 4. Any r~lerting that 
is substantially greater than .25 will catch our eye, because we might have expected 
.25 (i.e., the reciprocal of the df) if each of our four df were associated with just its 
"fair share" of the SSbetween. 

The squared alerting r can also be computed from 

2 Feontrast 
r alerting = -------'----'--------

Feontrast + Fnoneontrast ( dfnoneontrast) , 
(15.9) 

where Fnoneontrast is the noncontrast F for all sources of variation other than the contrast, 
and the dfnoneontrast is the dfbetween less 1. We can find Fnoneontrast from 

j!! 

(SSbetween - MSeontrast) / dfnoneontrast 

Fnoneontrast = MS . . ' wIthin 
(15.10) 

or 

F. _ Fbetween (d/between) - Feontrast 

noncontrast - d/noncontrast . 
(15.11) 

Equation 15.10 is more convenient when we have access to all the sums of squares, 
and Equation 15.11 is useful when we have access only to various Fs, a situation we 
frequently encounter when analyzing other investigators' results (e.g., in meta-analytic 
applications) . 

We can illustrate these calculations using the hypothetical study presented at the 
start of this chapter. The alerting r directly obtained by correlating the five means of 
2.0, 3.0, 5.0, 7.0, 8.0 (Table 15.1) with their respective linear contrast weights of 
-2, -1, 0, + 1, +2 was rMII = .992 and squaring this value gave r~erting = .984. 
Similarly, substitution in Equation 15.8 with SSeontrast = 256 and SSbetween = 260 
(Table 15.5) gives us (within rounding error) r~lerting = 256/260 = .9846. Alternatively, 
using Equation 15.9 (along with the results in Table 15.5), we find 

r~lerting = 4.06 = .985. 
4.06 + 0.02 (3) 

Continuing with this example and the results in Table 15.5, substituting in Equation 
15.10 gives 

(260 - 256)/3 
Fnoneontrast = 63 = 0.02, 
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or substituting in Equation 15.11 gives 

1.03(4) - 4.06 
Fnoneontrast = 3 = 0.02. 

The Contrast Correlation 

When we compute a t or F on two means, we are computing a "wired-in" contrast, 
where the implicit contrast weights are + 1, -lor-I, + 1. In chapter 12, we 
described the effect size r in this situation as the point-biserial correlation between 
each subject's group membership (coded as 0 or 1) and the score on a continuous 
variable. A standard formula for computing reffeet size from t with two groups was 
given in Equation 12.1 as 

cr 
r= yf2+d!' 

with df = N - 2. However, when the contrast is computed on more than two inde­
pendent groups, reffeet size is no longer a point-biserial correlation. Thus, when k > 2, 
we regard Equation 12.1 as the contrast correlation (reontrast) rather than the reffee! size. 

The reason is that Equation 12.1 now gives the partial correlation between scores on 
the outcome variable and the lambdas associated with the group after the elimination 
of all between-group noncontrast variation. (For a more detailed description of this 
partial correlation, see Rosenthal, Rosnow, & Rubin, 2000.) 

Therefore, on the understanding that all sources of between-group variation 
other than the contrast have been removed, we obtain reontras! from 

t~ontrast _ teontrast 
2 .. - ,.; 2 • 

teontrast + dfwltltinteontrast + dfwitlJ.in 
(15.12) reontrast = 

We also refer to reontrast as rY)..·NC, denoting that it is the partial correlation between the 
individual scores on the dependent variable (Y) and a set of lambda weights (A), with 
noncontrast (NC) sources of variation removed (Rosnow & Rosenthal, 1996a). Because 
any contrast F equals t2, using the summary ANOVA results of Table 15.5 where the 
contrast F = 4.06, Equation 15.12 yields 

/ 4.06 2.015 29 
reontrast = 4.06 + 45 = ./4.06 + 45 =. . 

The Effect Size Correlation 

With k = 2, there are no sources of noncontrast variation to be eliminated, so that 
reontrast = reffeet size in two-group dt1'igns. Similarly, if r~erting revealed that a contrast 
had accounted for virtually all the between-group variation in a design with three or 
more groups, then reontrast would be virtually equivalent to reffee! size. However, reontrast 

can be quite large, yet not be a reflection of a similarly large reffeet size. The reason is 
that reffeet size is the simple, unpartialed correlation between subjects' individual scores 
(Ii) and the lambda weights associated with those scores (Ai), and thus we can also 
symbolize reffee! size as Ty)". When we think that reontras! is probably a good approximation 
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of r effect size in designs with more than two groups, then Equation 15.12 is a convenient 
way of estimating reffect size. 

To reiterate, reffect size (or TY'A) should be understood as the simple correlation 
(unpartialed) between the contrast weight (A) associated with membership in a par­
ticular group or condition and scores on the dependent variable. To compute this 
simple correlation, we treat the noncontrast between-group variability as additional 
error variance, then 

Fcontrast 
(15.13) reffect size = 

Fcontrast + Fnoncontrast ( d/noncontrast) + d!within ' 

which from the data in Table 15.5 gives 

To • = / 4.06 = 29 
effect sIze V 4.06 + 0.02(3) + 45 . . 

Alternatively, we can use the omnibus F (i.e., Fbetween) and calculate 

Fcontrast 
(15.14) reffect size = 

Fbetween (d!between) + d!within ' 

which, in our example of the data in Table 15.5, gives 

To • = / 4.06 = 29 
effect sIze l.03 (4) + 45 . . 

The rcontrast and the reffect size are identical after rounding in this example because 
the r~lerting nearly equals 1.0. Thus, we use the squared alerting correlation as evidence 
to help us decide when we can conveniently use Equation 15.12 to estimate reffect size 

in contrast analyses based on k > 2 independent groups. 

THE BESD AND THE BINOMIAL 
EFFECT-SIZE CORRELATION 

In chapter 11 we described the binomial effect-size display (BESD) as a way of visu­
ally displaying the real-world implications of effect sizes in two-group designs with 
continuous or categorical data. It will be recalled that the purpose of the BESD is to 
represent the reffect size SO that both the independent and dependent variables are cast 
as dichotomous and each is split at its median, with row and column margins set at 
100 observations. The question we tum to now is how to generalize the use of the 
BESD to the situation of three or more groups. 

As a review of our earlier description of the BESD, let us suppose that reffect size = .10 
in a clinical trial comparing the level of improvement in subjects who were randomly 
administered either a newly developed drug or a standard drug in a between-groups 
design. Table 15.9 shows the corresponding BESD, in which cell values can be interpreted 
as percentages. In the upper-left and lower-right cells, we calculated 55% by adding one 
half the value of reffect size to .50 and then multiplying by 100. In the upper-right and 
lower-left cells, we calculated 45% by subtracting one half the value of reffect size from 
.50 and then multiplying by 100. The difference between 45% and 55%, when divided 
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TABLE 15.9 

Binomial effect-size display of Teffect size = .10 

Condition 

New drug 

Old drug 

Total 

Above median outcome 

55 

45 

100 

Level of improvement 

Below median outcome 

45 

55 

100 

Total 

100 

100 

200 

by 100, gives the original value of the effect size correlation, and it tells us that 'effect size 

is equivalent to a difference in the rate of improvement of 10% in a population in which 
half the subjects received the new drug and half did not, with the outcome variable cast 
as split at the median. 

When there are three or more groups involved in a contrast, it is not immediately 
obvious how to exhibit 'effect size as a BESD or what might be gained from such a display. 
Under the assumption that the noncontrast sum of squares can be considered "noise," we 
have described a way of recasting the 'effect size as a BESD (Rosenthal, Rosnow, & Rubin, 
2000). For this method we assume that the contrast of interest does, in fact, capture the 
full predictable relation between the outcome variable (Y) and the treatment groups. In 
that case, we conceptualize the BESD as reflecting the 'effect size that we would expect to 
see in a two-group replication of the current study with the same total N. In this concep­
tualization, the lower level is set at -la", and the higher level is set at + ICTA, where 

a' = /LA2 
fl k ' (15.15) 

and, as before, k equals the number of conditions in the contrast. 
For example, in a two-group design (with wired-in, or implicit, lambdas of + 1 

and -1), we find 

which tells us that the BESD will compare the success rate of the upper level of the 
treatment (at the + 1a" level) with the success rate of the lower level of the treatment 
(at the -la" level). In designs with more than two groups, the BESD will capture 
only the levels found at -la" and + 1a". 

To illustrate, we return to the five-group study of Table 15.1, where the predicted 
linear increment in performance for ages 8, 9, 10, 11, 12 was represented by lambdas of 
-2, -1,0, + 1, +2, respectively. Substituting those lambdas in Equation 15.15, we find 

_ /(-2)2+(-1)2+(0)2+(+1)2 +(+2)2 _ 
a" - V . 5 - 1.41, 

and then we use this value to find the lower and upper levels for groups or treatment 
conditions of the BESD. The mean of the five age levels is (8 + 9 + 10 + 11 + 12)/5 = 10. 
Thus, we find the lower age level by subtracting a" = 1.41 from the mean age level 
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TABLE 15.10 

Linear contrast weights and (h for k = 2 to 10 ordinal comparisons 

Ordinal conditions 

k 1 2 3 4 5 6 7 8 9 10 (JA 

2 -1 +1 1.00 

3 -1 0 +1 0.82 

4 -3 -1 +1 +3 2.24 

5 -2 -1 0 +1 +2 1.41 

6 -5 -3 -1 +1 +3 +5 3.42 

7 -3 -2 -1 0 +1 +2 +3 2.00 

8 -7 -5 -3 -1 +1 +3 +5 +7 4.58 

9 -4 -3 -2 -1 0 +1 +2 +3 +4 2.58 

lO -9 -7 -5 -3 -1 +1 +3 +5 +7 +9 5.74 

of 10, and we find the upper age level by adding 1.41 to the mean age level of 10. (To 
assist in estimating at., Table 15.10 shows values of at. for linear predictions in designs 
GQnsisting of 2-10 ordinal conditions.) 

We now need to find the value of the reffeet size to be represented in our BESD. 
If this is a two-group design with equal sample sizes, we can estimate reffeet size from 
t by Equation 15.12 (i.e., the contrast r equation, or the effect size r in the case 
of two groups). If the sample sizes of our two-group design are unequal, we can 
calculate rBESD by 

rBESD = ( )' 2 nh 
t + d!within n 

(15.16) 

where nh is the harmonic mean sample size (defined in Equation 12.2 for a two-group 
design), and n is the arithmetic mean sample size. (It may be recalled from our 
discussion in chapter 13 that the ratio of these two, subtracted from 1, was described 
as an indicator of efficiency loss in the unequal-n design relative to the equal-n design; 
see Equation 13.8.) 

When k > 2, l"BESD is defined as the reffeet size that we would expect to see in 
a ± 1 at. two-group replication (with the stipulations noted earlier), which can be 
calculated by 

Feontrast 
(15.17) l"BESD = 

Feontrast + Fnoncontrast (dfnoncontrast + d!within) . 

If Fnoncontrast is less than 1.00, it is entered into Equation 15.17 as equal to 1.00. This 
restriction on Fnoncontrast requires the noise level underlying MSwithin to be at least as 
large as the noise level of MSnoncontrast. and it arises because we are viewing noncontrast 
variability as the appropriate index of the noise level, which must be at least as large 
as the within variability. 
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TABLE 15.11 

Binomial effect-size display of TBESD = .28 for the study in Table 15.1 

Age level 

High age (M = 11.4) (+IO"A) 

Low age (M = 8.6) (-I O"A) 

Total 

Level of performance 

Above median 

64 

36 

100 

Below median 

36 

64 

100 

Total 

100 

100 

200 

In our example based on the original results in Table 15.1 and the summary 
ANOVA in Table 15.5 showing the linear contrast, we enter Fnoncontrast = 1.00 in 
Equation 15.17 (as Table 15.5 shows it to be less than 1) and find that 

rBESD = 4.06 = 28 
4.06 + [1.00(3 + 45)] . , 

which we can interpret as the reffect size we would expect to find in a replication that 
compares the performance of children at the (10 + 1.4 A units =) age level of 
11.4 years with children at the (10 - 1.4 A units =) age level of 8.6 years, assuming 
the same total N in the study for which we computed the 'BESD and equal sample 
sizes in these age levels. Table 15.11, interpreted in the usual way, is the BESD 
corresponding to this result. 

OVERVIEW OF THE FOUR 
EFFECT-SIZE INDICES 

It may be useful here to summarize the defining characteristics of the four correlational 
effect-size indices discussed in this chapter. For this purpose we refer to Table 15.12, 
which shows that the only differences among these indices occur in the second (or third) 
term of the denominator. 

The ralerting equation in Table 15.12 is simply the square root of Equation 15.9. 
We recall that ralerting is the correlation between the group means and their associated 
lambda weights. The equation in the table ignores within-group noise, and its second 
denominator term incorporates information only about noncontrast between-group 
variation. 

The rcontrast equation in the table is a variant of Equation 15.12, which showed 
the rcontrast obtained from tcontrast. Because Fcontrast equals P, we substituted one term for 
the other in Equation 15.12. It should also be recalled that rcontrast refers to the partial 
correlation between the lambdas "and the individual scores on the dependent measure 
after removal of the noncontrast sources of between-group variation. The equation for 
rcontrast shown in Table 15.12 ignores noncontrast between-group variation, and its 
second denominator term incorpotates information only about within-group variation. 

The reffect size equation in the table is Equation 15.13 and refers to the correlation 
between the lambdas and the individual scores on the dependent measure, or the 
unpartialed correlation. The equation incorporates information about both the noncontrast 
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TABLE 15.12 

Overview of four effect size indices 

ralerting = Rontrast 

Rontrast + Fnoncontrast ( d/noncontrast) 

rcontrast = 
Rontrast 

Rontrast + d!within 

Fcontrast 
'effect size = 

F'contrast + Fnoncontrast ( dfnoncontrast) + d/within 

Rontrast 
rBESD= 

F'contrast + Fnoncontrast (d/noncontrast + d!within) 

between-group variation and the within-group variation. The second and third terms 
of the denominator are simply the second denominator terms imported from r alerting 

and reontrast. 

The rBESD equation in the table is Equation 15.17 and refers to the value of reffeetsize 

that we would expect to see in a two-group replication with the same total N 
and the two treatment levels chosen from (1).. (defined in Equation 15.15). Like the 
reffeet size equation, the TBESD equation in the table incorporates information about 
the noncontrast between-group variation and the within-group variation, but with 
the restriction that the noise level of the within-group variation must be set at least 
a§ high as the noise level of the noncontrast variation. Thus, when Fnoneontrast is less 
than 1.00, it is entered into the TBESD equation as equal to 1.00. It is the noise level 
of the noncontrast variation that we regard as the appropriate index of the noise 
level for doing interpolation to levels of the independent variable not in the 
study. 

It is possible for reontrash reffeet size, and rBESD to show identical values in a particular 
case, but in general we will find reffeet size to be larger than TBESD, and reontrast to be larger 
than reffeet size, and these differences are sometimes quite substantial. The ralerting tends to 
be larger than the other three effect-size correlations, but not necessarily. Figure 15.4 
explains this idea with another example showing the results of two studies with identical 
values of reontrast = .80. 

The plot of the means shows Study 1 to have a clearly linear trend in the 
five means. That is, the correlation between the means and lambdas for linear trend 
is raierting = 1.00. But Study 2 does not imply a clearly linear trend because raierting 

is only .45. Indeed the five means of Study 2 show a greater quadratic trend, with 
raierting = .76 using lambdas of -2, 1, 2, 1, -2. The reason that both studies have 
the same reontrast for linear trend despite their displaying different patterns is that 
Study 2, though it has a smaller alerting r, possesses far greater noncontrast 
variability among the means than does Study 1. Consequently, we have a smaller 
proportion of a larger variability in Study 2, yielding the same partial r (i.e., reontrasl) 

as in Study 1. Were we to compute an unpartialed r (i.e., reffeet size), putting all the 
nonlinear sources of between-groups variation into the error term, we would find 
Study 1 still to have an unpartialed r of .80, but Study 2 would have an unpartialed 
r of only .42. These unpartialed rs, not controlled for other between-groups sources 
of variability, are what we intuitively think of as reffeet size. When the leftover, 
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FIGURE 15.4 
Results of two studies with identical values of linear contrast (partial) correlations, but 
with very different patterns of means and alerting correlations for linear trends, thereby 
implying different effect-size (unpartialed) correlations. 

5 

noncontrast between-groups variability is small in relation to the, contrast variability, 
reffect size tends to be very similar to rcontrast. 

COMPARING COMPETING CONTRASTS 

Earlier in this chapter we described two non orthogonal contrasts to test two hypotheses 
concerning the patterning of psychological benefits when the number of counseling 
sessions was varied from one to four. Returning to Table 15.8, we are reminded that 
both hypotheses did well, but that Hypothesis I accounted for a somewhat (6%) larger 
proportion of the SSbetween than did Hypothesis II. A more direct way of evaluating 
competing contrasts is by means of a contrast on the difference between the corre­
sponding A weights of the two competing contrasts. 

When contrast weights are added or subtracted, their sums and differences are 
influenced more by the contrast weights with larger variance than by the weights with 
smaller variance. To be sure that the comparison is fair (i.e., not simply reflecting the 
contrast with greater variance), we standardize the lambda weights: We divide the 
weights of each contrast by the standard deviation (0') of the weights, which we 
defined in Equation 15.15 as 

where the numerator (1:A2) is the sum of the squared lambda weights, and the 
denominator (k) is again the number of groups. In Table 15.8, the linear contrast 
used to evaluate Hypothesis I had weights of - 3, -1, + 1, + 3, and we find in 
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Table 15.10 that all = 2.24 corresponds to k = 4 and those same linear weights. 
Alternatively, we can calculate all directly from Equation 15.15 as 

all = j(-3)2+(_I)2~(+I)2+(+3? = 2.236. 

Dividing the original lambdas of -3, -1, +1, +3 by all = 2.236 gives standardized 
(i.e., Z-scored) lambda weights for Hypothesis I of -1.342, -0.447, +0.447, + 1.342. 

We now must do the same thing for Hypothesis II, where we recall that the 
prediction was that people would show greater benefits when given four sessions than 
when given only one, two, or three sessions, a prediction for which the contrast 
weights were -1, -1, -1, +3. Computing all from Equation 15.15, we find 

(J1I=j(-I)2+(-I?~(-I)2+(+3)2 = 1.732, 

and dividing the original weights of -1, -1, -1, +3 by all = 1.732 gives us the 
Z-scored weights of -0.577, -0.577, -0.577, + 1.732 for Hypothesis II. 

Subtracting the Z-scored lambda weights of Hypothesis II from the corresponding 
Z-scored weights of Hypothesis I gives us the precise weights we need for our difference 
contrast: -0.765, +0.130, + 1.024, -0.390. Given group means to be 2.0, 3.0,4.0, 7.0, 
n = ,2 in each group, and assuming S~ooled = 2.5, we substitute in Equation 15.4 to find 

L(MAi) 
tcontrast = ---"j=====~=::=;= 

( Ar) MS within L ni 

2(-0.765) + 3(0.130) + 4(1.024) + 7(-0.390) 

25[(- 0.765)2 + (0.130)2 + (1.024)2 + (-0.390)2] 
. 3 3 3 3 

0.2260 = 0.1844, 
/(2.5)(0.6009) 

which, with df = 8, has an associated one-tailed p = .43. The expected value of fcontrast 
is zero when the null is true, and this f is not much larger than zero. Moreover, the 
alerting correlation is .0458, and thus dlerting is .0021, implying that one prediction 
has little superiority over the other. 

We have a choice of procedures to calculate the contrast and effect size correlations. 
For example, we can use Equation 15.12 to estimate the contrast r, which yields 

t~ontrast 
rcontrast = --::------= 

t~ontrast + dfwithin 
(0.1844)2 = .065. 

(0.1844)2 + 8 

Alternatively, because we know from Table 15.8 that SSbetween = 42, we can calculate 
the contrast sum of squares from 

SScontrast = ?alerting X SSbetween, (15.18) 

which yields SScontrast = .0021 X 42 = .088. The MSwithin was 2.5, and we lost 1 df in 
each group, so we multiply 2.5 by 8 to find SSwithin = 20. Then, we simply substitute 
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in the following: 

SScontrast 
(15.19) rcontrast = 

SScontrast + SSwithin ' 

which (with rounding differences) gives us 

) .088 
rcontrast = .088 + 20 = .0662. 

We could calculate the effect size r from Equations 15.13 or 15.14, but in this 
case we will use the following: 

which yields 

reffect size = SScontrast 

SStotal ' 

f088 reffectsize = V 62 = .038 

(15.20) 

and, like the contrast r, is (not surprisingly) small. We can conclude that neither 
hypothesis is noticeably superior to the other, whereas both fare well on their own. 
In some cases, the results from rcontrast may differ more from the results of reffect size 
than they do in this example. Thus, whenever it is possible to use both rcontrast and 
reffect size, it seems wise to compute both. 

COMBINING COMPETING CONTRASTS 

Both hypotheses in the example above did so well individually that we wonder 
how they will do together. Assuming it makes sense to think of two processes 
operating simultaneously, we can find out how well they do together. We begin 
by summing the standardized weights of Hypothesis I (which yielded Z-scored 
weights of -1.342, -0.447, +0.447,+1.342) and Hypothesis II (which yielded 
Z-scored weights of -0.577, -0.577, -0.577, +1.732). Summing the values gives 
us combined lambdas of -1.919, -1.024, -0.130, +3.074. As both hypotheses 
contributed equally to the combined weights, the combined lambdas should cor­
relate equally with the weights of each hypothesis, and indeed we find that the 
combined weights correlate .942 with the lambda weights for Hypothesis I 
and Hypothesis II. We now use the combined weights and Equation 15.4 to find 

L(MiAJ 
fcontrast = ~;::=====~~ 

( At) MSwithin L ni 

2(~1.919) + 3(-1.024) + 4(-0.130) + 7(3.074) 

) 25[(-1.919)2 + (-1.024)2 + (-0.130)2 + (3.074)2] 
. 3 3 3 3 

14.088 = 3.4397 = 4.096, 

which, with df = 8, has an associated one-tailed p = .0017. 
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Routinely repeating all the other calculations we did previously, we start with 
the alerting correlation, which is now ralerting = .999. The large size of the squared 
alerting correlation (r~lerting = .998) assures us that the combined predictions did 
exceedingly well in accounting for between-group variation. Using Equation 15.18, 
we find SScontrast = .998 X 42 = 41.9, which we substitute in Equation 15.19 to find 
rcontrast = .8228. Given the size of r~erting, it is safe to assume that rcontrast is similar to 
reffect size, as there is hardly any noncontrast variability to worry about. Equation 15.20 
confirms our expectation, yielding reffect size = .8221. In sum, Hypothesis I and 
Hypothesis II are about equally good, and each fared well. Combining them gave the 
most accurate prediction, even though the increase over the two individual predictions 
was not spectacular. If combining the hypotheses makes sense intuitively, the researcher's 
next task is to make a compelling case that connects the two underlying processes 
formally on theoretical grounds. 

OPTIMAL DESIGN AND THE ALLOCATION 
OF SAMPLE SIZES 

In chapter 12 we discussed the power loss associated with an unequal-n study 
relative to an equal-n study, and we mentioned that some studies may be specifically 
designed in a way that allocates the subjects to conditions unequally. The statistical 
narlie for this strategy is optimal design, as the goal is to optimize the statistical 
precision of the study by emphasizing some conditions more than others. As Jacob 
Cohen (1962) brought "power to the people," G. H. McClelland (1997) brought 
optimal design to psychologists, on the assumption that "appropriate allocations 
can substantially increase statistical precision" when we are comparing groups or 
conditions in a planned contrast (p. 6). For example, if we have a linear prediction 
with contrast weights of - 2, -1, 0, + 1, + 2, our optimal allocation is to assign 
half the subjects to the condition associated with the lambda weight of -2 and the 
remaining half to the condition associated with the lambda weight of + 2. If our 
prediction of a linear trend is quite accurate, we expect the optimum allocation of 
sample size to result in a larger effect size estimate (rcontrast) and a more significant 
p value, compared to the more traditional allocation of equal sample sizes to all 
groups or conditions. 

Suppose we wanted to compare the effectiveness of five dosage levels of a 
psychological, educational, or medical intervention: (a) very low, (b) low, (c) medium, 
(d) high, and (e) very high. Given a total sample size of N = 50, we could allocate 
the subjects equally or optimally as shown in Table 15.13. With n = 10 in each of 
the five dosage conditions, the contrast weights to test our linear trend prediction are 
-2, -1, 0, + 1, +2. In the optimal allocation, with n = 25 assigned to the "very 
low" condition and the remaining n = 25 to the "very high" condition, the contrast 
weights would be - 1 and + 1 (because our optimal allocation assigns no units at all 
to the "low," "medium," and "high" conditions). 

Suppose that we use all five conditions and find the corresponding five mean 
outcome scores to be 1, 3, 5, 7, 9, with pooled within-group variance (SZ) = 16. These 
results are clearly linear, and, indeed, the correlation between these five means and their 
corresponding linear contrast weights (Table 15.13) is ralerting = 1.00. In Equation 15.4, 
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TABLE 15.13 

Equal and optimal allocation of subjects in a hypothetical study with N = 50 

Allocation Very low Low 

Equal Sample size 10 10 

A weight -2 -1 

Optimal Sample size 25 0 

A weight -1 

the contrast t for this result is 

~(Mt.i) 
tcontrast = ---;"~~;,;;,( '===t.r=;=-) 

MSwithin ~ ni 

Dosage level 

Medium High Very high 

10 10 10 

0 +1 +2 

0 0 25 

+1 

1(-2) + 3(-1) + 5(0) + 7(+1) + 9(+2) 

2; 

50 

0 

50 

0 

with df = 45, one-tailed p = 4.6-6, and rcontrast = .60. Now suppose that we use the 
optimal design, assigning half of our total N to the very lowest dosage level and the 
other half to the very highest dosage level. Using Equation 15.4, we now find 

1(-1)+9(+1) =_8_=707 

[(_1)2 (+1)2] 1.1314 ., 
16~+~ 

tcontrast = 

with df = 48, one-tailed p = 3.0-9, and rcontrast = .71. As we might expect, the tcontrast 
for the (two-group) optimal design is larger, as is the effect size estimate (rcontrast), 
than those we found for the (five-group) equal-n design. 

However, let us now imagine that we conduct the same experiment, with the 
very same linear prediction, and that we again compare the equal-n with the optimal 
design analysis. This time, we will imagine that the five means we find for our five 
dosage levels are 1, 5, 7, 9, 3, respectively, from the very lowest to the very highest 
dosages. We still observe a linear trend in those five means, with ralerting = .40 between 
the condition means and respective linear contrast weights, but this r alerting is very 
much lower than the ralerting of 1.00 in the previous example. And using Equation 15.4, 
we find 

tcontrast = 1 (-2) + 5(-1) + 7(0) + 9(+1) + 3(+2) = ~ = 200 

[(_2)2 (-1.)2 (0)2 (+1)2 (+2)2] 4 ., 
161Q+---ro+W+1Q+1Q 

with df = 45, one-tailed p = .026, and rcontrast = .29. Both the tcontrast and the rcontrast 
are substantially lower than they were in the previous example, but that is what we 
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might expect, knowing that r.lening dropped from 1.00 to .40. For comparison with the 
(five-group) equal-n design and analysis, we compute the contrast t for the (two­
group) optimal n case and find 

tcontrast = 

with df = 48, one-tailed p = .042, and rcontrast = .25. Thus, we see in this example 
(in which our hypothesis of linear increase is not supported by the data as strongly 
as it was in the preceding example) that our (five-group) equal-n design produced a 
larger effect size as well as a more significant fcontrast. The lesson? Had we used only 
our optimal design allocating N /2 to each of the extreme conditions, we would have 
missed the opportunity to learn that the actual trend showed linearity only over the 
first four dosage levels, with a noticeable drop for the highest dosage level. 

There may indeed be occasions when we will want to consider using the principles 
of optimal design. When we do, however, it seems prudent to consider the possibility 
that, in so doing, we may be missing out on something new and interesting that would 
be apparent only if we used a nonoptimal design. 
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In previous chapters we have addressed a number of lingering misconceptions having 
to do with the interpretation of data. One problem that we discussed is that many 
researchers have for too long operated as if the only proper significance testing 
decision is a dichotomous one in which the evidence is interpreted as "anti-null" if p 
is not greater than .05 and "pro-null" if p is greater than .05. We have also underscored 
the wasteful conclusions that can result when, in doing dichotomous significance 
testing, researchers ignore statistical power considerations and inadvertently stack the 
odds against reaching a given p level for some particular size of effect. We also 
emphasized the importance of not confusing the size of effect with its statistical 
significance, as even highly significant p values do not automatically imply large 
effects. In the case of F ratios, a n\lmerator mean square (MS) may be large relative 
to a denominator MS because the effect size is large, the n per condition is large, or 
both values are large. On the other hand, even if an effect is considered "small" by 
a particular standard, small effect sizes sometimes have profound practical implications. 
There is a growing awareness that' just about everything under the sun is context­
dependent in one way or another, and effect size indices are no exception. Thus, it is 
essential to heed how study characteristics may influence the size as well as the 
implications of a magnitude-of-effect estimate. 

461 
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We have also discussed the importance of replications, that is, as opposed to the 
monomaniacal preoccupation with the results of a single study. Replication of results 
suggests the robustness of the relationships observed, and in the final chapter of this 
book we describe the basic ideas of meta-analytic procedures to summarize a body of 
related studies. We have also discussed (and illustrated) the problem of overreliance 
on omnibus statistical tests that do not usually tell us anything we really want to know, 
although they provide protection for some researchers from "data mining" with 
multiple tests performed as if each were the only one to be considered. In the previous 
chapter, for example, we showed in one example that, while a predicted pattern among 
the means was evident to the naked eye, the omnibus F was not up to the task of 
addressing the question of greatest interest. We have demonstrated not only the value 
of focused t and F tests (i.e., contrasts) but also their easy performance with a calcu­
lator and computation on data in published reports as well as on original data. 

Both in this chapter and in the following one, we tum to lingering problems 
involving the use of factorial analysis of variance (ANOVA). One core problem 
involves the most universally misinterpreted empirical results in behavioral research, 
namely, the results called interaction effects. As we will explain, the mathematical 
meaning of interaction effects in ANOVA is unambiguous. Nevertheless, there is 
palpable confusion in many research reports and psychological textbooks regarding 
the meaning and interpretation of obtained interactions. The nature of the problem is 
quite consistent. Once investigators find statistically significant interactions, they 
confuse the overall pattern of the cell means with the interaction (e.g., N. H. Anderson, 
2001, pp. 210-211). As we will show, the cell means are made up only partially 
of interaction effects. One perceptive author suggested that the problem may be a 
consequence of "the lack of perfect correspondence between the meaning of 
'interaction' in the analysis of variance model and its meaning in other discourse" 
(Dawes, 1969, p. 57). But whatever the etiology of the problem, looking only at the 
"uncorrected" cell means for the pattern of the statistical interaction is an error that 
has persisted for far too long in our field. We do not feel there is any great merit in 
computing interaction at all, but if it is computed and reported, it should be accurately 
interpreted. This chapter should not be read as an argument against comparing cell 
means, however, as we are very much in favor of comparing cell means, especially 
by the use of planned contrasts. 

Simply stated, our position is that if one claims to speak of an interaction, 
the exercise of actually looking at the "corrected" group or condition (i.e., the cell) 
means is absolutely essential. The reason, as we illustrate in this chapter, is that 
"interaction" in ANOVA is defined basically in terms of the "leftover effects" (or 
residuals) after lower order effects have been removed from the original cell means. 
This is true even though the mean square for interaction in ANOVA can be seen as 
variability of the difference between the "uncorrected" cell means for the various 
rows of the table of overall effects. In the simplest case, that of a 2 X 2 ANOVA, 
the mean square for interaction has a nonzero value if the difference between any 
two cell means in any row differs from the corresponding difference in any other 
row. Focusing attention only on the original cell means, however, ignores the form 
and degree of relationship of the interaction itself. Just as when the skins of an 
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onion are peeled away, if we are interested in seeing the interaction, we need to 
peel away the various constituent effects in order to separate the effects of the 
interaction from the other effects. But the important question is always "Am I sure 
I really want to look at the interaction rather than compute a contrast on the cell 
means?" 

Other common misconceptions are that main effects are "meaningless" or "unin­
terpretable" in the presence of significant interaction and that only two-way or (perhaps 
at most) three-way interactions can be meaningfully interpreted. We address both of 
those mistaken beliefs in more detail in the next chapter. However, suppose we have 
a 2 X 2 design, with the four cells labeled A, B, C, D as follows: 

GEJ 
~ 

In the context of an ANOYA, this design is basically a set of three orthogonal contrasts. 
Because they are independent, we can (and should) interpret each contrast separately­
assuming we are interested in what they may have to tell us. However, no information 
would be lost by treating the 2 X 2 design as though it were a 1 X 4 design. Focusing 
on the four condition means, suppose we predicted A > B = C = D, which we can 
denote by contrast weights of +3, -1, -1, -1, respectively. Those lambdas are the 
sums of three orthogonal (i.e., uncorrelated) contrasts, with cell weights for A, B, C, 
and D, respectively, of (a) + 1, + 1, -1, -1, for rows; (b) + 1, -1, + 1, -1 for 
columns; and (c) + 1, -1, -1, + 1 for the interaction. If a 1 X 4 contrast addresses 
the major question of interest, then it provides the right answer to the right question. 
If the "wired-in" orthogonal contrasts of the 2 X 2 ANOYA miss questions of interest, 
they provide correct answers to the wrong questions. Just because we may think of 
an experimental design as 2 X 2 is not a good reason to subject the results to a 2 X 2 
ANOYA. The 2 X 2 design is not some Mt. Everest that must be scaled by a 2 X 2 
ANOYA just because "it is there." 

In the remainder of this chapter we explore the logic, and also illustrate the 
computation, of the factorial ANOYA. As a consequence, it should become clear 
when we are predicting interaction and not something else that can be more precisely 
addressed by a planned contrast. We will also illustrate how to transcend the 
factorial structure by planned contrasts. In addition, we will discuss the stratification 
or subdivision of the subjects or other sampling units to increase statistical power, 
known as blocking, and we will compare blocking with the analysis of covariance. 
Finally, we will return to the use of transformations, not only as a way of meeting 
statistical assumptions underlying the use of the F test, but sometimes as a way of 
simplifying the nature of the ¢lationship between independent and dependent 
variables. We will show how some transformations can be used to remove an inter­
action and thereby possibly simplify a more complex relationship to a linear 
relationship. In the next chapter we will deal in far more detail with the interpretation 
of interaction in between-groups designs arranged as factorial designs, and in 
chapter 18 we will concentrate on factorial designs with repeated measures. 
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AN ECONOMY OF DESIGN 

To help us explore the logic of the factorial ANOVA, let us return to the example 
of a one-way design. In chapter 14 we described such a one-way between-groups 
design; the hypothetical results are repeated in Table 16.1. There were four treatment 
conditions (designated as PD, P, D, 0), with three patients randomly assigned to 
each condition. We also identified 13 fairly obvious comparisons of those different 
conditions, made by ( tests. One ( test compared the psychotherapy-only group (P) 
and the zero (no-treatment) control (0) and found (8) = 1.55, with p = .08 
one-tailed, and effect size r = .48 (from Equation 12.1). Inspection of the four 
means in Table 16.1 suggests another possible comparison to test the effect of 
psychotherapy: PD versus D. That comparison, which we did earlier and found (8) = 
3.10, p < .01, and the effect size r = .74, is analogous to the comparison of P and 
0, except that now both the psychotherapy and the no-psychotherapy conditions are 
receiving drug therapy. 

Rather than conduct two ( tests, on P and 0 and on PD and D, we can conduct 
one simultaneous ( test of (PD + P)/2 versus (D + 0)/2, so that the conditions 
including psychotherapy can be compared with those not including psychotherapy. 
The advantage of thus combining our tests is that it increases the nl and n2 of the 
denominator of the ( test, rendering ( with greater power to reject the null hypothesis 
(Ho) if Ho is false. An equally sensible (and quite analogous) test might ask whether 
drug therapy is beneficial, that is, (PD + D)/2 versus (P + 0)/2. The ( test for 
psychotherapy, based on Equation 11.8, is computed as 

(8+4)_(4+2) 
2 2 6 - 3 

= j( 1 1) = 0.913 = 3.29, 
6+6 2.5 

TABLE 16.1 

Improvement scores in four groups 

Psychotherapy Psychotherapy Drug treatment Zero control 
plus drug alone alone group 

(PD) (P) (D) (0) 

9 6 5 4 

8 4 4 2 

7 2 3 0 

M 8 4 4 2 

S2 1.0 4.0 1.0 4.0 
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TABLE 16.2 

Factorial design rearrayed from one-way design in 
Table 16.1 

Psychotherapy 

Drug therapy Present Absent Mean 

Present gld 41d 61P. 

Absent 41d 21d 31P. 

Mean 61P. 31P. 4.5t!l 

Note: Numbers within the Lsymbol indicate the number of units on which each 
mean is based. 

which is significant at p = .006 one-tailed, when referred to the t(8) distribution, and 
effect size r = .76. The results for the drug effect tum out in this example to be 
identical. 

Ronald A. Fisher, for whom the F test is named, and who was largely responsible 
for so much of the development of the analysis of variance, noticed that in many 
situations a one-way ANOVA could be rearranged (or rearrayed) to form a two­
dimensional (or higher order) design of much greater power to reject the null 
hypothesis. As we know from chapter 7, such experimental designs are called factorial 
designs, and they require that the two or more levels of each factor (variable) be 
administered in combination with the two or more levels of every other factor. For 
example, Table 16.2 shows how we would rearray the four means of the one-way 
design in Table 16.1 into a 2 X 2 factorial design. Now the comparison of the two 
column means is the test of the effect of psychotherapy, and the comparison of the 
two row means is the test of the effect of drug therapy. The number of observations 
on which each mean is based is doubled, from 3 to 6, as we move from a comparison 
of one group with another group to a comparison of a column (or row) comprising 
two groups with another column (or row) also comprising two groups. 

This example clearly illustrates the great economy of the factorial design. That 
is, each condition or group contributes data to more than one comparison. In Table 16.2 
we see, for example, that the upper-left condition (the cell previously denoted as A) 
contributes its n = 3 simultaneously to the comparison between columns and the 
comparison between rows. 

EFFECTS AND THE STRUCTURE OF ANOVA 

We can better understand our pahicular data, and we can better understand the nature 
of analysis of variance, by thinking of our obtained scores or means as comprising 
two or more components that can be summed to construct the obtained scores or 
means. Let us consider only the four group means of the one-way design in Table 16.1. 
We can decompose those four group means into two components, one due to the grand 
mean (4.5) and the other due to the effect of being in a particular group. Subtracting 
the grand mean from each of the four group means gives the "corrected" means shown 
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TABLE 16.3 

Group means of one-way design of 
Table 16.1 "corrected" for grand mean 

A. Residual (condition) effects 

Psychotherapy 

Drug therapy 

Present 

Absent 

Present 

3.5 

-0.5 

Absent 

-0.5 

-2.5 

B. Residual effects = Group means - Grand mean 

Residual (condition) effects 

3.5 

-0.5 

-0.5 

-2.5 

0.0 

c. Group means = Grand mean + Residual effects 

Group means = Grand mean 

8 4.5 

4 4.5 

4 4.5 

2 4.5 

L 18 18.0 

Group means 

8 

4 

4 

2 

18 

+ 

+ 
+ 
+ 
+ 

+ 

Grand mean 

4.5 

4.5 

4.5 

4.5 

18.0 

Residual (condition) effects 

3.5 

( -0.5) 

( -0.5) 

(-2.5) 

0.0 

in Part A of Table 16.3. In subtables Band C, we see two alternative ways of 
visualizing that decomposition of group means, where the leftover amounts (after we 
"correct" the group means by subtracting the grand mean) are called either residuals 
(leftovers) or effects of group (or condition) membership. As those subtables illustrate, 
the sum of the condition effects (i.e., the residuals) is always equal to zero. Thus, 
examining the residuals for each group will quickly tell us which group scored the 
most above average (the positively signed group effect with the largest value) and 
which scored the most below average (the negatively signed group effect with the 
largest value). Here we see that the highest positive residual value is 3.5, and the highest 
negative residual value is -2.5. Subtable C also highlights the fact that the grand 
mean plus the condition residual (or effect) for each group mean is equal to the 
group mean. 

Although Subtable A in Table 16.3 is depicted as two-dimensional, we have 
been thinking only of a one-way design so far. When we move from a one-way to a 
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two-way ANOVA, as in the case of a two-way factorial design, the condition effects 
(or residuals) are subdivided into row effects, column effects, and interaction effects, 
where the interaction effects now constitute the residual (leftover) effects. That is to 
say, whereas in a one-way ANOVA design, we have 

Group mean = Grand mean + Residual (condition) effect, 

in a two-way ANOVA design, we have 

Group mean = Grand mean + Row effect + Column effect + Interaction effect. 

In order to decompose the group means into their four components, we must 
first calculate the grand mean, the row effects, the column effects, and the interac­
tion effects. The grand mean is the mean of all group (or condition) means. The 
row effect for each row is the mean of that row minus the grand mean. The column 
effect for each column is the mean of that column minus the grand mean. Part A 
of Table 16.4 shows the results of those calculations. The row effects are 6 - 4.5 
and 3 - 4.5 for drug present and absent, respectively. The column effects are 
6 - 4.5 and 3 - 4.5 for psychotherapy present and absent, respectively. We obtain 
the interaction effect (or residual) for each group by subtracting the grand mean, 
the relevant row effect, and the relevant column effect from the particular group 
mean. Those calculations are indicated in Part B of Table 16.4, which shows for 
each group that 

Interaction effect = Group mean - Grand mean - Row effect - Column effect 

TABLE 16.4 

Decomposition of two-way factorial design in Table 16.2 

A. Row effects and column effects 

Psychotherapy Row means Row effects 

Present Absent 

Drug therapy 

Present 8 4 6 1.5 

Absent 4 2 3 -1.5 

Column means 6 3 4.5 
(grand mean) 

Column effects 1.5 -1.5 

B. Interaction effects defined 

Group mean Grand mean Row effect Column effect Interaction effect 

PD 8 4.5 1.5 1.5 0.5 

D 4 4.5 1.5 ( -1.5) ( -0.5) 

P 4 4.5 (-1.5) 1.5 ( -0.5) 

0 2 4.5 (-1.5) (-1.5) 0.5 

~ 18 18.0 0 0 0 
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TABLE 16.5 

Summary table of effects 

Group mean = Grand mean + Row effect + Column effect + Interaction effect 

PD 8 4.5 + 1.5 + 1.5 + 0.5 

D 4 4.5 + 1.5 + ( -1.5) + ( -0.5) 

P 4 4.5 + ( -1.5) + 1.5 + ( -0.5) 

0 2 4.5 + ( -1.5) + ( -1.5) + 0.5 

L 18 18.0 + 0 + 0 + 0 

or alternatively that 

Interaction effect = Group mean - (Grand mean + Row effect + Column effect). 

For the time being, we continue to think of interaction effects simply as the 
"leftover effects," but we will have a great deal more to say about them in the next 
chapter. To show that the group means are composed of additive pieces, we can 
rewrite the relationship above as follows: 

Group mean = Grand mean + Row effect + Column effect + Interaction effect. 

This expression notes that all effects (row, column, and interaction) sum to zero when 
added over all four conditions (PD, D, P, 0), a characteristic of all residuals from a 
mean, as shown in Table 16.5. What can be learned from studying this table of effects? 
First, the grand mean tells us about the general "level" of our measurements and is 
usually not of great intrinsic interest. Second, the row effects indicate that the groups 
receiving drugs (PD and D) did better than those not receiving drugs (P and 0). Third, 
the column effects indicate that the groups receiving psychotherapy (PD and P) did 
better than the groups that did not receive psychotherapy (D and 0). Fourth, the 
interaction effects tell us that it was better overall to receive neither psychotherapy 
nor the drug than to receive either psychotherapy or the drug. The table of effects 
also tells us that, although it is slightly better from the point of view of the interaction 
effect alone to have received neither treatment, this advantage in the interaction effects 
(i.e., 0.5) was more than offset by the disadvantage in the row effects (i.e., -1.5) and 
the column effects (i.e., -1.5) to be receiving neither treatment. 

INDIVIDUAL DIFFERENCES AS ERROR 

We have seen how the mean of each group or condition can be decomposed into 
elements made up of the grand mean, the row effect, the column effect, and the 
interaction effect in a two-dimensional design, such as a two-way factorial design. 
That does not quite tell the whole story, however, because it does not take into account 
that the various scores found in each condition show variability from the mean of that 
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condition. That is, each score can be rewritten as a deviation or residual from the 
mean of that condition. The magnitude of the deviations reflects how poorly we have 
done in predicting individual scores from a knowledge of condition or group member­
ship. From our earlier discussion (in chapter 4) of random fluctuations, we recognize 
that those deviations or residuals are accordingly called error. Thus, a particular score 
shows a "large" error if it falls far from the mean of its condition, but only a "small" 
error if it falls close to the mean of its condition. We can write error as 

so that 

but 

so 

Error = Score - Group mean, 

Score = Group mean + Error, 

Group mean = Grand mean + Row effect + Column effect 
+ Interaction effect, 

Score = Grand mean + Row effect + Column effect 
+ Interaction effect + Error. 

From this process we can show the makeup of each of the original 12 scores 
of the study we have been using as our illustration (see Table 16.6). We can use the 

TABLE 16.6 

Table of effects for individual scores 

Grand Row Column Interaction 
Condition Patient Score mean + effect + effect + effect + Error 

PD 9 4.5 + 1.5 + 1.5 + 0.5 + 
PD 2 8 4.5 + 1.5 + 1.5 + 0.5 + 0 

PD 3 7 4.5 + 1.5 + 1.5 + 0.5 + (-1) 

D 4 5 4.5 + 1.5 + ( -1.5) + (-0.5) + 
D 5 4 4.5 + 1.5 + (-1.5) + ( -0.5) + 0 

D 6 3 4.5 + 1.5 + (-1.5) + ( -0.5) + (-1) 

P 7 6 4.5 + (-1.5) + 1.5 + ( -0.5) + 2 

P 8 4 4.5 + (-1.5) + 1.5 + ( -0.5) + 0 

P 9 2 4.5 + (-1.5) + 1.5 + (-0.5) + (-2) 

0 10 4 4.5' + (-1.5) + (-1.5) + 0.5 + 2 

0 11 2 4.5 + (-1.5) + ( -1.5) + 0.5 + 0 

0 12 0 4.5 + (-1.5) + (-1.5) + 0.5 + (-2) 

LX 54 54 + 0 + 0 + 0 + 0 
LX2 320 243 + 27 + 27 + 3 + 20 
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decomposition of the individual scores to understand better the computation of the 
various terms of the analysis of variance. Beneath each column in Table 16.6 we have 
the sum of the 12 values (l:X) and the sum of the squares of the values (l:x2). In 
analyzing the results of this hypothetical study as a one-way ANOVA in chapter 14, 
we computed the three sources of variance (defined in Equations 14.8, 14.9, and 
14.l0) with results as follows: 

Total SS = l:(X - M)2 = 77 
Between-conditions SS = l:[ni (Mi - Mf] = 57 

Within-conditions SS = l:(X - MJ2 = 20. 

The total SS is defined as the sum of the squared differences between every 
single score and the grand mean, that is, (9 - 4.5)2 + . . . + (0 - 4.5)2 = 77. 
Alternatively, we can subtract the sum of the squared means, shown in Table 16.6 
as 243 (expressed symbolically as N M2 or as (l:X)2 / N), from the sum of the 
squared scores, shown as 320 (expressed symbolically as l:X2), to obtain the same 
value of 77. In the one-way analysis of variance, this total SS is allocated to two 
sources of variance, a between-conditions and a within-conditions source. When 
we move from a one-way to a two-way analysis of variance, the within-conditions 
source of variance, or the source attributable to error, remains unchanged. 
'fable 16.6, indicating the contributions of various sources to each score, shows 
that the sum of the squared effects due to error is 20, as before. However, the 
between-conditions source of variance has now been further broken down into three 
components as follows: 

Between-conditions SS = Row-effect SS + Column effect SS + Interaction effect SS, 

57 27 + 27 + 3 

where 57 is the between-conditions SS computed earlier showing the overall variation 
among the four treatment conditions, and the row, column, and interaction effects of 
27, 27, and 3, respectively, are as shown in the bottom row of Table 16.6. 

THE TABLE OF VARIANCE 

The table of variance for the two-way ANOVA differs from the table of variance for 
the one-way ANOVA in reflecting the further subdivision of the between-conditions 
SS. This difference is illustrated in Table 16.7, where we see a large eta (.76) and 
significant (p = .012) effect of the drug and also a large eta (.76) and significant 
(p = .012) effect of psychotherapy. Tables 16.5 and 16.6 imply that it was more 
beneficial to have the drug than not to have it, and more beneficial to have the 
psychotherapy than not to have it. Table 16.7 shows that the interaction effect (the 
residual between-conditions variation after the row and column effects were removed) 
was not close to statistical significance, though the effect size eta of .36 is not 
trivial. Because of the importance of interaction effects in two-way and higher order 
analyses of variance, and because of the frequency with which they are misinterpreted 
by even very experienced investigators, we discuss them in more detail in the next 
chapter. 
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TABLE 16.7 

Summary ANOVA showing row, column, and interaction SS carved out of 
SSbetween 

Source SS df MS F 1} P 

Between conditions 57 3 19.0 7.60 .86 .01 

Drug (row) 27 27.0 10.80 .76 .012 

Psychotherapy (column) 27 27.0 10.80 .76 .012 

Interaction 3 3.0 1.20 .36 .30 

Within conditions 20 8 2.5 

Total 77 11 7.0 

In chapter 14 we discussed eta, or 1] (defined in Equations 14.11 and 14.12), 
and noted that we usually can do better than a multiple degree-of-freedom effect size 
indicator (as illustrated in chapter 15). It may be recalled that eta is a nonspecific 
index of effect size when it is based on a source of variance with dJ > 1 and is 
therefore much less informative than r, which tells us about linear relationship. For 
example, in Table 16.7, the eta of .86 based on 3 dJfor the between-conditions effect 
is large, but we cannot say much about what makes it large. The three etas based on 
just a single dJ are (as we noted in chapter 14) identical to r and may be interpreted 
as r. That helps quite a bit, as we can now say that the size of the effect of drug only 
is r = .76 with all the different ways we have of interpreting this effect size index, 
including the BESD. The size of the effect of psychotherapy-only is also r = .76, and 
the size of the effect of interaction is r = .36, which, although not significant in such 
a small-sized study, is not trivial. Our use of eta or r as an effect size estimate in the 
context of the factorial analysis of variance regards each effect (e.g., row, column, 
and interaction effects) as though it were the only one investigated in that study. We 
mention this fact so that it will not seem strange that the sum of the values of r2 or 
of 1]2 may exceed 1.00. Table 16.8 illustrates this point. 

Inspecting the column for proportion of total SS in Table 16.8, we see what 
proportion of all the SS of the study is associated with each source of variation 

TABLE 16.8 

Summing the values of 1)2 

Source SS Proportion of total SS r2 or 1}2 , 
Drug 27 .35 .574 

Psychotherapy 27 .35 .574 

Interaction 3 .04 .130 

Within conditions 20 .26 

Total 77 1.00 1.278 
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including the error term. Thus, we define each proportion as 

P . f I SS SS effect of interest roportlOn 0 tota = (16.1) 
SSeffect of interest + SS all other between effects + SS within 

When using Equation 16.1, we simply keep increasing the size of the denominator as 
we keep increasing the number of variables investigated. Ordinarily, however, when 
we define the proportion of variance as r2 or 1]2 we disregard all between-groups 
effects except for the one whose magnitude we are estimating. Therefore, in our more 
usual usage we define r2 or 1]2 as 

2 2 SSeffect of interest 
ror1] = 

SSeffect of interest + SSwithin 
(16.2) 

TESTING THE GRAND MEAN BY t AND F 

Earlier in our discussion of the grand mean we noted that we are ordinarily not 
interested in any intrinsic way in its magnitude. Our lack of interest is due in part to 
the arbitrary units of measurement that are often used in behavioral research. Scores 
on ability tests, for example, are equally well expressed as IQ scores with M = 100 
and (J = 20, or as T scores with M = 50 and (J = 10, or as Z scores with M = 0 
and (J = 1. The constant of measurement, then (e.g., 100, 50, 0), is of little interest. 
'fohat is not always the case, however. 

One reason we might be interested in the grand mean would be if we want to 
compare our own sample of subjects with an earlier sample to see whether the overall 
means are similar. Suppose we failed to replicate a relationship reported in an earlier 
study. We might start to wonder whether our sample differed so much from the earlier 
one on the dependent variable that some difference in the sample characteristics might 
account for our failure to replicate the earlier finding. 

A second reason we might be interested in the grand mean is that our dependent 
variable might estimate some skill that is or is not better than chance. For example, 
in various measures of sensitivity to nonverbal communication, we might be interested 
in whether, on average, a particular skill, such as understanding tone of voice, 
surpassed a chance level of accuracy (Rosenthal, 1979b; Rosenthal, Hall, DiMatteo, 
Rogers, & Archer, 1979). 

A third reason for being interested in the grand mean would be if our dependent 
variable is a difference score, such as the difference between a pre- and a posttest 
measurement. In that case a test of the grand mean is equivalent to a paired t test 
(chapter 13) and tells us whether the two measurements (pre- and posttest) differ 
systematically. Related closely to the assessment of change is the assessment of 
experimental difference, as when a sample of teachers or of experimenters is led to 
expect superior performance from some of their students or subjects. Then the 
dependent variable per teacher or experimenter sometimes is defined operationally as 
the difference between (a) the performance of students (or subjects) for whom higher 
expectations had been created and (b) the performance of those in the control condition. 
In that case, testing the grand mean would tell us whether, overall, teachers (or exper­
imenters) had obtained the results they had been led to expect (Rosenthal, 1966, 1976; 
Rosenthal & Jacobson, 1968; Rosenthal & Rubin, 1978). 
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Computational Procedures Using t Tests 

The general formula for the t test on the grand mean is 

M-C t = --r~;==,'===, 
/(1 )MSerror' 

(16.3) 

where M is the grand mean, C is the comparison score established on theoretical 
grounds, N is the total number of subjects or other sampling units, and MSerror (also 
symbolized as MSE) is the estimate of the variation of the scores of the sampling 
units within their experimental conditions (i.e., the MSwithin). For the illustration that 
we have been considering, if we want to know whether M = 4.5 is significantly 
greater than zero, we find 

4.5 - 0 
t = J(~) = 9.86, 

12 2.5 

which, with 8 df (the df for the MSerror or MSwithin), is significant at p < 5.0-6 one­
tailed, and reffectsize = .96. 

Suppose we are also interested in comparing that grand mean with the com­
parison score based on the grand mean of a large norm group of patients. The 
comparison score (denoted as C) would not be zero, but the grand mean of the norm 
group. For the sake of illustration, let us say that we hypothesized M > C, but in 
fact we found C = 5.0, which is the opposite of our prediction. Using a convention 
that we also mentioned in an earlier chapter, in which we label t as negative and 
use a two-tailed (rather than a one-tailed) test when the result is opposite what was 
predicted, we calculate 

t = 4.5 - 5.0 = - 1.1 0, 

/(1~)2.5 
which, with 8 dJ, has an associated p value of .303 two-tailed, and reffect size = .36. 
Although the t test is not statistically significant, it is not surprising because we had 
so few subjects. Unless the true effect is quite large, it is difficult to reject the null 
hypothesis with a sample of only 12 patients, and we thereby invite Type II error. 

In these two examples, we have been assuming that the comparison score is a 
theoretical score that is known exactly rather than a score that was only an estimate 
of a population value. Suppose, for example, that we want to compare the grand mean 
of 4.5 to a grand mean of 3.0 that we obtained in an earlier study using six patients. 
From Equation 16.3 again, we fihd 

t = 4.5 - 3.0 = 3.29, 

. /C~)2.5 

which, with 8 dJ, is significant at about the .011 level, two-tailed, and reffect size = .76. 
This p level is accurate if we assume the comparison score of 3.0 to be a theoretical 
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value, but it is inaccurate if we want to take into account the comparison level's being 
only an estimate based on six patients. Assuming similar mean square error for both 
studies, we need a different formula to compute this type of t by using both sample 
sizes in the denominator: 

(16.4) 

For our data, then, 

t = 4.5 - 3.0 = 1.90 

j(A +i)2.5 ' 
which, with 8 df, is significant at the .094 level, two-tailed, and reffect size = .56. Using 
the actual sample size on which the comparison score is based generally decreases 
the obtained t from what it would be with the use of a theoretical comparison score, 
and this decrease is greater when the actual sample size is smaller. 

In this example we assumed that the mean square error (MSerror or MSE) for 
the two studies was equivalent but that we did not actually know the MSE of the 
comparison score. Hence, we used as the MSE for our t test only the MSE from 
our new study. The df for our t test was, therefore, only 8, because that was the 
number of df on which our MSE was based. Had we known the MSE of the earlier 
study, we could have pooled the mean square error values for the two studies as 
follows: 

(d~)(MSerrorJ + (df2)(MSerror,) 
MSEpooled = d~ + df2 ' (16.5) 

and then we compute t from 

M-C 
t = --;(o==:'l~l~) ==, 

NM + Nc MSEpooled 

(16.6) 

where the df for this t is the sum of the df of the two pooled MSE values, that is, dfl 
plus dA 

Computational Procedures for F 

Recalling the special relationship between t and F when there is only a single degree of 
freedom in the numerator of the F ratio, we can use procedures similar to those described 
above to compute F instead of t. Whenever F addresses a focused question, such as when 
it is used to compare two group means (chapter 14) or when we compute a contrast 
F to compare an observed pattern of condition means with a set of lambda weights 
(chapter 15), then ./F = t. Of course, we know that squaring t always gives F, because 
all t tests are focused whether they are comparing two group means (chapter 13) or 
comparing a pattern of means with a set of contrast weights (chapter 15). Thus, simply 
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by squaring Equation 16.3, 16.4, or 16.6, we find that we can use those formulas to 
obtain F instead of t. 

If we happen to be working with totals rather than means, the direct F test of 
the hypothesis that the grand mean differs from zero is obtained by 

F = _(~_X)_2-,---/ N_ 
MSerror ' 

(16.7) 

where (~X)2 is the square of the sum of all scores, and N is the total number of all such 
scores. For the example we have been discussing, the grand sum was 54 (i.e., the grand 
mean of 4.5 multiplied by the N of 12), so that 

F - (54)2/12 _ 243 - 9720 
- 2.5 - 2.5 - . , 

which, with dfnumerator = 1 and d/denorninator = 8, is significant at p = 9.4-6, and 
reffect size = .96. The square root of the obtained F is 9.86, precisely the value of t 
we obtained earlier when we tested the difference between the grand mean of 4.5 
and zero using Equation 16.3. 

We can relate the result of the preceding F test to our earlier discussion of 
individual differences as error (see Table 16.6). There we showed the decomposition 
of each of the 12 individual scores and the sum of the squared entries for each source 
of variance as follows: 

Grand Row Column Interaction 
Score mean + etTect + etTect + etTect + Error 

320 243 + 27 + 27 + 3 + 20 

The grand mean is the sum of the 12 values of 4.5, each of which had been squared 
[i.e., 12(4.5)2]. Notice that this value is identical to the numerator of the F test 
computed from Equation 16.7, which addressed the hypothesis that the grand mean 
differs from zero. Subtracting the grand mean from the sum of the raw scores squared, 
we find 320 - 243 = 77, the total sum of squares of deviations about the grand 
mean. 

UNWEIGHTED MEANS ANALYSIS FOR 
EQUAL OR UNEQUAL SAMPLE SIZES 

We assume that the reader is using a computer program to do the calculations of 
the factorial ANOVA. HoweveI, understanding those calculations will foster a 
deeper understanding of issues of sample size as well as the mechanics of the 
particular computational procedure that we describe, called an unweighted means 
analysis. In the case of a one-way overall or omnibus ANOVA, it did not matter 
for the computational procedure whether we had the same number of units per 
condition or not. In a two-way or higher order ANOVA, however, special care 
needs to be taken when the number of sampling units varies from condition to 
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condition. Several procedures are available for dealing with this situation, of which 
the most wasteful is simply discarding a random subset of the units of each condition 
until the sample sizes of all conditions are equal. That procedure is almost never 
justified. 

Several multiple-regression procedures are also available for handling the 
computations of a two-way ANOVA with unequal sample sizes per condition (Overall & 
Spiegel, 1969; Overall, Spiegel, & Cohen, 1975). All those procedures yield identical 
results when sample sizes are equal, but they can differ substantially as the sample 
sizes become increasingly unequal. The unweighted means procedure can be used 
when sample sizes are equal or unequal. Furthermore, it yields results that are closer 
to the fully simultaneous multiple-regression method (FSMR) recommended by 
Overall, Spiegel, and Cohen (1975) than do competing methods described by Overall 
and Spiegel (1969). Indeed, for factorial designs of any size, having always two levels 
per factor (i.e., 2k factorial), the unweighted means procedure yields results that are 
identical to those obtained by FSMR (Horst & Edwards, 1982). In general, multiple­
regression approaches to the analysis of variance proceed by converting the independent 
variables to dummy variables, all of which can then be used as predictors of the 
dependent variable. 

Gomputational Procedures 

The unweighted means analysis is especially useful in studies where we would have 
preferred equal sample sizes had they been possible. It can be used with equal or 
unequal sample sizes, and it requires only three simple steps (Walker & Lev, 1953; 
Winer, 1971; Winer, Brown, & Michels, 1991): 

1. Compute a one-way analysis of variance on the k groups or conditions. 

2. Compute a two-way (or higher) analysis of variance on the means of all 
conditions just as though each condition has yielded only a single score (i.e., the 
mean). 

3. Compute the error term required for the analysis in Step 2 by multiplying the 
MSerror from Step 1 by the reciprocal of the harmonic mean of the sample sizes 
of the different conditions (l/nh), where the harmonic mean sample size (nh) was 
previously defined in Equation 14.6, and the reciprocal of nh is obtained by 

~ = ~(~+~+ ... +~), (16.8) 
nh knl nz nk 

where k = number of conditions, and nl to nk are the number of sampling units 
per condition. The quantity 1/nh is the factor by which we scale down the 
MSerror from Step 1 to make it the "appropriate size" for the analysis of 
Step 2. 

We now apply these three steps to the set of data that have been serving as our 
illustration. As it happens, this set does have equal sample sizes, but the computational 
procedures are identical whether the sample sizes are equal or unequal. 
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Step 1: One-Way Analysis of Variance 

The one-way ANOVA of the data in Table 16.1 is seen in the portion of Table 16.7 
that is repeated below: 

Source 

Between conditions 

Within conditions 

SS 

57 

20 

df 

3 

8 

MS 

19.0 

2.5 

F 

7.60 

p 

.86 .01 

Recall from chapter 14 that equal sample sizes are not required for a one-way ANOVA. 

Step 2: Two-Way Analysis of Variance 

The two-way ANOVA on the means of all the conditions in Table 16.1 is computed 
as follows, beginning with the total sum of squares: 

Total SS = r(Mi - M)2 (16.9) 

where Mi is the mean of each condition, and M is the grand mean. Equation 16.9 
instructs us to add up as many squared deviations as there are conditions altogether. 
For the row sum of squares, we compute as follows: 

Row SS = r[c(Mr - M)2], (16.10) 

where c is the number of columns contributing to the computation of M r, the mean 
of each row, and M is again the grand mean. Equation 16.10 instructs us to add up 
as many quantities as there are rows. For the column sum of squares, we compute 

Column SS = r[r(Me - M?], (16.11) 

where r is the number of rows contributing to the computation of Me, the mean of 
each column. Equation 16.11 instructs us to add up as many quantities as there are 
columns. And finally, for the interaction sum of squares, we compute 

Interaction SS = Total SS - Row SS - Column SS (16.12) 

Applying Equations 16.9-16.12 to the data in Table 16.2, we have 

Total SS = (8 - 4.5)2 + (4 - 4.5)2 + (4 - 4.5)2 + (2 - 4.5)2 = 19 
Row SS = 2(6 - 4.5)2 + 2(3 - 4.5)2 = 9 

Column SS = 2(6 - 4.5)2 + 2(3 - 4.5)2 = 9 
Interaction SS = 19 - 9 - 9 = 1. 

Note that in working only with ,condition means we have set all our "sample sizes" 
equal. That is, they all equal 1, the single mean of the condition. 

Step 3: Error Term 

The error term (MSerror) required for the sources of variance (computed in Step 2 from 
Ihe means of conditions) we obtain by multiplying the MSerror of 2.5 from Step 1 by 
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TABLE 16.9 

Unweighted means ANOVA 

Source SS df MS F lJ P 

Drug (row) 9 9 10.80 .76 .012 

Psychotherapy (column) 9 9 10.80 .76 .012 

Interaction 1.20 .36 .30 

Error term (MS"""r X l/nh) 8 0.833 

the reciprocal of the harmonic mean of the sample sizes (Equation 16.8), where 

~ = ~(~ + ~ + ... + ~) 
nh knl n2 nk 

1(1 1 1 1) = 4' "3+"3+"3+"3 = 0.333. 

Therefore, our new error term, appropriately scaled down, is found to be 2.5 X 

0.333 = 0.833, and Table 16.9 summarizes our ANOVA. 
Earlier, we showed the ANOVA table for the same study but with the computa­

tions based on the original 12 scores rather than on the means of the four different 
conditions (see Table 16.7). Notice that the results of our F tests and the magnitudes 
of eta and of p in Table 16.7 are identical with those obtained by the method of 
unweighted means shown in Table 16.9. What are different are the magnitudes of all 
the sums of squares (SS) and mean squares (MS), which in Table 16.9 are simply 
smaller by a factor of l/nh. Thus, the effect of using the unweighted means analysis 
is to shrink the SS and MS in a uniform way that has no effect whatever on either 
significance tests or effect size estimates. This illustration also shows that when the 
sample sizes are equal, the unweighted means analysis yields results identical to those 
obtained from an ordinary analysis using all the original scores. 

EFFECTS ON F OF UNEQUAL 
SAMPLE SIZES 

In our discussion of the t test in chapter 13, we saw that, compared with a study 
with equal n, unequal sample sizes result in a loss of relative efficiency (see again 
Table 13.1). The implication is that, for any given total N, and assuming the effect 
size is not zero, t increases as the sample sizes become more nearly equal. The 
same holds for F tests. For any given total N, the value of the F test increases as 
the sizes of the two or more samples or conditions become more nearly equal. We 
can demonstrate this fact for the data we have been using for our illustration. The 
four groups were of equal size (n = 3 per group) with a total N of 12 patients. 
Table 16.10 shows the effects on F, eta (as computed from either Equation 14.11 
or 14.12), and p as the sample sizes become increasingly heterogeneous. For our 
example we show the F, eta, and p only for the drug (row) effect, but that effect 
is sufficient to illustrate the point. 
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TABLE 16.10 

Effects on F, eta, and p of heterogeneity of sample sizes 

Sample (J of four sample MSerror 

sizes sizes nh 1/nh (2.5 x 1/nh) F(1,8) eta (Tj) p 

3,3,3,3 0.00 3.00 .333 0.833 10.80 .76 .012 

2, 2, 4, 4 1.00 2.67 .375 0.938 9.59 .74 .015 

I, 1,5,5 2.00 1.67 .600 1.500 6.00 .65 .040 

1, 1, 1,9 3.46 1.29 .778 1.944 4.63 .61 .064 

Table 16.10 shows that as the sample sizes become more heterogeneous, where 
heterogeneity is defined by the relative magnitude of the (J of the sample sizes, both F 
and eta decrease and p becomes larger (i.e., less significant). The F decreases by as 
much as 57%, the eta decreases by as much as 20%, and the significant p of .012 goes 
to "nonsignificance" (p = .064), a result that would cause great pain to researchers 
endorsing dichotomous decisions about whether or not to believe the null hypothesis­
a view we do not encourage. The results shown in this table are by no means extreme. 
When the total N increases, much more extreme effects are possible. For example, in 
the four conditions of the experiment that has been serving as our example, if the N 
had been 100, equal-sized samples of 25 each would have yielded an F(l, 96) of 131.58, 
keeping the effect size of 1] = .76 constant. However, if the N of 100 had been allocated 
as heterogeneously as possible (1, 1, 1, 97), then F(l, 96) would have been 7.00 and 
1] would have been .26, a reduction in F of 95% and a reduction in 1] of 66%! 

When factorial designs have unequal sample sizes, it is often useful to have a 
quick estimate of what the F tests and effect size estimates might have been (i.e., had 
our total N been allocated equally to all conditions of the experiment). In the following 
equation, F(equal n) is the estimated F value that we would have obtained had our 
unequal-n factorial design been based instead on equal sample sizes, assuming the 
same total sample size of N for the entire study: 

n 
F(equa! n) = nh X F(unequal n), (16.13) 

where n is the arithmetic mean of the k sample sizes of the factorial design, nh is the 
harmonic mean of the k sample sizes, and F(unequa! n) is the value of F obtained for 
any main effect or interaction using the unweighted means procedure for the analysis 
of variance of factorial designs with unequal sample sizes. 

For example, the bottom row of Table 16.10 shows the value of 1.29 for the 
harmonic mean of the four sample sizes of 1, 1, 1, 9 for a 2 X 2 factorial design for 
which an unequal-n-based F test yielded a value of 4.63. Using Equation 16.13, we 
find 

3 
F(equaln) = -- X 4.63 = 10.77, 

1.29 

a result that is within rounding error of the equal-n-based F test of 10.80 in the top 
row of Table 16.9. Our estimate of the effect size eta (1]) associated with the 
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equal-n-based F uses Equation 14.12, which can also be expressed as 

1]= 
F( dfnumerator) 

F( dfnumerator) + d.!denominator . 

There may be times when we have F tests and effect size estimates based on 
equal sample sizes in all the cells of a factorial design, but we still want to know how 
those F tests and effect size estimates will be affected if the sample sizes are found 
to be unequal (e.g., in a proposed replication with limits placed on treatment avail­
ability). In such situations we can simply rewrite Equation 16.13 to produce the 
predicted F based on unequal sample sizes, as follows: 

nh 
Fcunequal n) = ~ X Fcequal n). 

n 
(16.14) 

For example, Table 16.10 shows F(l, 8) = 10.80 for a study with four conditions and 
n = 3 in each of the four conditions. If we knew that a replication study was forced 
to have four sample sizes of 1, 1, 5, 5, for which nh = 1.67 and the mean sample 
size on is 3, we predict 

1.67 
Fcunequaln) = -- X 10.80 = 6.01, 

3 

which is within rounding error of the more precisely computed F(l, 8) = 6.00 of 
Table 16.10. Estimation of eta is computed in the usual way, as described above. 

UNEQUAL SAMPLE SIZES AND CONTRASTS 

Often, we have available data that can be arrayed in a factorial design comprising 
conditions or cells that have unequal sample sizes. In many of these situations we do 
better by analyzing the data with contrasts instead of the factorial design and analysis. 
Table 16.11 shows the results of a study arrayed as a 2 X 3 factorial in which two levels 
of severity of prior psychopathology are crossed with three levels of treatment intensity, 
with sample sizes ranging from 1 to 5 per cell (total N = 18). Part A of Table 16.12 
shows the means of those six conditions, and Part B gives the factorial ANOVA. 

Suppose we are interested in the magnitude of the severity-of-psychopathology 
effect. We can directly examine that effect by means of a contrast t test using Equation 
15.4, where we find 

tcontrast = 1 ('A2 ) 
V MSwithin ~ ~ 
(5)(-1) + (6)(-1) + (7)(-1) + (7)(+1) + (10)(+1) + (13)(+1) 

= 1250 [(-1)2 + (_1)2 + (_1)2 + (+1)2 + (+1)2 + (+1)2] 
y. 5 3 1 1 5 3 

12 
= /2.50(3.0667) = 4.334, 



TABLE 16.11 

Adjustment scores for 18 patients as a function of preexisting 
psychopathology and level of treatment intensity 

Treatment intensity 

Low Medium High 

5 5 7 

6 7 

Severe psychopathology 7 6 

4 

3 

Mean 5 6 7 

S2 2.50 1.00 0 

7 10 13 

11 15 

Mild psychopathology 12 11 

8 

9 

Mean 7 10 13 

S2 0 2.50 4.00 

TABLE 16.12 

Means and 2 X 3 ANOVA of results in Table 16.11 

A. Table of means 

Treatment intensity 

Psychopathology Low Medium High Mean 

Severe 5 6 7 6 

Mild 7 10 13 10 

Mean 6 8 10 8 

B. Summary ANOVA 

Source SS df MS F eta p 

Intensity (I) 16 2 8 6.26 .71 .014 

Psychopathology (P) 24 1, 24 18.78 .78 9.7-4 

I X P 4 2 2 1.57 :45 .25 

Error (MSE X l/nh) 12 1.2778 

Note: The error term of 1.2778 is the product of the mean square error (MS£) of the one-way ANOVA of all 
18 scores in six conditions (MSE = 2.50) multiplied by the reciprocal of the harmonic mean sample size, which 

is -,k = i(~ + t + t + t + ~ + t) = 0.5111, so Within error = 2.50 X 0.5111 = 1.2778. 

481 
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with df = 12 and p = 4.9-4 one-tailed. Computing the contrast r by Equation 15.12, 
we find 

t20ntrast 
rcontrast = ------= 

t~ontrast + dfwiiliin 

(4.334)2 
-----=.78. 
(4.334)2 + 12 

Squaring the tcontrast of 4.334 gives us Fcontrast = 18.78, which is the F for severity of 
psychopathology in the unweighted means analysis of variance of Table 16.12. In 
other words, the F test for severity of psychopathology was simply a contrast (i.e., an 
F with only a single df for the numerator). However, the F for treatment intensity is 
not a contrast, as there are 2 df rather than only 1 df in the numerator. As we explained 
in chapter 15, when there is more than 1 df in the numerator of an F, that F is 
addressing a vague, diffuse, or omnibus question about any difference, of any kind, 
among the means. 

Suppose we want to know whether regular increases in treatment intensity are 
associated with regular increases in patient adjustment scores. Our specific prediction 
might be that, of the six means, the two means of low intensity can each be represented 
by contrast weights (lambdas) of -1; the two means of high intensity can each be 
represented by contrast weights of + 1; and the two means of medium intensity can 
each be given weights halfway between (i.e., lambdas of 0). The tcontrast for those six 
conditions can be found from 

~(Mi\i) 
tcontrast = ~;====~~=7'" 

MSwithin (~ ~D 

_ (7)(-1) + (5)(-1) + (10)(0) + (6)(0) + (13)(+1) + (7)(+1) 

- 250[(-1)2 + (-1)2 + (0)2 + (0)2 + (+1)2 + (+1)2] 
·1 5533 1 

8 
/2.50(2.5333) = 3.18, 

with df = 12, p = .004 one-tailed, and our effect size estimate is 

t~ontras! 
rcontraS! = 

t~ontrast + dfwiiliin 

(3.18)2 = .68. 
(3.18)2 + 12 

This effect size estimate (rcontrasD directly addresses the specific, focused question of 
the degree to which changes in the independent variable of treatment intensity are 
linearly related to changes in the dependent variable of adjustment scores. 

TRANSCENDING FACTORIAL STRUCTURE 
USING CONTRASTS 

The development of factorial designs represented an advance over having to address 
all of the various comparisons among conditions in a one-way ANOVA. However, 
the ability to array the conditions of an experiment as a factorial ANOVA does not 
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TABLE 16.13 

Contrast on 2 X 3 factorial 

A. Predicted means 

Low Medium High 

Severe 7 9 11 

Mild 7 11 15 

Difference 0 2 4 

B. Contrast weights 

Low Medium High 

Severe -3 -1 +1 

Mild -3 +1 +5 

make it necessary, or even desirable, to use such an analysis. For example, in 
considering the 2 X 3 factorial that we have been discussing, we might have brought 
everything we knew about likely row effects (i.e., severity of psychopathology) and 
about likely column effects (i.e., treatment intensity) and about likely interaction 
effects into a single overall contrast. Part A of Table 16.13 shows the cell means 
that we might have predicted based on the theory that (a) adjustment scores would 
be higher on average for patients with less severe psychopathology, (b) adjustment 
scores would also be higher for patients as the treatments became more intense, 
and (c) as treatments became more intense, the advantage in adjustment benefits 
to the less versus the more severely afflicted patients would also increase. 

In order to convert the predicted cell means into proper contrast weights 
(II weights), we need only subtract the mean of the six cell values from each 
prediction so that our contrast weights will sum to zero. The mean of the predicted 
cell values in Part A of Table 16.13 is 10, and subtracting that mean from each 
prediction leads to our meeting the two essential conditions for a set of contrast 
weights. First, they must accurately reflect our prediction, and second, they must 
sum to zero. Part B of Table 16.13 contains the resulting contrast weights, and we 
find 

L(Mlli) 
tcontrast = -----,~~=#===:=~ 

( IIr) 
MSwithin ~ ni 

_ (7)(-3) + (5)(~3) + (10)(+1) + (6)(-1) + (13)(+5) + (7)(+1) 

- )250[(-3)2 + (-3)2 + (+1)2 + (_1)2 + (+5)2 + (+1)2] 
. 1 5 5 3 3 1 

40 
= ./2.50(20.6667) = 5.5649, 
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TABLE 16.14 

Analysis of variance of A weights in part B of Table 16.13 

Source SS df MS Proportion of SS· 

Intensity (I) 36 2 18 .78 

Psychopathology (P) 6 6 .13 

IXP 4 2 2 .09 

Total 46 5 1.00 

'The analogous proportions of the SS associated with the ANOVA of the means actually obtained 
(Table 16.12) were .36, .55, and .09 for (I), (P), and (I X P), respectively. 

with df = 12, and p = 6.r5 one-tailed, and also 

t~ontrast 
rcontrast = 

t~ontrast + dfwithin 

(5.565)2 ----- = .849. 
(5.565)2 + 12 

In addition to our overall theory assessment, we might also want to look at 
"subtheories." In that case we could also compute contrasts examining predictions 
derived from portions of our overall theory. We might, for example, have a 
prediction about the magnitude of the effect of severity of pathology, or a prediction 
6f a linear trend in the effect of treatment intensity. If, after we have made our 
predictions for each condition of a factorial design, we would also like to see how 
our overall theory postulation will translate into the factors of a factorial design, 
we need only perform a factorial ANOVA on the contrast weights. For the contrast 
weights in Part B of Table 16.l3, the summary ANOVA appears in Table 16.14. 
This ANOVA shows how much of the total variation (SS) of our overall theory is 
associated with each of the traditional sources of variance, and in the footnote to 
that table, we see the corresponding proportions of the total variation of the SS of 
the ANOVA of the means actually obtained and shown in Table 16.12. Comparing 
the proportions predicted by our theory of .78, .l3, .09 with the proportions actually 
obtained of .36, .55, 09 suggests that, in this particular (fictitious) example, our 
theory overestimated the effect of the intensity factor and underestimated the effect 
of the psychopathology factor. Although comparisons of proportions of SS predicted 
versus obtained may help tweak our theory somewhat, we should not lose sight of 
the important finding that our theory, overall, was remarkably accurate, that is, 
associated with an rcontrast of .85 (and an ralerting of .89). 

HIGHER ORDER FACTORIAL DESIGNS 

So far in our discussion of factorial designs we have dealt only with two-way 
(two-dimensional) designs, but there are many occasions to use higher order designs. 
Suppose the experiment described early in this chapter had been carried out twice, once 
with female patients and once with male patients. Had we decided to reap the general 
benefit of factorial designs, the implication is that we would be using subjects for more 
comparisons and building up the sample sizes per comparison by analyzing the two 
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TABLE 16.15 

Improvement means in eight conditions 

Female patients Male patients 

Drug 

No drug 

Psychotherapy 

10 

4 

No psychotherapy 

5 

Psychotherapy 

6 

4 

No psychotherapy 

3 

3 

experiments as a single, higher order factorial experiment. Table 16.15, illustrates this 
design, which we would describe as a 2 X 2 X 2 factorial or as a 23 factorial. That is, 
there are three factors, and each comprises two levels: (a) drug factor (drug present vs. 
drug absent), (b) psychotherapy factor (psychotherapy present vs. psychotherapy absent), 
and (c) sex of patient factor (female vs. male). Assume that there are three patients in 
each condition, so that N = 3(2 X 2 X 2) = 24. Assume further that our preliminary 
one-way analysis of variance (Step 1 of the unweighted means procedure) happens to 
yield a mean square error (MSE) of 2.5, or exactly what we found in our earlier one-way 
analysis of the original 12 scores. Step 3 of the unweighted means procedure requires us 
to multiply this MS error of 2.5 by 1/ nh, which for this study is 

1 1(1 1 1 1 1 1 1 1) 
nh ="83+3+3+3+3+3+3+3 = 0.333, 

so that our error term is 2.5 X 0.333 = 0.8333, the same error term we found before. 
It remains now only to compute the three-way analysis of variance on the eight means 
shown in Table 16.15. Though we assume that the busy researcher will routinely use 
a computer program to perform this analysis, as a way of providing insight into the 
logic of that analysis, and also further insight into why interactions are called residuals, 
we illustrate the steps were it to be done by hand. 

Computations via Subtables 

In a three-way ANaVA we will compute three main effects (one for each factor), three 
two-way interactions of all factors taken two at a time, and one three-way interaction. 
We begin by constructing three two-way tables. We do this by averaging the two means 
(in this example) that contribute to the mean of each of the 2 X 2 tables. Those results 
are shown in Table 16.16. In Subtable 1, for example, we find the mean for the females 
given drugs (the upper-left cell) by averaging the two conditions in Table 16.15 in which 
there are females who were given drugs, namely, females given drugs who were also 
given psychotherapy (M = 10) and:females given drugs who were not given psychotherapy 
(M = 5). Rowand column means in Table 16.16 can be checked readily because each 
factor produces row or column means in two different 2 X 2 tables. Thus, the female 
and male mean improvement scores can be compared in Subtab1es 1 and 2 of Table 16.16. 
Similarly, we can compare drug and no-drug mean scores in Subtables 1 and 3, and the 
psychotherapy and no-psychotherapy mean scores in Subtables 2 and 3. 
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TABLE 16.16 

Two-way tables of a three-way design 

Drug 

No drug 

Mean 

Psychotherapy 

No psychotherapy 

Mean 

Orug 

No drug 

Mean 

Subtable 1: Sex of patient x Drug 

Female Male 

7.5~ 4.5~ 

2.5~ 3.5~ 

5.01! 4.01! 

Subtable 2: Sex of patient x Psychotherapy 

Female Male 

7.0~ 5.0~ 

3.0~ 3.0~ 

5.01! 4.01! 

Subtable 3: Drug x Psychotherapy 

Psychotherapy No psychotherapy 

8.0~ 4.0~ 

4.0~ 2.0~ 

6.01! 3.01! 

Note: Numbers within the L symbol indicate the number of units on which each mean is based. 

Mean 

6.01! 

3.01! 

4.5~ 

Mean 

6.011. 

3.01! 

4.5~ 

Mean 

6.01! 

3.01! 

4.5~ 

Our strategy is to begin by computing the main effects. Next, we compute two­
way interactions, which are leftover effects (i.e., residuals) when the two contributing 
main effects are subtracted from the variation in the two-way tables. Then we compute 
the three-way interaction, which is a residual when the three main effects and the 
three two-way interactions are subtracted from the total variation among the eight 
condition means. The computational formulas follow, beginning with the "Total" sum 
of squares (SS), or (SS"Totar-): 

SS"Total" = ~(M - M)2, 

where Mi is the mean of each condition, and M is the grand mean of all conditions. 
Here we simply add up as many squared deviations as there are conditions altogether. 
(The quotation marks around "Total" are a reminder that this is a "total" SS only 
when we view the data of the analysis as consisting only of the condition means.) 

Next is the sex of patient sum of squares, or SSSex computed as 

SSSex = ~[dp(Ms - M)2], 

where d is the number of levels of the drug (D) factor, p is the number of levels of 
the psychotherapy (P) factor, Ms is the mean of all conditions of a given sex (S), and 
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M is the grand mean. Here we add up as many quantities as there are levels of the 
factor "sex of patient." Note that we have given up the row and column designations 
because in higher order designs we run out of things to call factors (e.g., in a five-way 
design). Accordingly, in higher order designs we use the names of the factors as the 
names of the dimensions. 

For the drug sum of squares, or SSDrug. we compute 

SSOrug = L[sp(Mo - M)Z], 

where s is the number of levels of the sex of patient factor (S), p and M are as 
defined before, and MD is the mean of all the conditions contributing observations to 
each level of the drug factor. Here we add up as many quantities as there are levels 
of the drug factor. 

For the psychotherapy sum of squares, or SSPsychotherapy, we compute 

SSPsychotherapy = L[sd(Mp - M)2], 

where s, d, and M are as defined above, and Mp is the mean of all the conditions 
contributing observations to each level of the psychotherapy factor (P). Here we add 
up as many quantities as there are levels of the psychotherapy factor. 

For the two-way interaction of sex and drug, or SSSXD' we compute 

SSsxo = L[p(Msxo - M)2] - SSSex - SSOrug, 

where MSXD is the mean of all of the conditions contributing observations to each mean 
IIfSubtable 1 of Table 16.16, and the other terms are as defined above. Here we add up 
liS many quantities as there are basic entries in that subtable (i.e., four entries). 

For the two-way interaction of sex and psychotherapy, or SSsxp, we compute 

SSsxp = L[ d(Msxp - M )2] - SSSex - SSPsychotherapy, 

where Msxp is the mean of all conditions contributing observations to each mean of 
Suhtable 2, and the other terms are as defined above. Here we add up as many quantities 
us there are basic entries in that subtable (i.e., four entries). 

For the two-way interaction of drug and psychotherapy, or SSDXP' we compute 

SSDXP = L[s(Moxp - M)2] - SSOrug - SSPsychotherapy, 

where MDXP is the mean of all conditions contributing observations to each mean of 
Suhtable 3, and the other terms are as defined above. Here we add up as many 
'ItlllIltities as there are basic entries in that subtable (i.e., four entries). 

And finally, for the three-way interaction of sex-by-drug-by-psychotherapy, or 
SSSxllXP we find 

SSSXOXP = SS"Total" - SSSex - SSOrug - SSPsychotherapy 
- SSsxo - SSsxp - SSoxP. 

For the data of our 2 X 2 X 2 factorial, using the various procedures described 
.hove will yield the following: ' 

SS"Total"= (10 - 4.5)2 + (5 - 4.5)2 + (6 - 4.5)2 + (3 - 4.5)2 
+ (4 - 4.5)2 + (1 - 4.5)2 + (4 - 4.5)2 + (3 - 4.5)2 

= 50 
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~ 

SSSex= [2 X 2(5 - 4.5)2] + [2 X 2(4 - 4.5)2] 
= 2 

SSDrug = [2 X 2(6 - 4.5)2] + [2 X 2(3 - 4.5)2] 
= 18 

SSPsychOlherapy = [2 X 2(6 - 4.5)2] + [2 X 2(3 - 4.5)2] 

= 18 

SSSXD = 2(7.5 - 4.5)2 + 2(4.5 - 4.5)2 + 2(2.5 - 4.5)2 
+ 2(3.5 - 4.5)2 - SSSex - SSDrug 

8 

SSsxP 2(7 - 4.5)2 + 2(5 - 4.5)2 + 2(3 - 4.5)2 
+ 2(3 - 4.5)2 - SSSex - SSPsycholherapy 

2 

SSDXP = 2(8 - 4.5)2 + 2(4 - 4.5)2 + 2(4 - 4.5)2 
+ 2(2 - 4.5)2 - SSDrug - SSPsychotherapy 

= 2 

SSSXDXP = 50 - 2 - 18 - 18 - 8 - 2 - 2 
=0 

Table of Variance 

These computations are summarized in Table 16.17. As all of our F tests have 
numerator df = 1, they are all focused tests and, consequently, lend themselves to 
further interpretation by the effect size r. When we have focused F tests, F = t2• 

Consequently, we can most conveniently estimate the effect size r from Equation 12.1, 

TABLE 16.17 

Unweighted means ANOVA 

Source SS df MS F(I,I6) reffect size p 

Sex of patient (S) 2 2 2.40 .36 .14 

Drug (D) 18 18 21.61 .76 .0003 

Psychotherapy (P) 18 18 21.61 .76 .0003 

SXD 8 8 9.60 .61 .007 

S X P 2 2 2.40 .36 .14 

DXP 2 2 2.40 .36 .14 

SXDXP 0 0 0.00 .00 1.00 

Error term (MSE X l!nh) 16 0.833 

Note: The error lerm of 0.833, with df= = 16, is based on the finding that the mean square error (MSE) equals 2.5, 
which we multiply by 1/ nh. With numeralor df = I, the value of eta is equivalent to r, so the effect size r can be coniputed 

from Equation 14.12 as ela or from Equation 12.1 as r, where we substitute F for p, that is, r = ./F /(F + dieITOr). 



where we simply substitute as follows: 

~ 
r= yf2+di = 
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F 
F + d!error' 

and d!error = 16 in Table 16.17. Similarly, we can also estimate r from eta using Equation 
14.12, as 1] = r when we have a focused F with numerator df = 1. Examining the effect 
size correlations of the drug, psychotherapy, and the two-way interaction of drug and 
psychotherapy, we find that the values of .76, .76, and .36, respectively, are identical to 
those in our earlier two-way ANOVA in Table 16.9. That is as it should be, of course, 
hecause the subtable of the Drug X Psychotherapy combination (Table 16.16, Subtable 
3) shows the same four means as were shown by the two-way table of our earlier 2 X 

2 factorial analysis of variance (see Table 16.2). Notice also that our error term has 
remained the same. Though our effect sizes have not changed, all of our F values have 
increased, and the p values are noticeably smaller in Table 16.17 than in our earlier 
two-way analysis in Table 16.9. That outcome, too, is what we would expect, as the size 
of our study has increased. Consistent with Equation 14.1, which showed that 

r2 
F=--X df' 

1 - r2 

our F tests have doubled because the size of our study (d!error) has doubled. 
Inspection of the effect size r for sex of patient in Table 16.17 suggests at least 

a tendency (r = .36) for the sex of the patient to make some difference, and Subtables 1 
and 2 of Table 16.16 do indeed show that, on average, females earned higher 
improvement scores than did males. We will postpone our discussion of the remaining 
interaction effects of Table 16.16 to the next chapter. The interpretation of interaction 
is so widely misunderstood, not perhaps in theory but in practice, that we want to 
highlight the topic in a chapter of its own. As it is not unusual for behavioral researchers 
to use factorial designs of more than three dimensions, we will show that there is no 
limit to the complexity of interactions that can be interpreted. For example, it is easy 
to imagine repeating the three-way factorial just described for two or more levels of 
age (e.g., patients between ages 20 and 40 and patients between ages 40 and 60). The 
computations for this 24 factorial design (2 X 2 X 2 X 2) are quite analogous to those 
described for the 23 design. We proceed by constructing all possible two-way tables 
(AB, AC, AD, BC, BD, CD) as well as all possible three-way tables (ABC, ABD, 
ACD, BCD), and then compute the required four main effects, six two-way interactions, 
four three-way interactions, and one four-way interaction. 

ULOCKING AND THE INCREASE 
OF POWER 

We know that one way to increase power is to increase the size of the effect under 
investigation. One way to increase the size of the effect is to decrease the size of the 
within-group (or error) variation, which brings us to the strategy of blocking. Blocking 
means the stratification or subdivision of subjects (or other sampling units) in such a 
way that persons (or other units) within a common block (or level of stratification) 
lire more similar to each other on the dependent variable than they are to persons 
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(or other units) within a different block. As we show next, blocking helps us to achieve 
increased precision and serves other ends as well. 

Suppose we are studying 10 patients who are suffering from different levels of 
chronic anxiety, and we are interested in a new type of treatment. Half the patients 
are to receive the new treatment, and half are to receive the placebo control. The 
dependent variable is the patients' subsequent anxiety level. Because the patients' 
anxiety levels (after the treatment condition or placebo control condition has been 
implemented) are likely to correlate substantially with the patients' anxiety levels 
before the experiment, the preexperimental level of anxiety is a natural candidate for 
the role of blocking variable. In order to employ a blocking procedure in our exper­
iment while still maintaining the random assignment of subjects to conditions, we find 
the two patients highest in preexperimental anxiety and assign one of them at random 
to each of our two conditions. We then find the two patients with the next highest 
levels of anxiety and assign them at random to treatment and control conditions. We 
continue in this way until all the patients have been assigned. Table 16.18 shows the 
results in Part A, and the table of variance is provided in Part B. The treatment effect, 
which can be described as 1] or r (because the F for treatments is a focused test with 
numerator df = 1), is found to be large (.85) and significant at p = .04. For the 

~ 

TABLE 16.18 

llIustratiou of blocking 

A. Results of blocking 

Anxiety blocking levels Treatment Control l: 

Highest 8 9 17 

High 6 7 13 

Medium 3 5 8 

Low I 3 4 

Lowest 1 1 2 

L 19 25 44 

M 3.8 5.0 4.4 

B. Summary ANOVA 

Source SS df MS F" 1} P 

Treatments 3.60 3.60 10.29 .85 .04 

Anxiety blocks 77.40b 4 19.35 55.29 .99 .002 

Residual 1.40 4 0.35 

• Distributed as F assuming treaments and blocks to be fixed factors and assuming no true interaction. If tbere is a true 
interaction, F will be too small. 

b Using contrasts, we can decompose this effect into a l-d! contrast for linear trend (SS = 76.05) and a 3-d! leftover 
component (SS = 1.35). This leftover component can be aggregated witb the residual error term to yield a more stable 
estimate of error based on 7 d! instead of only 4 df 
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TABLE 16.19 

Results from Table 16.18, omitting blocking 

A. Unblocked results 

Treatment Control 

8 9 

6 7 

3 5 

1 3 

1 1 

r 19 25 

M 3.8 5.0 

II. Summary ANOVA 

Source SS df MS F r p 

Treatments 3.60 3.60 0.37 .21" .56 

Residual 78.80 8 9.85 

• Notice that when blocking is omitted, there is a drop in the effect size (indicated as 1] or r, since 1] = r when numerator 
,If" = I). In Table 16.18, the effect size 1] (or r) was .85, but here it is only .21. 

hlocking variable the F is an omnibus test with p = .002, and we are limited because 
of the nature of the omnibus F to reporting 11 (which is even higher at .99). 

What would have been the results of our experiment had we not bothered to block? 
Table 16.19 shows the unblocked results and the summary analysis of variance. Not using 
hlocking resulted in a statistically nonsignificant effect of treatment. Comparison of the 
ANOVAresults in Tables 16.18 and 16.19 reveals no difference between the mean square 
values for treatment. However, the residual (error) variance of the unblocked analysis 
has been decomposed into a large between-blocks component and a small residual 
variance in the blocked analysis. That decomposition illustrates the essence of blocking, 
which is that it removes from the unblocked error variance large sources of variation 
IIssociated with systematic preexperimental differences among subjects (or other sampling 
units). The same difference between means can therefore be interpreted as not statistically 
significant in the unblocked case, whereas it can be interpreted as clearly significant in 
Ihe case using blocking. The data of Tables 16.18 and 16.19 could also have been analyzed 
hy t tests (i.e., a matched-pair t test and a t test for independent samples, respectively). 

Assessing the Benefits of Blo<;king 

The advantage of blocking can also be expressed in terms of the size of the sample 
required to achieve the same F value for blocked and unblocked analyses (Snedecor & 
Cochran, 1989, p. 263). To estimate the number of "pairs" of subjects needed in an 
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TABLE 16.20 

Comparing a treatment with a control group 

A. Basic data 

Treatment Control M 

M 3.8 5.0 4.4 

N 140.7 140.7 140.7 

B. Summary ANOVA 

Source SS df MS F r p 

Treatments 101.30 101.30 10.28 .76 .01 

Residual 78.80 8 9.85 

unblocked study to achieve the same value of F obtained in our blocked study, we use 
the following formula: 

MSEunblocked X blocks 
reps = 

MSEblocked 
(16.15) 

where reps is shorthand for replications (defined more precisely below), MSE is the 
mean square error, and blocks refers to the number of blocking levels used. For our 
example, we find 

(9.85)(5) 
reps = = 140.7. 

0.35 

This unusually large value tells us that we will need a small fraction over 140 "pairs" 
of subjects in an unblocked experiment in order to achieve the same F value that we 
obtained with only 5 pairs of subjects in our blocked experiment. 

Table 16.20, based on the data that we have been examining, compares the 
treatment and control groups in Part A; the summary ANOVA appears in Part B. We 
computed the sum of squares (SS) between conditions by 

SSbetween = ~[ni (M - M?] = 140.7(3.8 - 4.4)2+ 140.7(5.0 - 4.4)2 = 101.30, 

and we obtained the SSresiduai from the unblocked table of variance (Table 16.19). The 
F of 10.28 in Table 16.20 agrees (within rounding error) with the F of 10.29 in 
Table 16.18 (the ANOVA based on blocking). In Equation 16.15, we interpret reps as 
denoting the number of replications, subjects, or blocks needed for the F of an unblocked 
design to match the F of a blocked design, but it makes no allowance for the change 
in dJ brought about by increasing N and eliminating the blocking variable. In this 
example, the dJ for the blocked error term is 4 (the dJ for the original unblocked error 
term was 8). The dJfor the unblocked error term, based on the new N required to match 
the blocked design F, is 2(140.7) - 2 = 279.4. Thus, whereas the old F of 10.29 with 
4 dJfor the error term is significant at .04, the same F with 279.4 dJfor the error term 
is significant at p < .002, a noticeable difference in level of significance. 
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If we want to match the p level of the unblocked to that of the blocked design 
(rather than to match the F values), we can get an approximate value with the help of 
some algebra. In this example with only two treatments, the number of cases required 
in each unblocked condition to match the p level of the blocked conditions is given by 

2 (Fa) (MSEunblocked) 
reps = 

(MI-M2)2 
(16.16) 

where Fa is the approximate F required for the alpha (a) we are trying to match, and 
MI and M2 are the condition means. In our example, 

- 2(4.41)(9.85) - 6033 
reps - (1.2)2 -.. 

Thus, when we were trying to match F values, the ratio of unblocked to blocked 
sampling units was 140.7/5 (or about 28:1). When we tried to match p levels, the 
ratio of unblocked to blocked sampling units was 60.3/5 (or about 12:1). In general, 
it is only when the blocked experiment is very small that we find such a large differ­
ence between the matching of F values and the matching of p values. 

This example was designed to illustrate a dramatic effect of blocking. We ensured 
Ihis effect by choosing our results to reflect a very large correlation between the block­
ing variable and the dependent variable. The larger this correlation, the greater the 
henefits of blocking in increasing the precision of the experiment. In our example of 
just two conditions, the intraclass correlation (7intraclass) can be calculated as 

MSblocks - MSE 
r· -------

mtraclass - MSblocks + MSE ' (16.17) 

which, based on the ANOVA results in Table 16.18, gives 

19.35 - 0.35 6 
7intraclass = 19.35 + 0.35 =.9 . 

Similarly, the correlation of the five treatment scores with their associated control 
scores is also .96. We will have more to say about intraclass correlations in chapter 
I N, where we discuss repeated measures in factorial designs. In that chapter we will 
ulso have a little more to say about blocking, because repeated measures is a kind of 
ultimate blocking. 

II LOCKING AND THE ANALYSIS 
(W COVARIANCE 

When students who are familiar \Vith analysis of covariance are introduced to blocking, 
they often ask whether it might not be more profitable to use analysis of covariance rather 
IIIIIn blocking as a way of increasing precision. Sometimes, in fact, analysis of covariance 
turns out to be even better than blocking in increasing precision. The analysis of 
"ovariance (ANCOVA) may be viewed roughly as a special case of ANOVA, in which 
the observed scores have been adjusted for individual differences within conditions on 
Ilome predictor variable or covariate known to correlate with the dependent variable. One 
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typical covariate is the pretest administration of the same (or a similar) "test" that is to 
be used as the dependent variable. When pretest and posttest scores are perfectly correlated 
and have equal variances, ANCOVA becomes the special case of the analysis of variance 
of the pre-post change scores. 

With respect to the magnitude of the correlation between the pretest and posttest 
variables, D. R. Cox (1957) developed useful rules of thumb suggesting that: 

1. Blocking may be superior to ANCOVAin increasing precision whenthe correlation 
between the blocking variable and the dependent variable is .6 or less. 

2. ANCOVA may be superior to blocking when the correlation reaches or exceeds .8. 

3. In the region between .6 and .8, neither blocking nor ANCOVA seems clearly 
superior. 

A special advantage of blocking over ANCOVA must be noted, however. Blocking 
is equally efficient for curvilinear and for linear relationships between independent and 
dependent variables. ANCOVA, at least as it is typically applied, yields benefits only 
to the extent that the relationship between independent and dependent variables is 
linear. It can also be noted, however, that modem mUltiple regression approaches to 
ANCOVA would permit us to control for quadratic, cubic, etc., relationships as well 
as linear relationships between the independent and dependent variables (Cohen & 
ColiJ.en, 1983; Cohen, Cohen, West, & Aiken, 2003). 

To illustrate an advantage of blocking over ANCOVA, as ANCOVA is typically 
applied, we return to Part A of Table 16.18. Suppose we interchange the labels on the 
rows indicating the patients' level of anxiety. Leaving the scores in their present 
locations, we bring toward zero the linear correlation between the independent variable 
of anxiety level and the dependent variable of subsequent anxiety level, thus rendering 
ANCOVA useless as it is typically applied. However, interchanging labels without 
moving the obtained scores has no effect on the intraclass correlation (Equation 
16.17), which remains unchanged as does the advantage of blocking. To put it another 
way, when ANCOVA would work well, blocking, especially if enough levels are used, 
would also work well. When blocking would work well, however, ANCOVA might 
or might not work well as it is typically applied. 

Another advantage of blocking is that it can be used even when blocks differ 
in qualitative rather than quantitative ways. The blocks can be pairs of twins on whom 
no pretests are available; groups of countries, states, businesses, adjacent plots of land; 
or any other partitioning of the sampling units that stratifies them so that units within 
blocks are thought to be more similar to one another than to units in different blocks. 
Blocking always imposes some cost in loss of the dffor error, but that cost is usually 
small in relation to decreased MSE. At any rate, if little reduction in MSE is associated 
with blocking, we can always unblock the blocking to regain our lost df 

Most of our discussion of blocking has dealt with its relative benefits in increas­
ing precision. Another benefit of blocking is the detection of interactions between the 
experimental and the blocking variable. We most often examine such interactions in 
designs in which each block has a number of replications for each treatment condition. 
Table 16.21 gives an example of replications in a study of treatment effects on the 
anxiety level of people of three age groups. The table of variance for these data would 
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TABLE 16.21 

Means and interaction residuals 

Age 

Above 60 

40-59 

Below 40 

Treatment 

6 

3 

6 

Means 

Control 

7 

6 

7 

Treatment 

.33 

-.67 

.33 

Residuals 

Control 

-.33 

.67 

-.33 

show the mean squares for (a) treatments, (b) blocks, (c) Treatments X Blocks inter­
action, and (d) a residual (within-cell) term to serve as the denominator for F tests 
on the preceding terms. The pattern of the interaction, of course, is revealed not by 
the means, but by the residuals. The direction of the residuals in Table 16.21 is such 
that middle-aged persons appeared to benefit more (Le., had lower anxiety) from the 
treatment than did either older or younger persons. 

TRANSFORMING DATA TO REMOVE 
INTERACTIONS 

In chapter 14 we discussed the use of transformations to better meet certain statistical 
assumptions underlying the use of F tests. Transformations can also be of value in 
removing complexities in relationships. For example, interaction in a factorial ANOVA 
can sometimes be removed by transformations, and complex relationships between 
variables can sometimes be simplified to linear relationships by transformations. 
Tukey (1977) described one set of transformations as a "ladder of powers" to which 
to raise raw scores (X), ranging in power from -3 to +3. Thus, we can take the 
square roots (1/2 powers), or the reciprocals (-1 powers), or the reciprocals of the 
square roots (-1/2 powers). What about zero power? As Tukey noted, we were all 
taught that any value raised to the zero power is 1, and this is not wrong, but it does 
lIot mean that there can be nothing to fill the gap between -1/2 and + 1/2 powers. 
Tukey suggested the logarithm of X (i.e., XO), resulting in the following ladder of 
powers from -3 to +3: 

X3 

X2 

X (no transformation) 
Xl/2 (or /X) 
XO (or log X) 

-1//X 
-1/X 
-1/X2 
-1/X3 
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TABLE 16.22 

Basic data in the form of raw scores 

A. Raw scores 

Control B 

Treatment B 

Control A 

1,4,9 

49,64,81 

B. Means (M) and variability (5) 

Control A 

Control B M = 4.67 

S = 4.04 

Treatment B M = 64.67 

S = 16.01 

C. Residuals 

Control A 

Control B +9.00 

Treapnent B -9.00 

Treatment A 

16, 25, 36 

100, 121, 144 

Treatment A 

M = 25.67 

S = 10.02 

M = 121.67 

S = 22.01 

Treatment A 

-9.00 

+9.00 

Starting at any point and moving up the ladder would emphasize the differences 
among larger X values in comparison with smaller X values, and moving down the 
ladder would have the opposite effect. Usually, of course, the range of powers used 
for transformations is relatively narrow, generally from -1 to + 1. 

One index of a need for transformation is F max, which we discussed in chapter 14 
and defined in Equation 14.20 as the ratio of the maximum to the minimum S2, that is, 

S~ax 
Fmax =-2-' 

Smin 

Another such index is the correlation (1'Ms) between the means and standard 
deviations of all the various conditions of a study. In Table 16.22, Part A shows the 
raw scores of three subjects in each of four conditions of a 2 X 2 factorial design, 
with total N = 12. Part B shows the condition means (M) and standard deviations 
(S), and we find Fmax = (22.01)2/(4.04)2 = 29.68 and 1'Ms = .98, both of which are 
noticeably large values. What we would really like are an Fmax value very close to 
1.00 and an 1'Ms value close to zero. Part C shows the residuals (i.e., the leftover 
effects after subtraction of the grand mean and the row and column effects from 
the condition means), which define the interaction (or nonadditivity) of the row and 
column factors. 

Now suppose we try a log transformation on the raw scores in Table 16.22. The 
transformed raw scores are shown in Part A of Table 16.23, with their means and 
standard deviations shown in Part B and the new table of residuals shown in Part C. 
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'fABLE 16.23 

Log1o transformation of raw scores in Table 16.22 

A. LOgIO transfonned scores 

Control A Treatment A 

Control B .00, .60, .95 1.20, 1,40, 1.56 

Treatment B 1.69, 1.81, 1.91 2.00, 2.08, 2.16 

II. Means (M) and variability (8) 

Control A Treatment A 

Control B M = 0.52 M = 1.39 

S = 0,48 S = 0.18 

Treatment B M = 1.80 M = 2.08 

S = 0.11 S = 0.08 

C. Residuals 

Control A Treatment A 

Control B -0.15 +0.15 

Treatment B +0.15 -0.15 

In this case we find F max = (0.48)2/(0.08)2 = 36.00 and 1'Ms = - .98. The F max is 
even larger than before, and the only change in the 1'Ms is that it went from a positive 
10 a negative correlation. The residuals in Part C are, however, noticeably smaller 
Ihan before, and we also see that the signs are reversed from those in Table 16.22. 
Thus, the log transformation did not remove the nonadditivity but simply changed its 
direction. 

Table 16.24 shows what happens when we try a square root transformation on 
Ihe raw scores in Table 16.22. Part B shows that the variability is now equivalent in 
1111 four cells (S = 1.00), and we will also find that Fmax = (1.00p/(1.00)2 = 1.00 
lind 1'Ms = .00. The square root transformation produced homogeneity of variance 
lind the greatest symmetry, which is an aspect of normality. In this example, the raw 
scores were already fairly symmetrical, so no great violation of normality had 
occurred. Particularly interesting is that the table of residuals shows that the square 
mot transformation has completely removed the nonadditivity, thereby greatly 
simplifying the interpretation of the 2 X 2 table of means in Part B. The plot of the 
four condition means against the equally spaced predicted benefits of control, 
Treatment A, Treatment B, and both treatments would show a straight line. The 
unalogous plots for the raw data (Table 16.22) and for the log transformation 
(ruble 16.23) would show a curvilinear relationship, although both would have 
lilrung linear components. Further details on the use of transformations can be found 
ill Mosteller & Tukey (1977) and in Tukey (1977). 
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TABLE 16.24 

Square root transformation of raw scores in Table 16.22 

A. Square-root-transformed scores 

Control A Treatment A 

Control B 1,2,3 4,5,6 

Treatment B 7,8,9 10, 11, 12 

B. Means (M) and variability (S) 

Control A Treatment A 

Control B M = 2.00 M = 5.00 

S = 1.00 S = 1.00 

Treatment B M = 8.00 M = 11.00 

S = 1.00 S = 1.00 

C. Residuals 

Control A Treatment A 

Cqptrol B 0.00 0.00 

Treatment B 0.00 0.00 



CHAPTER 

17 
INTERACTION 

EFFECTS IN 
ANALYSIS OF 

VARIANCE 

THE INTERPRETATION OF INTERACTION 

[n the last chapter we illustrated a basic principle of the factorial analysis of variance 
(ANOVA), which is that when we add a second factor to cross the first, we generate 
sources of variation associated with the first factor, the second factor, and a third 
source of variation called the interaction. From surveys of published research studies 
and of researchers themselves (Rosnow & Rosenthal, 1989; Zuckerman, Hodgins, 
Zuckerman, & Rosenthal, 1993), as well as from arguments and rejoinders in journal 
articles and books, we know that interaction effects are a source of confusion to many 
psychological researchers. As we demonstrated in the previous chapter, the mathematical 
meaning of interaction effects as leftover effects (or residuals) after the removal of 
constituent effects (row and column effects in two-factor analyses) is unambiguous. 
A number of leading mathematical statisticians and a smaller number of psychological 
statisticians have explained the procedure of stripping away the constituent lower 
order variation from possible interactions obscured in the cell means (e.g., Guilford, 
1956; Guilford & Fruchter, 1978; Keppel, 1991; Lindquist, 1953; Mosteller, Fienberg, & 
Rourke, 1983; Mosteller & Tukey, 1977; Snedecor & Cochran, 1980). Nonetheless, 
many behavioral and social researchers confuse the pattern of the condition means with 
the interaction. Certainly it is true in the case of a 2 X 2 design that the most frugal 
definition of interaction is the difference between orthogonal simple effects. We discussed 
that procedure in chapter 7 (in the context of R. L. Solomon's 2 X 2 design for 
identifying Pretest X Treatment interaction effects) and think it should be encouraged 

499 
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TABLE 17.1 

Interaction contrast in a 2 x 2 table 

Row I 

Row 2 

Column 1 

-1 

+1 

Column 2 

+1 

-1 

because bizarre interpretations of such interactions are less likely to result. However, 
when all factors have more than two levels, that "differences-between-differences" 
procedure cannot be used. 

Of course, simply because two or more factors can be crossed is no reason actually 
to cross them. We believe that the most useful data-analytic method (i.e., after a variety 
of exploratory procedures) is the contrast. For example, in a 2 X 2 factorial design, the 
interaction contrast is defined by the lambda weights noted in Table 17.1, and the inter­
action sum of squares is the sum of squares for that contrast. As implied in that table, 
2 X 2 interactions when plotted are always X -shaped. That is not true of interactions 
larger than 22, which may be X-shaped (called crossed-line or crossed-linear interactions) 
or may have another symmetrical shape (e.g., crossed-quadratic interactions). The point 
is> that if we claim an observed interaction, it should be described and interpreted 
accurately. Computing the residuals that define the interaction effects is not difficult, 
but it does take time. Computing the residuals for higher order interactions is also not 
difficult, but it takes increasingly more time if it must be done by hand (not every 
statistics program routinely provides the residuals defining the interactions). Of course, 
if the interaction is of no interest, it need not be computed. If all that we predicted 
is a certain ranking of cell means, our prediction should be tested by a planned 
contrast. Mistaking the pattern of the cell means for the interaction effects, however, 
is unacceptable. 

We address these topics in some detail in this chapter, starting with two-way 
interactions. Before proceeding, we want to mention another erroneous belief-that 
F tests for main effects are "meaningless" and the results "not interpretable" in the 
presence of interaction (cf. Meyer, 1991; Rosnow & Rosenthal, 1991). However, 
consider Table 17.2, in which Part A shows the cell means for a hypothetical study 
of the sex of psychotherapist and the sex of patient, and Part B contains the 
corresponding table of effects. The interaction residuals show that same-sex dyads 
score higher than opposite-sex dyads; the column effects show that female therapists, 
in general, score higher than male therapists, and there are no row effects. The 
corresponding ANOVA would show SSinteraction = 16, SScolumns = 4, and SSrows = O. 

Clearly, even in the presence of interaction, the main effect of therapist sex is both 
meaningful and readily interpretable. We turn now to a more detailed discussion of 
how residuals, such as those displayed in Part B, are identified and interpreted. 
Perhaps the reader will recall the diner scene in the movie Five Easy Pieces. In that 
scene, Jack Nicholson asked for a side order of toast and the waitress told him, "We 
don't serve side orders of toast." He replied, "You make sandwiches, don't you?" 
and ordered a sandwich, telling her to remove all the ingredients until all that was 
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TABLE 17.2 

Illustration of meaningful main and interaction effects 

A. Table of means 

Patient sex 

Female 

Male 

Therapist sex 

Female 

6 

2 

Male 

o 
4 

Il. Row, column, interaction effects, and grand mean 

Patient sex 

Female 

Male 

Column effect 

Therapist sex 

Female 

2 

-2 

Male 

-2 

2 

-1 

Note: Mo denotes the grand mean; the mean of the four means. 

Row effect 

o 
o 

Ma = 3 

left was what he wanted: toast. It is the same with interaction in ANOVA. Interaction 
is always and exclusively defined by leftover effects (residuals). Therefore, anyone 
claiming an interaction should be prepared to display and interpret those particular 
residuals. 

CROSSED AND UNCROSSED 
COMBINATIONS OF GROUP MEANS 

Suppose a researcher is comparing a new method of teaching reading with an old 
method and has both female and male pupils as SUbjects. The resulting means and the 
corresponding two-way ANOVA appear in Table 17.3. In the published report, the 
researcher accurately states that there was a significant effect of method: Pupils taught 
by the new method performed better than those taught by the old method, and the effect 
size was r = .25. The researcher also correctly states that there was no significant effect 
of sex of pupil on performance, and indeed the corresponding F is similar in magnitude 
to the expected value when the null hypothesis is true (see again Table 14.3). Finally, 
the report also contains a display resembling Figure 17.1, but the researcher incorrectly 
states that "the interaction shown in the figure demonstrates that males, but not females, 
benefited from the new teaching method." 

In what way did the researcher err in referring the reader to the display in 
Figure 17.1? The figure is a perfectly accurate display of the overall results of the study, 
including the two main effects and the interaction. However, it is not an accurate display 
of the interaction that the researcher believed was being plotted. In fact, displays of 
crossed and uncrossed combinations of group means are not at all uncommon. It is often 
pointed out, quite correctly, that when the lines cross, the implication is that an interaction 
is present; if the lines do not cross, but remain parallel to one another, the implication 
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TABLE 17.3 

Hypothetical study comparing a new and an old method of teaching 

A. Table of means 

Method Females Males Mean 

Experimental (new method) 4 10 7 

Control (old method) 4 2 3 

Mean 4 6 5 

B. Unweighted means ANOVA 

Source SS df MS F r p 

Method (row) 16 16 4.00 .25 .05 

Sex of pupil (column) 4 4 1.00 .13 .32 

Interaction 16 16 4.00 .25 .05 

Error term (MSerror X 1/16) 60 4 

is that there is no interaction. There is nothing wrong with that claim. The problem arises 
whe"'n the pattern of the obtained interaction is interpreted only on the basis of the 
configuration of group means. Furthermore, labeling this pattern the "interaction" in 
effect creates a non sequitur by ignoring the premise of the additive model underlying 
the factorial ANOVA (as described in the previous chapter). 

Figure 17.2 provides an accurate picture of the interaction. It shows that males 
benefited from the new method precisely to the same degree that females were harmed 
by it. As is true in general of nonzero 2 X 2 interactions, the figure is X-shaped. 
Why that is so should become clear as we explain the procedure also described as 
mean polishing, in which we "polish down" the cell means to the interaction residuals. 

.. 
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FIGURE 17.1 
Display of two main effects as well as interaction. 
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FIGURE 17.2 
Display of interaction effect. 
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However, we should note that the term residual is also used in a more general way 
to refer to any leftover effect after the subtraction of a summary value from a given 
value (Tukey, 1977, p. 113). For example, when we subtract the median of a batch 
of scores from each score (a process called median polishing), we tum the raw scores 
into residuals. Tukey (1977, p. 125) thought that kind of polishing could be likened 
to what "powerful magnifying glasses, sensitive chemical tests for bloodstains, and 
delicate listening devices" are to a detective, in that "polishing down" batches of 
residual values enables us to detect hidden patterns. 

In the previous chapter we explained that interaction effects are the effects still 
remaining in any analysis after certain "lower order" constituent effects have been 
removed. We can also remove the grand mean and thus polish down the cell values to 
their barest essential component. The pattern of the interaction will remain the same, 
however, whether or not the grand mean is present. In sum, ignoring for the moment the 
removal of the grand mean, the interaction effects in a two-way ANOVA design (A X B) 
are the residuals after the row and column effects (the effects of A and B) are removed. 
In a three-way ANOVA design (A X B X C), and in higher order designs, there are four 
or more different interactions. For example, in an A X B X C design, there are three 
two-way interactions: (a) A X B; (b) A X C; and (c) B X C (where each of the three 
is the residual set of effects remaining after the removal of the two main effects denoted 
by the letters naming the interaction). There is also, of course, the three-way interaction 
(A X B X C), or the residual set of effects remaining after the removal of the three 
constituent main effects and the three two-way interactions. In a four-way ANOVA 
design (A X B X C X D), there are six two-way interactions: (a) A X B; (b) A X C; 
(c) A X D; (d) B X C; (e) B X D; and (f) C X D, and also four three-way interactions: 
(a) A X B X C; (b) A X B X D; (c) A X C X D; and (d) B X C X D (as well as the 
single four-way interaction). In general, a higher order interaction is defined as the 
residual set of effects remaining after the main effects and all lower order interactions 
relevant to the higher order interaction have been removed. Thus, the A X B X C X D 
interaction is defined as the set of effects remaining after the four main effects, six 
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two-way interactions, and four three-way interactions have been subtracted from the total 
of all between-conditions effects. 

ILLUSTRATION OF MEAN POLISHING 

As is true of any obtained interaction in analysis of variance, before it can be under­
stood it must be identified and examined. That is, we need to display the residuals 
defining the obtained interaction. The logic of this process of mean polishing is straight­
forward, but in a very high-order interaction the computation becomes burdensome if 
we must do the arithmetic by hand. In a 2 X 2 design, however, the computations are 
simple. Consider again the results of the experiment on the effects of a new method 
of teaching reading on reading performance scores. In Table 17.4, the subtable in Part A 
is a repetition of the results in Table 17.3 with the addition of row and column effects. 
Row effects are defined for each row as the mean of that row minus the grand mean. 
The row effects are 7 - 5 = 2 for the new (experimental) teaching method and 
3 - 5 = -2 for the old (control) teaching method. The column effects are defined for 
each column as the mean of that column minus the grand mean. Thus, the column 
effects are 4 - 5 = -1 for the females and 6 - 5 = 1 for the males. 

The next step is to remove the row and column effects from the cell means. 
Pwt B of Table 17.4 shows the results after we removed (or "corrected" for) the row 
effects, which we did by subtracting the row effect from every condition within that 
row. Subtracting the row effect of 2 from the condition means of 4 and 10 yielded 
new cell values of 2 and 8, with a new row mean of 5. Subtracting the row effect of 
-2 from the condition means of 4 and 2 yielded new cell values of 6 and 4 (recall 
that subtracting a negative value is equivalent to adding a positive value), with another 
new row mean of 5. With the row effects removed from the condition means, the new 
row effects are shown as zero. 

Next, we do the same thing for the column effects. Subtracting -1 from the first 
column of the row-corrected table in Part B yields new cell values of 3 and 7 in Part C. 
Subtracting 1 from the second column of the row-corrected table in Part B yields new 
cell values of 7 and 3 in Part C. The table of means we started with in Part A, now 
with both row and column effects removed, has been amended as shown in Part C. We 
also see that the row and column effects are all shown as zero. Once the row and column 
effects are all zero, we can be sure that what is left is only the set of residuals defining 
the interaction, although in this case with the grand mean added. Figure 17.2 displays 
the interaction residuals of Part C, and we see that the 2 X 2 interaction is, not 
surprisingly, X -shaped. 

If we want to compare the interaction with the condition means, then it is use­
ful to display the results as shown in Figure 17.2. In most situations, however, we 
prefer to display the interaction effects freed of the effect of the grand mean, because 
it is then easier to compare them with row and column effects. We have more to say 
about this topic shortly, but to remove the grand mean from the four condition means 
in Part C of Table 17.4, all we need do is subtract 5 (the grand mean) from each 
condition mean. The resulting residuals, shown in Part D, are not inflated by the grand 
mean. Notice also that all four conditions show the same absolute value of the inter­
action effects; only the signs differ. That is always the case in a 2 X 2 ANOVA, and 
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TABLE 17.4 

Polishing down cell means to expose the interaction 

A. Cell means, row and column effects 

Sex of pupils 

Females Males Mean Row effects 

Teaching method 

New (experimental) 4 10 7 2 

Old (control) 4 2 3 -2 

Mean 4 6 5 

Column effects -1 

8. Cell means "corrected" for row effects 

Sex of pupils 

Females Males Mean Row effects 

Teaching method 

New (experimental) 2 8 5 0 

Old (control) 6 4 5 0 

Mean 4 6 5 

Column effects -1 

C. Cell means "corrected" for row and column effects 

Sex of pupils 

Females Males Mean Row effects 

Teaching method 

New (experimental) 3 7 5 0 

Old (control) 7 3 5 0 

Mean 5 5 5 

Column effects 0 0 

I). Cell means "corrected" for row and column effects and for the grand mean 

Sex of pupils 

Females Males Mean Row effects 

Teaching method 

New (experimental) -2 2 0 0 

Old (control) 2 -2 0 0 

Mean 0 0 0 

Column effects 0 0 
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the signs on one of the diagonals are always different from the signs on the other 
diagonal unless the interaction is precisely zero. Thus, it is convenient to think of 
interaction in a 2 X 2 table as the difference between the means of the two diagonals, 
just as it is convenient to think of the row or column effects as the differences between 
the row means or the column means. 

Returning again to Figure 17.1, we can clearly see that it is an accurate display 
of the results of the experiment. It does show that females did not benefit from the 
new teaching method but that males did. That declaration, however, is not a statement 
about the obtained interaction effect by itself; rather, it is a statement about the four 
condition means. What that declaration presumes, in other words, is in part (a) a 
method effect (the new method is better); (b) a sex effect (males score higher, though 
not significantly so); and (c) an interaction effect (which we interpret as showing that 
females are hurt by the new method as much as males are helped by it). 

CONSTRUCTING TABLES 
OF PREDICTED MEANS 

As a check on one's understanding of interaction effects and the additive nature of 
the analysis of variance, it is useful to construct a table of means to particular 
specifications. To illustrate, we begin with the simplest case, the 2 X 2 table, and then 
proceed to a more complex two-way table. 

Assembling a 2 X 2 Table 

For this simplest case, suppose we hypothesized row, column, and interaction effects, 
with the row effect predicted as largest of those three effects and the column effect 
predicted as smallest. To get started, we need an empty 2 X 2 table, such as the 
following one, where the two levels of the row variable are labeled Al and A2 and 
the two levels of the column variable are labeled B 1 and B2: 

Al 

A2 

Column mean 
Column effect 

Bl B2 

rn 
Row mean Row effect 

Beginning with the grand mean, we might choose any value (positive, zero, or 
negative), but we want to keep to a single-digit integer for simplicity. Suppose we 
choose a grand mean of 2, in which case we have: 

Bl B2 Row mean Row effect 

Al EH:B 2 0 

A2 2 2 2 0 

Column mean 2 2 2 
Column effect 0 0 
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As we want the column effect to be smallest, we start with the column variable. 
Let us assume that we hypothesized B 1 > B2. To keep the hypothesized column effect 
small, we choose the smallest possible integers (+ 1 and -1) to add to each condition 
within each of the two columns: 

Bl B2 Row mean Row effect 

Al BiB 2 0 

A2 3 1 2 0 

Column mean 3 1 2 
Column effect +1 -1 

So that the interaction effect will be larger than the column effect, we might 
choose the values of +2 and -2. Suppose we predicted the diagonal from upper-left 
to lower-right to be positive and the other diagonal to be negative. We simply add 2 
to the cells representing conditions AlB 1 and A2B2, and we subtract 2 from the cells 
representing conditions A2B 1 and AIB2: 

Bl B2 Row mean Row effect 

Al EEtE 2 0 

A2 1 3 2 0 

Column mean 3 1 2 
Column effect +1 -1 

Finally, suppose our prediction for the row variable was that Al > A2. So that 
the row effect will be larger than the interaction, we can choose the values of + 3 and 
- 3 to add to each condition within each of the two rows: 

Bl B2 Row mean Row effect 

Al ~ 5 +3 

A2 -2 0 -1 -3 

Column mean 3 1 2 
Column effect +1 -1 

As a check on the accuracy of our construction of this table, we can decompose 
it into its various components, as we did in the previous chapter. These results 
are shown in Table 17.5, where examination of the four group means and their 
additive components shows that row effects are larger than interaction effects, as 
required by our specifications. In a 2 X 2 table the absolute values of the two row 
effects are identical, with one of the signs positive and the other negative. Exactly 
the same situation holds for the column effects. For the interaction, all four effects 
are identical in their absolute value, but the two effects on one diagonal are oppo­
site in sign to the two effects on the other diagonal. In this case, therefore, we can 
rank the sizes of effects by simply rank-ordering the absolute values of the three 
effects contributing to anyone of the four means. 
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TABLE 17.5 

2 X 2 table decomposed into its various components 

Group Grand Row Column Interaction 
+ effect + effect + effect mean mean 

AIBI 8 2 + 3 + + 2 

AIB2 2 2 + 3 + (-I) + (-2) 

A2BI -2 2 + (-3) + + (-2) 

A2B2 0 2 + (-3) + (-I) + 2 

~X 8 8 + 0 + 0 + 0 

~XZ 72 16 + 36 + 4 + 16 

Assembling a 3 x 4 Table 

Constructing a 2 X 2 table of predicted effects was not very challenging, so let us 
try a more complex two-way table. For this example, we will assemble a 3 X 4 table 
in four steps, as illustrated in Table 17.6. First, we will select an average value. Then 
we will select a row effect. Next, we will select a column effect. And finally, we will 
selyct an interaction effect. 

1. This time for the average value, we will begin by assigning a mean value to each 
cell that we believe reflects the typical value of the metric we have chosen. 
Suppose for this example we believe that the value 5 is representative, as shown 
in Part A of Table 17.6. 

2. Next, we need to select a row effect to represent what we have hypothesized. Let us 
assume that we hypothesized a n-shaped quadratic trend in the row means, in which 
case we might choose weights of -1, +2, -1 for AI, A2, and A3, respectively. We 
now subtract 1 from each entry of AI, add 2 to each entry of A2, and subtract 1 from 
each entry of A3. The results are shown in Part B of Table 17.6. Notice that the column 
means, column effects, and grand mean are unchanged from Part A, because we have 
done nothing to the column variable or anything more to the average value. 

3. For the column variable, assume we predicted column effects so that B 1 and B2 
are equal to each other and 3 units greater than B4, which, in tum, is 2 units 
greater than B3. A set of weights that will satisfy these requirements is +2, +2, 
-3, -1 for Bl, B2, B3, and B4, respectively. Therefore, we simply add 2 to each 
entry of Bl and B2, subtract 3 from each entry of B3, and subtract 1 from each 
entry of B4. This step is reflected in Part C of Table 17.6. Notice that the row 
means, row effects, and grand mean are the same as in Part B. 

4. Suppose we also predicted the interaction effects that conditions Bland B3 will 
show linear trends in the row effects that are in opposite directions to each other, 
whereas conditions B2 and B4 will show quadratic trends in the row effects that 
are in opposite directions to each other. The weights we may choose to represent 
our predictions are shown in Part D, and adding them to the effects built up in 
Part C produces the final table of predicted means in Part E. 
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TABLE 17.6 

Constructing a 3 x 4 table of means 

A. Same mean for each cell 

Bl B2 B3 B4 Row Mean 

Al 

1 

5 

1 

5 

1 

5 

1 

5 

1 

5 

A2 5 5 5 5 5 

A3 5 5 5 5 5 

Column mean 5 5 5 5 5 

Column effect 0 0 0 0 

n. Data of Part A after introduction of a quadratic row effect 

Bl B2 B3 B4 Row Mean 

Al 

1 

4 

1 

4 

1 

4 

1 

4 

1 

4 

A2 7 7 7 7 7 

A3 4 4 4 4 4 

Column mean 5 5 5 5 5 

('olumn effect 0 0 0 0 

('. Data of Part B after introducing a column effect such that Bl = B2 > B4 > B3 

BI B2 B3 B4 

Al 

1 

6 

1 

6 

1 1 

3 

A2 9 9 4 6 

A3 6 6 3 

('olumn mean 7 7 2 4 

('olumn effect +2 +2 -3 -I 

U. Weights for linear and quadratic interaction residuals 

'Iillal 

Al 

A2 

A3 

BI 

-1 

0 

+1 

o 

B2 

+1 

-2 

+1 

o 

B3 B4 

+1 -I 

0 +2 

-1 -I 

o o 

1 

Row Mean 

4 

7 

4 

5 

Total 

o 
o 
o 

.:. Data of Part C after introducing the interaction residuals of Part D 

BI B2 B3 B4 Row Mean 

Al 

1 

5 

1 

7 

'I 
2 

1 

2 

1 

4 

A2 9 7 4 8 7 

A3 7 7 0 2 4 

('olumn mean 7 7 2 4 5 

("olumn effect +2 +2 -3 -I 

Row effect 

0 

0 

0 

Row effect 

-I 

+2 

-I 

Row effect 

-1 

+2 

-I 

o 

Row effect 

-I 

+2 

-I 
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STUDYING INTERACTIONS 
IN TWO· WAY TABLES 

Once we have assembled such a complex two-way table, it should not be difficult to 
study the effects in any other two-way table. However, as this is a chapter on interaction, 
our focus in the following example is on the study of the interaction, which is emphazed 
here not because we regard interaction effects as in any way more important than main 
effects, but because interaction effects are so much more often misinterpreted than main 
effects. For our example we consider another 3 X 4 experimental design, a classic type 
of psychiatric study, in which four different treatment procedures are administered to 
three different types of patients, with the hypothetical results shown in Table 17.7. Patients 
of each of the three types were randomly assigned to either a course of 10 electroconvul­
sive treatments (ECT), or a course of 3 electroconvulsive treatments, or a combination 
of supportive psychotherapy and medication, or supportive psychotherapy alone. 

1. Remove the grand mean. In order to reveal the pattern of the interaction of 
Treatment X Patient type, we must remove the row and column effects from the 
cell means. Usually it is desirable to subtract the grand mean as well, so we begin 
by doing that. Because the grand mean is 6, we subtract 6 from each of the 
12 means and get the subtable shown in Part A of Table 17.8. When the grand 
mean is removed, the new row means are synonymous with the row effects, and 
the new column means are synonymous with the column effects. The reason, of 
course, is that the row and column effects are the row and column means from 
which we have subtracted the grand mean. 

2. Remove the row effects. To remove the row effects from the "de-meaned" cell 
values in Part A of Table 17.8, we subtract the effect of each row from every 
condition within that row. Doing that for the results in Part A yields the cell 
values shown in Part B. 

TABLE 17.7 

Means of improvement scores in a 3 x 4 design 

Treatment conditions 

Bl B2 B3 B4 
Patient type ECT(10) ECT(3) Support + drug Support only Mean 

Al Psychotic 8 6 4 2 5 
depression 

A2 Neurotic 11 8 5 8 8 
depression 

A3 Paranoid 2 4 6 8 5 
reaction 

Mean 7 6 5 6 6 

Note: ECT denotes electroconvulsive treatments, consisting of a series of 10 such treatments in condition BI and 3 such 
treatments in condition B2. In the remaining conditions, the patients received either supportive therapy and medication 
(B3) or supportive therapy alone (B4). 
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TABLE 17.8 

Mean polishing of results in Table 17.7 

A. Cell means of Table 17.7 "corrected" for grand mean 

BI B2 B3 B4 Mean 

Al 2 0 -2 -4 -1 

A2 5 2 -1 2 2 

A3 -4 -2 0 2 -1 

Mean 0 -1 0 0 

II. Data of part A "corrected" for row effects 

BI B2 B3 B4 Mean 

Al 3 -1 -3 0 

/\2 3 0 -3 0 0 

/\3 -3 -1 3 0 

Mean 0 -1 0 0 

('. Data of part B "corrected" for column effects 

BI B2 B3 B4 Mean 

/\1 2 0 -3 0 

/\2 2 0 -2 0 0 

A3 -4 -1 2 3 0 

Mean 0 0 0 0 0 

3. Rerrwve the column effects. Using a similar procedure to remove the column effects, 
we have the results shown in Part C of Table 17.8. Those data are a picture of the 
interaction, that is, the leftover (residual) effects after removal of the grand mean, 
row effects, and column effects from the 12 cell means of Table 17.7. 

The residual effects contributing most to the interaction are those furthest from 
lero, and one way to approach the interpretation of the interaction is one residual at 
II time, starting with the largest absolute value. In this case, the residual value of -4 
lilr condition A3Bl is the largest absolute effect, implying that the least improvement 
wus shown by paranoid patients given a course of 10 ECT treatments, when we 
disregard the row and column effects. The next two largest residuals are -3 for AIB4 
lind + 3 for A3B4. The former suggests that support alone offered to psychotic depres­
~ive patients was relatively damaging (-3), and the latter suggests that support alone 
offered to paranoid patients was relatively quite beneficial (+3). When we say 
I~'I(/tively, all we mean is that the effects shown by certain combinations of treatments 
lind patients were large or small in relation to other effects that are also shown here 
,!/ia the removal of the main effects of treatments and patients. 

We can be more systematic in our examination of these interaction residuals by 
listing them in their order of magnitude, as shown in Table 17.9. Examining first the 
positive residuals suggests that paranoid patients may do better given supportive 
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TABLE 17.9 

Systematic ordering of residuals 

Residual Patient Treatment 

3 Paranoid Support only 

2 Psychotic depression ECT 10 

2 Neurotic depression ECT 10 

2 Paranoid Support + drug 

Psychotic depression ECT 3 

0 Psychotic depression Support + drug 

0 Neurotic depression ECT 3 

0 Neurotic depression Support only 

-I Paranoid ECT3 

-2 Neurotic depression Support + drug 

-3 Psychotic depression Support only 

.,-4 Paranoid ECT 10 

psychotherapy, whereas depressive patients may do better given ECT. Examining the 
negative residuals suggests that paranoid patients may do worse given ECT, and that 
depressive patients may do worse given supportive psychotherapy. It may also be useful 
to simplify the design from four treatments to two, which we do by combining the two 
conditions receiving ECT and the two conditions receiving supportive psychotherapy. 
We can also further simplify the design from three patient types to two by combining 
the two depressed groups. That simplifying procedure gives us Table 17.10, in each 
quarter of which we have recorded the sum of the residuals of Table 17.8 (Part C) 
contributing to that cell. 

The complexity of an interaction depends in part on the df associated with it, with 
df computed as the product of the degrees of freedom associated with each of the 
constituent elements. In the study that we have just been discussing, there were four 
treatment conditions, so df = 3 for treatments. There were three types of patients, so 
df = 2 for patient type. Therefore, df for the Treatment X Patient-type interaction is 
simply 3 X 2 = 6. Finding a pattern in those 6 df, such as the one shown in Table 17.10, 

TABLE 17.10 

Sum of residuals of 3 x 4 Table 17.8 (part C) reduced to a 2 x 2 design 

Patients 

Depressives (AI + A2) 

Paranoids (A3) 

Mean 

ECT (Bl + B2) 

5 

-5 

o 

Support (B3 + B4) 

-5 

5 

o 

Mean 

o 
o 

o 
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TABLE 17.11 

Alternative simplification of 6-df interaction 

(BI) (B2) (B3 + B4) 
High ECT LowECT NoECT 

I'atients (10) (3) (0) Mean 

Depressives (AI + A2) 4 -5 0 

Paranoids (A3) -4 -1 5 0 

Mean 0 0 0 0 

represents the simplifying of the 6-df interaction to a 1-df portion of that interaction. 
Elsewhere (Rosenthal & Rosnow, 1985) we provide procedures for assessing how well 
we have done in simplifying the interpretation of an interaction with multiple df in the 
numerator of its F test. In the previous chapter we illustrated how it may be possible to 
transcend the factorial structure by a planned contrast, or to simplify a complex relationship 
hy using a transformation that causes the interaction to disappear. 

Assuming that we really are interested in the structure of the interaction, an 
accurate description of the simplified structure of our interaction in Table 17.10 might 
he that depressed patients are benefited by ECT to the same degree that they are 
harmed by support, whereas paranoid patients benefit from support to the same degree 
that they are harmed by ECT. Note, however, that we are describing the interaction 
residuals in Table 17.10, not the original condition means of Table 17.7. As shown in 
Table 17.8, those original means are a reflection not merely of the interaction but of 
the row and column effects as well as the grand mean. 

Still another alternative simplification of the 6-df interaction involves keeping 
in mind the number of electroconvulsive treatments administered as well as whether 
an ECT was administered at all. Thus, we might have three levels of ECT, as shown 
in Table 17.11. Interpretation of that simplification might be that in proceeding from 
none to some to more electroconvulsive treatments, depressed patients are increasingly 
henefited, whereas paranoid patients are decreasingly benefited. 

THREE-WAY FACTORIAL DESIGNS 

We turn now to three-way designs. Just as it is instructive to construct tables of means 
to our specifications in the case of two-way designs, it is instructive to do so for three­
way designs. We illustrate this procedure by returning to the 2 X 2 X 2 factorial design 
that we discussed in the previous:chapter, with means for those eight conditions shown 
in Table 16.15, its simplification: into two-way tables shown in Table 16.16, and the 
summary ANOVA shown in Table 16.17. In that study there were three two-way interac­
tions, and for the purpose of computation of the three-way ANOVA, we constructed 
subtables of means, one for each two-way combination of the three factors of the study. 
The three factors were sex of patient (S), drug (D), and psychotherapy (P). As we have 
Illready given several illustrations of how to go from a table of means to a table of effects, 
we will here simply show the table of effects corresponding to each table of means. 



514 FACTORIAL DESIGNS 

TABLE 17.12 

Three-way design 

A. Sex of patient x Drug combination 

Table of means Table of effects 

Female Male Mean Female Male Mean 

Drug 7.5 4.5 6.0 1.0 -1.0 1.5 

No drug 2.5 3.5 3.0 -1.0 1.0 -1.5 

Mean 5.0 4.0 4.5 0.5 -0.5 0 

B. Sex of patient x Psychotherapy combination 

Table of means Table of effects 

Female Male Mean Female Male Mean 

Psychotherapy 7.0 5.0 6.0 0.5 -0.5 1.5 

No psychotherapy 3.0 3.0 3.0 -0.5 0.5 -1.5 

Mean 5.0 4.0 4.5 0.5 -0.5 0 

C. 9rug x Psychotherapy combination 

Table of means Table of effects 

No No 
Psychotherapy psychotherapy Mean Psychotherapy psychotherapy Mean 

Drug 8.0 4.0 6.0 0.5 -0.5 1.5 

No drug 4.0 2.0 3.0 -0.5 0.5 -1.5 

Mean 6.0 3.0 4.5 1.5 -1.5 0 

Table 17.12 shows the table of means and the table of effects for each two-way 
combination of the three factors of the design in Table 16.15. In the tables of effects 
shown in Parts A, B, and C, the row and column "means" are row and column effects, 
respectively, and the four cell entries are the residuals defining the interaction. As 
previously reported in Table 16.17, the interaction of sex of patient and drug (S X D 
in Table 16.17) was found to be significant atp = .007, and the effect size r was .61. 
Examination of the residuals in Part A of Table 17.12 tells us that females did as 
much better with the drug as they did worse without it, whereas males did as much 
better without the drug as they did worse with it. Does this finding mean that males 
are better off without the drug? The answer is no, because in this study there was a 
large main effect of the drug, and it was better to have the drug than not have it for 
males as well as females. The S X D interaction implies only that the benefits of the 
drug are less for males than they are for females, not that the drug is disadvantageous 
to males in any absolute sense. 
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The interaction of Sex of patient X Psychotherapy (S X P in Table 16.17) had an 
associated p value of .14, though the effect size correlation was not trivial (r = .36). 
Examination of the residuals in Part B of Table 17.12 reveals that the female patients 
did better with psychotherapy, but the male patients did better without psychotherapy 
relative, respectively, to females receiving no psychotherapy and males receiving psy­
chotherapy. Phrased another way, we could say that psychotherapy benefited females 
1(0.5) - (-0.5) = 1.0] more than it benefited males [(-0.5) - (0.5) = -1.0]. 

The interaction of Drug X Psychotherapy (D X P in Table 16.17) also had an 
associated p value of .14 and an effect size r of .36. The residuals defining this inter­
action are shown in Part C of Table 17.12, where we see that psychotherapy was more 
heneficial to those receiving the drug, and that the absence of psychotherapy was more 
heneficial to those not receiving the drug, that is, relative to the remaining two com­
hi nations (disregarding the main effects, as interactions always do). Phrased another 
way, we could say that the D X P interaction shows that receiving both drug and 
psychotherapy and receiving neither drug nor psychotherapy were more beneficial 
than receiving either treatment alone. Again, we must emphasize that this result does 
not mean that patients are better off receiving no treatment than receiving either treat­
ment alone. On the contrary, the table of means in Part C of Table 17.12 shows that 
either the drug or psychotherapy alone is more beneficial than neither treatment. 

DEFINING THREE·WAY INTERACTIONS 

Interactions are defined by the leftover effects after the removal of certain lower order 
effects, and we have now had some experience in computing those residuals for two-way 
interactions. When we have a three-way factorial design, we subtract all three main 
effects and all three two-way interactions in order to reveal the residuals defining the 
three-way interaction. From the results that we have been examining in Table 17.12, we 
can find all the effects needed to calculate the residuals for the three-way interaction. 
The original table of means is repeated in Table 17.13. For illustration we concentrate 
on the top-left condition in Table 17.13, which shows a mean of 10 for females who 
received both the drug and the psychotherapy. In Table 17.12 all three subtables showed 
the grand mean to be 4.5, so we begin by subtracting the grand mean from the condition 
mean of 10 and find that 10 - 4.5 = 5.5. For this particular condition effect, we will, 
in turn, subtract the three main effects and the three two-way interactions. 

The table of effects in Part A of Table 17.12 shows at the bottom of column 1 
the effect of being female at 0.5 and at the end of the top row the effect of receiving 

TABLE 17.13 

Overall means corresponding to the three subtables in Table 17.12 

Drug 

No drug 

, 
Female patients 

Psychotherapy 

10 

4 

No psychotherapy 

5 

Male patients 

Psychotherapy 

6 

4 

No psychotherapy 

3 

3 
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the drug at 1.5. The table of effects in Part B of Table 17.12 shows at the end of the 
top row the effect of receiving psychotherapy at 1.5. Each of those effects could also 
have been found in an alternative location (e.g., the effect of being female is also 
found at the bottom of column 1 of the table of effects in Part B, and the effect of 
receiving the drug is also found at the end of the top row of the table of effects in 
Part C). Simple subtraction of each of those three main effects from the residual 
defining the condition effect of 5.5 yields: 

Condition 
effect 

5.5 

Sex 
effect 

0.5 

Drug 
effect 

1.5 

Psychotherapy 
effect 

1.5 

= Combined 
interaction effect 

2.0 

The value of 2.0 above is now made up of all the contributions to the condition 
effect comprising all three of the two-way interactions plus the three-way interaction. To 
identify the three-way interaction residual, therefore, we need only subtract the three 
two-way interaction residuals from 2.0. The two-way interaction residuals are again found 
in Table 17.12. In Part A, the upper-left condition of the table of effects shows the Sex 
of patient X Drug interaction effect to be 1.0 for females receiving drugs. In Part B, the 
upper;,Ieft condition of the table of effects shows the Sex of patient X Psychotherapy 
interaction effect to be 0.5 for females receiving psychotherapy. In Part C, the upper-left 
condition of the table of effects shows the Drug X Psychotherapy interaction to be 0.5 
for those patients receiving both drug and psychotherapy. 

In identifying the interaction effect relevant to the condition mean or residual 
that we are trying to decompose into its elements, we must take great care to select 
the particular residual that actually applies to the condition mean we are working with. 
In a three-way design, when we are working with the mean of condition AlB1C1, 
the AB residual we need is A1B1, the AC residual is A1C1, and the BC residual is 
B1C1. In the present case of the mean of the AlB1C1 condition, the combined inter­
action effect had a residual value of 2.0, from which we subtract the residuals of the 
three two-way interactions and find the residual defining the three-way interaction: 

Combined 
interaction 

effect 

2.0 

Sex x Drug 
interaction 

1.0 

Sex x 
Psychotherapy 

interaction 

0.5 

Drug x 
Psychotherapy 

interaction 

0.5 = 

Three-way 
interaction 

o 

Repeating this procedure for each of the eight condition means of Table 17.13, we 
find the three-way interaction effects to be zero in every case (i.e., there is no three-way 
interaction). Table 17.14 summarizes the main effects of sex (S), drug treatment (D), 
psychotherapy treatment (P), the three two-way interaction effects (S X D; S X P; 
D X P), and the three-way interaction effects (S X D X P) that, along with the grand 
mean (MG), constitutes the eight condition means in Table 17.13. Table 17.14 is analogous 
to, and an extension of, our example in the previous chapter of the table of effects of a 
2 X 2 design (Table 16.5), showing that condition means may be viewed as made up of 
additive pieces. 
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'1'''III.I~ 17.14 

1'11hle of effects for 2 x 2 x 2 study in Table 17.13 

M Ma + S + D + P + SD + SP + DP + SDP 

10 4.5 + 0.5 + 1.5 + 1.5 + 1.0 + 0.5 + 0.5 + 0 

5 4.5 + 0.5 + 1.5 + (-1.5) + 1.0 + (-0.5) + (-0.5) + 0 

4 4.5 + 0.5 + (-1.5) + 1.5 + (-1.0) + 0.5 + (-0.5) + 0 

4.5 + 0.5 + (-1.5) + (-1.5) + (-1.0) + (-0.5) + 0.5 + 0 

6 4.5 + (-0.5) + 1.5 + 1.5 + (-1.0) + (-0.5) + 0.5 + 0 

3 4.5 + (-0.5) + 1.5 + (-1.5) + (-1.0) + 0.5 + (-0.5) + 0 

4 4.5 + (-0.5) + (-1.5) + 1.5 + 1.0 + (-0.5) + (-0.5) + 0 

3 4.5 + (-0.5) + (-1.5) + (-1.5) + 1.0 + 0.5 + 0.5 + 0 

,. , 36 36.0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 

" ' 212 = 162 + 2 + 18 + 18 + 8 + 2 + 2 + 0 

,. .. ,.' The symbol M equais the particular condition mean in Table 17.13, Ma = the grand mean, S = the factor of sex (female vs . 

.... k I, I) = the drug factor (drug administered vs. absent), and P = the psychotherapy factor (psychotherapy administered vs. absent). 

« .. 1"11111 headings with two or three letters denote. respectively, a two-way or a three-way interaction (e.g., SDP = the interaction of 

.... • Ilrug X Psychotherapy). 

As described in the previous chapter for a two-way design, we can use the 
decomposition of the condition means in Table 17.14 to understand better the com­
putation of the terms of an ANOVA of a three-way design. Beneath each column of 
Ihe display in the table are shown the sum of the eight values (LX) and the sum of 
Ihe squares of those eight values (LX2). For all three main effects, for all three two-way 
interactions, and for the three-way interaction, the sums of squared residuals are iden­
lieal to the SS shown in the previous chapter in Table 16.17. Computing by hand the 
residuals defining the three-way interaction is not especially difficult, nor is it difficult 
III compute the residuals defining a four-way, five-way, or higher order interaction. 
IllIwever, it should be apparent why we said that it takes more and more time to do 
Ihe arithmetic required, unless, of course, we have a computer program that will give 
us the residuals defining all the interactions tested. We have more to say shortly about 
inlerpreting residuals of higher order interactions, but first, we want to underscore 
n~llin the difference between the cell means and the interaction residuals and to 
suggest some intuitive ways of interpreting both in two-way tables . 

.. 'URTHER NOTES ON INTERPRETATION 

()rganismic Interactions 

Although interactions are defined, by, and therefore described by, a table of residuals, 
!ouch a table is not usually of interest to the researcher without some additional interpre­
tilt ion. In an abstract discussion of interaction we might view a table of interaction 
residuals without labeling the rows and columns and without feeling the necessity to 
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TABLE 17.15 

Illustration of organismic interaction 

Subjects 

Male 

Female 

Drug A 

+1 

-1 

DrugB 

-I 

+1 

think very deeply about the theoretical implications of the interaction. However, if we 
claim an interaction in an investigation of a substantive question, we are obliged to make 
sense of the reported interaction. Suppose we obtain the interaction represented in 
Table 17.15, where the +1 and -1 cell entries denote the "effectiveness" of Drugs 
A and B for males and females. As is true of every nonzero 2 X 2 interaction, this one 
is X-shaped. Interpreting the residuals in Table 17.15, we would conclude that the 
interaction implies that Drug A is relatively better for males, whereas Drug B is relatively 
better for females. Once again, the term relatively is used here to emphasize that the 
effects shown by certain combinations of drug and gender are viewed as large or small 
in relation to other effects shown after the removal of the main effects of drug and gender 
(and, in this case, after removal of the grand mean as well). In fact, it often happens in 
bt!havioral research that certain treatment techniques are differentially effective for dif­
ferent subject samples. Interactions like these, called organismic interactions, reflect the 
special effectiveness for some but not for other types of persons. 

Positive Synergistic Effects 

When we see other than an X -shape in a 2 X 2 table of means (or in a figure), it 
is generally safe to assume that we are looking at more than just the interaction. 
Suppose that two treatments have been applied simultaneously, and the table of 
means indicates that people receiving both treatments had better results than we 
might have predicted from a knowledge of the likely results of administering each 
treatment. For example, the subtable shown in Part A of Table 17.16 implies that 
Treatment A alone or Treatment B alone has no beneficial value, and indeed the 
effects are no different from receiving neither treatment, but the joint administration 
of Treatments A and B is very beneficial. We can describe that pattern of the 
condition means as a positive synergistic effect, in that both treatments are required 
for any benefits to result. 

Clearly, we are describing not the interaction residuals but the condition means. 
If we subtract the grand mean, row effects, and column effects, we find interaction 
effects that tell quite a different story: Row, column, and interaction effects for the 
four cell means in Part A are of equal magnitude. The obtained interaction, taken by 
itself, tells us that both treatments or neither treatment is superior to either one treat­
ment or the other. Of course, if all that we are really interested in evaluating is an 
overall prediction stating that both treatments combined lead to beneficial effects, but 
that either treatment alone is no better than receiving neither treatment, then we can 
compute a 1 X 4 contrast with weights of +3, -1, -1, -1, respectively, for AB­
present, A-only, B-only, and AB-absent. 
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TABLE 17.16 

Illustrations of synergistic effects of condition means 

A. Positive synergistic effect 

Treatment A 

Present Absent 

Treatment B Present 4 o 
Absent o o 

B. Negative synergistic effect 

Treatment A 

Present Absent 

Treatment B Present o 4 

Absent 4 4 

C. Negative synergistic effect implying a ceiling effect 

Treatment A 

Present Absent 

Treatment B Present 4 4 

Absent 4 o 

Negative Synergistic Effects 

Suppose that the table of results showed that Treatments A and B had the same result as 
a placebo control, whereas receiving both Treatments A and B together was hannful. In 
this case we have a negative synergistic effect, as shown in Part B of Table 17.16. We 
again recognize the results to be cell means, not the interaction alone, as nonzero inter­
actions in 2 X 2 tables are always X-shaped. For the results in Part B, once we have 
done the mean polishing, we find that the row, column, and interaction effects are identical 
in size. Residuals defining the interaction suggest that receiving either treatment in isola­
tion is better than receiving both treatments or neither treatment. Had we predicted the 
pattern of means shown in Part B, the contrast weights for evaluating that pattern would 
be -3, + 1, + 1, + 1, respectively, for AB-present, A-only, B-only, and AB-absent. 

Before leaving the topic of negative synergism, we should note that a possible 
basis for that kind of result is a ceiling effect, as when the measuring instrument is 
simply unable to record benefits ,above a certain level (e.g., 4 in this case). The 
subtable in Part C of Table 17.16 shows how a set of results might appear if the 
synergistic effect were due to a ceiling effect. 

Crossed-Linear Interactions 

We know that 2 X 2 interactions are invariably X-shaped. Suppose, however, we have 
a factorial design other than 2 X 2 and want to interpret an obtained interaction. When 
the residuals for one group of subjects or sampling units show a relatively linear 
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increase and the residuals for another group show a relatively linear decrease, we 
describe the pattern as a crossed-linear interaction. Although the X-shaped pattern 
of the residuals in a 2 X 2 interaction are also crossed lines, we reserve the term 
crossed-linear interaction to describe factorial designs in which there are three or 
more levels for each of the groups being compared. 

As an iIIustration, consider three measures of sensitivity to nonverbal commu­
nication that have been administered to female and male sUbjects. The three measures 
are designed to measure sensitivity to the face, to the body, and to the tone of voice. 
Of those three channels, the face is thought to be the most easily controlled, and tone 
is thought to be the least easily controlled (Rosenthal & DePaulo, 1979a, 1979b). A 
fairly typical result in research of this kind might yield the table of means for accuracy 
scores in Part A of Table 17.17, with the corresponding table of effects shown in 
Part B. The row effects show that females are better decoders of nonverbal cues than 
are males, a well-known result (Hall, 1979, 1984b). The column effects show that 
face cues are easiest to decode, and tone-of-voice cues are hardest to decode of the 
three types of cues, also a well-known result (Rosenthal, Hall, DiMatteo, Rogers, & 

TABLE 17.17 

Illustration of crossed-linear interaction 

A. 7able of means 

Channel 

Subjects Face Body Tone Mean 

Female 6 4 2 4.0 

Male 3 2 2.0 

Mean 4.5 3.0 1.5 3.0 

B. Table of effects 

Channel 

Subjects Face Body Tone Mean 

Female 0.5 0.00 -0.5 1.0 

Male -0.5 0.00 0.5 -1.0 

Mean 1.5 0.00 -1.5 0.0 

C. Differences between row residuals in Part B 

Channel 

Subjects Face Body Tone 

Female 0.5 0.00 -0.5 

Male -0.5 0.00 0.5 

Difference 
(female advantage) 1.0 0.00 -1.0 



INTERACTION EFFECTS IN ANALYSIS OF VARIANCE 521 

Archer, 1979). The interaction residuals show that, as the type of cue becomes more 
controllable by the encoder, the females' advantage over the males increases, which 
is also a frequently obtained result (Rosenthal & DePaulo, 1979a, 1979b). A plot of 
these residuals would show a crossed-linear interaction, with one group increasing as 
the other group is decreasing (reminiscent of the interaction shown in Figure 17.2, 
ncar the beginning of this chapter). Another convenient way to think about crossed­
linear interactions is shown in the bottom row of Part C of Table 17.17, where we 
scc the differences between the residuals for the two groups. Were we to plot the 
differences, our figure would show a linear increase in the superiority of women over 
mcn as the channels became more controllable. 

Crossed-Quadratic Interactions 

Sometimes the residuals of one group are U-shaped whereas the residuals of the other 
~roup are n-shaped (i.e., inverted U-shaped). That is, the quadratic relationships are 
symmetrically reversed in the two groups. We described those kinds of relationships 
in chapter 15, where a line changes direction once (going down and then up, or vice 
versa). Curves changing direction twice (i.e., down, up, and down, or vice versa) are 
l'alled cubic curves. With each additional change in direction, a cubic curve becomes 
II quartic curve, a quartic curve becomes a quintic curve, and so on. As an example 
of a crossed-quadratic interaction, suppose that two groups of children have been tested 
under three conditions of arousal. Inspecting the cell means in Part A of Table 17.18, 
wc infer that the younger group of children (S2 = 3.0) were apparently less affected 
hy arousal level than the older group (S2 = 12.0). Part B shows the table of effects 
l'orresponding to the table of means. The row effects show that the older children 
pl'rformed better than the younger children, and the column effects show that medium 

'I'AIILE 17.18 

Illustration of crossed-quadratic interaction 

.\. TobIe of means 

Arousal level 

"lit· Low Medium High Mean 

"uulI!,!cr 3 6 3 4 

01."'1' 5 11 5 7 

Mt'UII 4,0 8.5 4.0 5.5 

It. TobIe of effects 

Aronsalilevel 

"M" Low Medium High Mean 

\"ulI!,!cr 0.5 -1.0 0.5 -1.5 

"h"'r -0.5 1.0 -0.5 1.5 

Mrlill -1.5 3.0 -1.5 0.0 
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arousal level was associated with better perfonnance than was either low or high arousal 
level. The interaction residuals clearly show crossed-quadratic curves, with younger 
children showing aU-shaped perfonnance curve relative to the older children, who 
show a n-shaped (inverted-U) perfonnance curve. Once again we must emphasize that 
those residuals refer exclusively to the interaction component of the factorial ANaYA. 
Inspection of the condition means reveals that each group produced an-shaped 
(inverted-U) function, but that the inverted U of the older children was more dramatic 
(S2 = 12) than was the inverted U of the younger children (S2 = 3). 

SIMPLIFYING COMPLEX TABLES 
OF RESIDUALS 

A general principle for the simplification of tables of interaction residuals is to subtract 
one level of a factor from the other level of that factor for any two-level factor for which 
the difference between the two levels can be regarded as substantively meaningful. In 
this procedure, a two-way interaction may be viewed as a change in a main effect due 
to the introduction of a second independent variable. And a three-way interaction may 
be viewed as a change in a main effect due to the introduction of a two-way interaction 
or as a change in a two-way interaction due to the introduction of a third independent 
variable. Another general principle for the simplification of tables of interaction residuals 
involves a process of concept fonnation for the diagonals of the table of residuals, usu­
ally a 2 X 2 table. If a suitable concept can be found to describe each diagonal of such 
a table, the interpretation of the interaction residuals is simplified to the interpretation of 
a main effect of the diagonals. We will illustrate each of these two principles using what 
we call (a) the method of meaningful differences and (b) the method of meaningful 
diagonals, and we will also discuss the possibility of combining these two methods. 

Method of Meaningful Differences 

We alluded to the method of meaningful differences in our discussion of crossed­
linear interactions. In Part C of Table 17.17, we subtracted the residuals for males 
from the residuals for females to create difference scores that represented the advantage 
of being female over being male when a task calls for decoding nonverbal cues. 
Comparing those female advantage scores for three types of measures of sensitivity 
to nonverbal cues, we were able to interpret an interaction of Channel X Sex of 
subject simply as a main effect of channel on the differences between the sexes. 

Table 17.19 provides an even simpler example, in which two treatment conditions, 
A and B, are both administered to two types of people, X and Y. By taking the difference 

TABLE 17.19 

illustration of the method of meaningful differences 

Subjects 

Type X 

Type Y 

A 

+1 

-1 

B 

-1 

+1 

(A- B) 

2 

-2 
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'l'ABLE 17.20 

Illustration of the method of meaningful diagonals 

A. Display of interaction residuals 

Sex of therapist 

S,'" of patient 

""mule 

Male 

Female 

+1 

-1 

n. Reduction to one-dimensional display 

Same-sex dyad 

+1 

+1 

+1 

Male 

-1 

+1 

Opposite-sex dyad 

-1 

-1 

-1 

hctween Treatments A and B we form a new measure, namely, the advantage of A over B. 
These advantage scores (A - B) can then be compared for persons of Types X and Y. 
In this example the advantage of Treatment A over B is greater for Type X than for 
Type Y persons because 2 is greater than -2. By subtracting B from A, we reduce a 
two-dimensional display of residuals to a one-dimensional display. 

Method of Meaningful Diagonals 

The method of meaningful diagonals, calls for simplifying the table of residuals by 
imposing substantive meaning on the residuals located on the diagonals, again usually 
II 2 X 2 table. For example, we might be studying the outcome of psychotherapy as 
II function of the sex of the therapists and the sex of the patients, with interaction 
residuals as shown in Part A of Table 17.20. The upper-left and lower-right cells 
Illgether constitute what we conceptualize as the same-sex dyad diagonal, and the 
Illwer-left and upper-right cells constitute what we conceptualize as the opposite-sex 
,I,w/(/ diagonal. We can state that the mean residual for same-sex dyads is greater (+ 1) 
thun that for opposite-sex dyads (-1). Thus, by using a construct to describe the 
,liugonals, we have reduced the two-dimensional display of interaction residuals in 
1'lIrt A of Table 17.20 to the one-dimensional display in Part B. 

(~ombining Methods 

'!'llhle 17.21 illustrates how it may be possible to use both the methods just explained 
hI uchieve even greater simplification of a fairly complex interaction. In Part A, we 
IICC the residuals corresponding to an obtained three-way interaction in a study in 
which male and female experimenters administered a task to male and female SUbjects. 
lIulf the experimenters were led to expect high achievement from their subjects, and 
Ihe other experimenters were led to expect low achievement from their subjects. 
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TABLE 17.21 

Illustration of combining methods 

A. Display of three-way interaction 

Experimenters' expectations and genders 

Low expectations High expectations 

Subjects Female Male Female Male 

Females 

Males 

-I 

+1 

+1 

-1 

+1 

-1 

B. Method of meaningful differences applied to results in Part A 

Subjects 

Females 

Males 

High - low expectancy differences 

Female experimenters 

+2 

-2 

Male experimenters 

-2 

+2 

C. Method of meaningful diagonals applied to results in Part B 

Mean 

Same-sex dyads 

+2 

+2 

+2 

Opposite-sex dyads 

-2 

-2 

-2 

-1 

+1 

We begin the simplification process by applying the method of meaningful differ­
ences to the data in Part A of Table 17.21. In this case it makes the most substantive 
sense to subtract the residuals for low expectations from the residuals for high expecta­
tions. These differences then represent expectancy effects, which are positive in sign 
when they are in the predicted direction (high> low) and negative in sign when they 
are in the opposite direction (high < low). The results of this first step are shown in Part 
B, where the three-way interaction of sex of experimenter, sex of subject, and expectancy 
has been simplified to a two-way interaction of sex of experimenter and sex of subject, 
with the dependent variable of difference scores or expectancy effect scores. Applying 
the method of meaningful diagonals to that two-way table, we obtain the results shown 
in Part C. Thus, we can interpret the originally complex three-way interaction as indicating 
that same-sex dyads show greater expectancy effects than do opposite-sex dyads. 

ILLUSTRATION OF A FIVE-WAY 
INTERACTION 

The same general procedures can often be applied to an even more complicated 
situation, such as a five-way interaction, as shown in Table 17.22. This time we have 
female and male experimenters who are either black or white, administering a task to 
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1'..\In.R 17,22 

1t"ldduals defining a five-way interaction 

Black experimenter White experimenter 

Male experimenter Female experimenter Male experimenter Female experimenter 

High Low High Low High Low High Low 
... ItJlOCts expectancy expectancy expectancy expectancy expectancy expectancy expectancy expectancy 

III'k'k 

Mulc +1 -1 -1 +1 -1 +1 +1 -1 

""male -1 +1 +1 -1 +1 -1 -1 +1 

: "'hill' 

Millc -1 +1 +1 -1 +1 -1 -1 +1 

""male +1 -1 -1 +1 -1 +1 +1 -1 

male and female subjects who are either black or white, sometimes having been led 
10 expect high, and sometimes low, performance, Thus, the 25 factorial design consists 
of Race of experimenter X Sex of experimenter X Race of subject X Sex of subject X 

Expectancy of experimenter. 
Our first step again is to eliminate one dimension of the design by subtracting 

the low-expectancy residuals from the high-expectancy residuals; the results appear in 
Table 17.23. Notice that there are four sections, each section containing four cells in 
a 2 X 2 arrangement. The cell entries in the overall table, which are difference scores, 
can be viewed as a 2 X 2 interaction of race of experimenter by race of subject. Notice 
Ihat the four cell entries in the upper-left section are identical to the four cell entries 
in the lower-right section of the overall table, and the signs are opposite those of the 
four cells in the upper-right and lower-left sections of the table. The diagonal consisting 
of upper-left and lower-right sections comprises the same-race dyads; the diagonal 
consisting of lower-left and upper-right sections contains the opposite-race dyads. 

TABLE 17.23 

High-minus-low expectancy effects 

Black experimenters White experimenters 

Subjects Male Female Male Female 

lIIu~k 

'VJale +2 -2 -2 +2 

I;cmale -2 +2 +2 -2 

Whit~ 

Male -2 +2 +2 -2 

Female +2 -2 -2 +2 
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TABLE 17.24 

Mean expectancy effects 

Sex of dyad 

Same 

Different 

Same 

+2 

-2 

Race of dyad 

Different 

-2 

+2 

Our interpretation of the five-way interaction is that expectancy effects are greater 
for same-sex dyads that are also same-race dyads or different-sex dyads that are 
also different-race dyads than for dyads differing only on sex or only on race. We 
can redisplay this five-way interaction (or the four-way interaction of difference 
scores) as a two-way interaction of two-way interactions of difference scores, as 
shown in Table 17.24. 

Applying the general principles illustrated in our earlier example, we made a 
single factor (same versus different) of the Race of experimenter X Race of subject 
interaction, and a single factor (same versus different) of the Sex of experimenter X 

Sex of subject interaction. That kind of simplification of a complex interaction is not 
always possible, but it is more likely when there is some implicit conceptual meaning 
in the diagonal cells of any 2 X 2 factorial contained within a 2k factorial design, 
where k > 2. In general, such simplification is more likely when there are fewer 
levels in the factors of the experiment, hence, fewer degrees of freedom associated 
with the higher order interaction that we are trying to understand. Some higher order 
interactions prove more intractable than others. However, by carefully examining the 
residuals, by applying the methods of meaningful differences and meaningful diago­
nals, and by using the contrast procedures discussed in chapters 15 and 16 (and also 
described in more detail in Rosenthal, Rosnow, & Rubin, 2000), we can often make 
some progress. 

A NOTE ON COMPLEXITY 

Sometimes the research questions are complex, and it is quite possible that complex 
designs and analyses may be required. However, just because we know how to deal 
with complexity is no reason to value it for its own sake. If our questions are simple 
and precise, then simpler and highly focused designs and analyses are possible. Espe­
cially for the beginning researcher, considerable practical benefit can be derived from 
keeping the designs and analyses as simple and precise as possible. 



lISE OF REPEATED OBSERVATIONS 

CHAPTER 

18 
REPEATED 

MEASURES IN 
ANALYSIS OF 

VARIANCE 

lip to now in our discussion of analysis of variance, each of the sampling units was 
IIhserved only once. Thus, for example, each subject, patient, school, city, or other unit 
~'lIntributed only one observation to the total number of observations. Earlier we mentioned 
Ihat such arrangements are known as between-subjects designs because all of the variation 
IIIlIong the obtained scores is based on individual differences between subjects (or other 
units). As we stated in chapter 7, the units in between-subjects designs are said to be 
II/'.\'fed within their treatment conditions, which simply means that subjects (or other 
'''Illpling units) are observed under only a single condition of the study. 

Often, however, it is more efficient to administer two or more treatment conditions 
IlIlhe same subjects, thereby permitting them to serve as their "own control." Also noted 
curlier was that subjects (or other sampling units) in these designs are described as 
,·/lI.l'Sed by treatment conditions rather than nested within them. The term crossed simply 
means that subjects (or other units) are observed under two or more conditions of the 
"Iudy. The more the scores of the sanipling units under one condition are correlated with 
Ihe scores of the sampling units under another condition of the study, the more advanta­
t/CIIUS it may be to have the units under more than one condition, that is, to use a 
repeated-measures design (also known as a within-subjects design). 

Sometimes, too, the very nature of the research question seems to call for some 
Iype of repeated-measures design. For example, if we are interested in examining the 
effects of practice on the performance of a learning task, or the effects of age in a 

527 
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longitudinal study of development, it seems natural to observe the same subjects 
repeatedly. Another common natural and advantageous use of a repeated-measures 
design is in the administration of tests or subscales in a series. For example, we might 
want to administer the 11 subtests of a standardized measure of intelligence, or the 
5 subscales of a standardized inventory of personality, or we might want to administer 
several tests quite different from each other (e.g., an intelligence test, a personality 
inventory, and a measure of sensitivity to nonverbal cues). 

The simplest repeated-measures (or within-subjects) design measures or observes 
subjects twice. In that case we have a choice of statistical procedures for comparing 
the scores obtained under each of the two conditions of measurement or observation. 
We can, for example, use the analysis of variance procedures to be detailed in the 
pages that lie ahead, or we can compute the specialized t test for nonindependent 
samples described in chapter 13 (Equation 13.22). That matched-pairs t test is also 
an example of blocking (discussed in chapter 16), because each pair of observations 
comes from a single block of sampling units. 

Matched-pair t tests are the simplest type of repeated measures, but all repeated­
measures designs use some form of blocking. The more that the successive observations 
on the same sampling units are positively correlated with each other, the more we 
generally benefit in increased precision from choosing a repeated-measures design as 
opposed to a between-subjects design. But assuming we have one or more specific 
questions or predictions to put to the data, we can further enhance our repeated­
measures analysis by the use of contrasts (discussed later in this chapter). 

BASIC COMPUTATIONS 

Suppose we want to study the effects on performance scores of repeated practice 
sessions. We administer the same task to four subjects on three occasions (i.e., in 
a 4 X 3 layout), with the results shown in Table 18.1. Our analysis begins just like 
that of any two-way ANOVA, yielding a row effect (subjects in this example), 
a column effect (sessions in this example), and a Row X Column interaction (i.e., 
Subjects X Sessions in this case). Our analysis will differ from those in other two­
way designs discussed earlier in that there is now only a single observation in each 
combination of row and column. 

TABLE 18.1 

Performance scores on three occasions 

Session 1 Session 2 Session 3 Mean 

Subject 1 0 7 3 3.33 

Subject 2 7 4 4.00 

SUbject 3 3 8 5 5.33 

Subject 4 4 8 6 6.00 

Mean 2.0 7.5 4.5 4.67 
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The computational procedures were generally described in chapter 16 
(Equations 16.9, 16.10, 16.11, and 16.12). However, the total sum of squares is 
now defined as the sum of the squared deviations of each individual score (X) from 
Ihe grand mean (M) of all the scores: 

Total SS = "L.(X - M)2. (18.1) 

The other formulas are as noted earlier: Equation 16.10 for the row sum of squares 
instructed us to add up as many quantities as there are rows: 

Row SS = "L.[c(Mr - M)Y, 

where c is the number of columns contributing to the computation of Mr , the mean 
III' each row, and M is again the grand mean. For the column sum of squares, 
Equation 16.11 had us add up as many quantities as there are columns: 

Column SS = "L.[r(Me - M )2], 

where r is the number of rows contributing to the computation of Me, the mean of each 
wlumn. Finally, for the interaction sum of squares, Equation 16.12 stated as follows: 

Interaction SS = Total SS - Row SS - Column SS. 

For the data of our illustration in Table 18.1, we have 

Total SS = (0 - 4.67)2 + (7 - 4.67)2 + (3 - 4.67)2 
+ (1 - 4.67)2 + (7 - 4.64)2 + (4 - 4.67)2 
+ (3 - 4.67)2 + (8 - 4.67)2 + (5 - 4.67)2 
+ (4 - 4.67)2 + (8 - 4.67)2 + (6 - 4.67)2 

= 76.67 

Row SS = 3(3.33 - 4.67)2 + 3(4.00 - 4.67)2 
+3(5.33 - 4.67)2 + 3(6.00 - 4.67)2 

= 13.35 

Column SS = 4(2.0 - 4.67)2 + 4(7.5 - 4.67)2 
+ 4(4.5 - 4.67)2 

= 60.67 

Interaction SS = 76.67 - 13.35 - 60.67 
= 2.65. 

The table of variance is best set up so that the distinction between the within­
~uh.iects and the between-subjects sources of variance is highlighted. Earlier we 
~IIW that between-subjects sources of variance are those associated with individual 
,lifferences between subjects. The within-subjects sources of variance are those 
Ilssociated with differences in individual subjects' scores from condition to 
l"IlIldition. In Table 18.2 we distinguish sharply between sources of variance that 
ilrc due to within- and between-subject variation. Sharp distinctions like these are 
useful when there are several sources of variation due to between-subject sources 
lind several due to within-subject sources. The distinctions simplify our bookkeeping 
111111. as we shall see, help us decide on the appropriate error terms for tests of 
lIignificance. 
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TABLE 18.2 

Summary ANOVA of results in Table IS.1 

Source SS df MS F 1] p 

Between subjects' 13.35 3 4.45 

Within subjectsb 

Sessions 60.67 2 30.33 68.93 .98 

Sessions X Subjects 2.65 6 O.44e 

a This term, the subjects effect, would not normally be tested for significance (as discussed in the following pages). 

b Note that when we referred to within sources of variance in earlier chapters, we were referring to variation that was 
within conditions but between subjects. 

, Error term for sessions effect is the mean square for Sessions X Subjects. 

FIXED AND RANDOM EFFECTS 

Another distinction that will help us choose the appropriate error terms is that between 
fixed and random factors. Fixed factors are variables for which we have selected 
specific levels not randomly but because of our interest in those particular effects. As 
these levels have not been selected by random sampling, we are not entitled to view 
them as representative of any other levels of the variable in question (i.e., we cannot 
generalize to other levels of the fixed factor). Most factors involving experimental 
manipulations-or such organismic variables as gender, race, and social class, and 
such repeated-measures factors as time, sessions, subtests, and so on-are usually 
viewed as fixed factors. 

Random factors are those for which we view the levels of the variables as 
having been randomly sampled from a larger population or a theoretical pool of 
such levels. The most common random factor in behavioral and social research is 
sampling units, especially of persons or other organisms. In Table 18.2, if we 
regard the between-subjects variable as a random factor, we can test its statistical 
significance only very conservatively. If we regard it as a fixed factor (so that we 
restrict any inferences only to those four subjects), we can test the statistical 
significance of the subjects factor against the Sessions X Subjects interaction. 
However, that F test will be conservative if we also regard sessions as fixed effects. 
To clarify these issues, let us consider all combinations of fixed and random effects 
for between- and within-subject factors in the simplest factorial design, the two­
way ANOVA. 

Imagine we want to study four countries as our between-sampling-units 
factor. Suppose we are interested only in those four countries and do not choose 
to view them as a sample from a larger pool. In this case we define countries as 
a fixed factor. Alternatively, if we conceptualize the four countries as a sample 
from which we want to generalize to a larger pool, we instead define countries as 
a random factor. So far, all we have is a between-subjects factor, but now suppose 
we have a longitudinal design in which we have a summary score for each country 
for each of three decades. Those three scores constitute our repeated-measures 
(or within-sampling-units) factor. Had we chosen the scores specifically as critical 
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TABLE 18.3 

Four combinations of fixed and random factors in two-way designs 

Within sampling units 

Fixed Random 

Between sampling units 
Fixed 

Random 

Type A 

Type C 

TypeB 

Type D 

decades of the century of interest, then we would regard the scores as fixed and 
Ihe factor of decades as a fixed factor. Alternatively, we would define the scores 
as random if we regarded them as a sample of the pool of decades to which we 
want to generalize. 

In our hypothetical two-way design, in which one factor is countries and the 
olher is decades, we see that we can have four combinations of between- (e.g., 
countries) and within- (e.g., decades) sampling-units factors and fixed and random 
effects. The four combinations are shown in Table 18.3, and we turn next to the 
appropriate error terms required in each of the four combinations. The discussion that 
follows is intended to serve as a reference guide rather than as a detailed exposition 
of the underlying mathematical models that would be required for a theoretically 
hased discussion (see, e.g., Green & Tukey, 1960; Snedecor & Cochran, 1989; Winer, 
1971; Winer, Brown, & Michels, 1991). 

ERROR TERMS IN THE FOUR BASIC 
COMBINATIONS 

A general principle for determining the appropriate error term is that the specific 
':ftect of interest (i.e., fixed or random) is properly tested by division of the mean 
JI/uare (MS) for that effect by the MS for a random source of variation. The 
random source may be nested within the various levels of the factor of interest, or 
il may be crossed with the various levels of the factor of interest. Thus, the source 
of variance that would be a proper error term for "Factor A" might be the 
independent observations made under each level of that factor. Those nested obser­
v(liions always serve as the proper error term in the analyses of variance we 
discussed in earlier chapters. They remain the proper error terms for the between­
subjects factors in analyses that include repeated-measures factors as well. When 
we want to test most repeated-measures factors, however, we typically use as our 
error term the interaction of a random factor (e.g., subjects nested within levels of 
II between-subjects factor) and the factor that we want to test. When there is no 
random factor available (either for nesting within or crossing with the factor that 
we want to test), there is no proper test of statistical significance available. 
Sometimes, however, a useful but conservative test is possible, as illustrated in 
Ihree out of four of the following cases based on the four design combinations of 
Tuhle 18.3. 
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Type A (Between Fixed, Within Fixed) 

In the Type A case the interaction MS can be used as the error term for the MS between 
and the MS within subjects, although it is likely to lead to F values that are too 
conservative. Only if there is in nature a zero interaction will the F be accurate. The 
only way to test whether the interaction really is likely to be zero is to make multiple 
observations for each combination of the row and column effects. In our example of 
countries and decades, we might make those multiple observations by randomly 
sampling several years from each decade. This within-combination MS, computed as 
any other within-condition source of variance, is the appropriate error term for the 
between-conditions variable, the repeated-measures variable, and the interaction of 
these two variables. When the interaction MS is used as the error term for the row or 
column variable, an obtained large F can be trusted to be at least that large, but a 
small F mayor may not reflect the absence of a row or column effect. The table of 
variance for the Type A situation is outlined in Table 18.4, where the symbols noted 
in that table (and in the following three tables) are defined as follows: 

B = Between-subjects MS 

W = Within-subjects MS 

BW = Between X Within subjects interaction MS 

~ 0 = Ordinary error (i.e., MS for replications within combinations of B X W) 

Type B (Between Fixed, Within Random) 

In this second case, Type B, as noted in Table 18.5, the interaction MS is the appropriate 
error term for the between-sampling-units effect. It is the appropriate error term for 
the within or repeated-measures effect only if the interaction effect is truly zero. The 
appropriate error term for the within-subjects effect (and for the interaction) is 
the variation of the multiple observations made for each combination of row and column. 

TABLE 18.4 

lllustration of Type A design (both factors fixed) 

Source 

Between countriesb 

Within countries 

Decadesc 

Decades x Countriesd 

Years within decade x Country combinations' 

Abbreviations 

B 

W 

BW 

0 

Error term, Error term, 
"proper" "conservative"· 

0 BW 

0 BW 

0 

• Used when 0 is not available, as when only a single observation has been made for every B X W combination. 

b Computed as is the row effect of any two-way factorial design. 

C Computed as is the column effect of any two-way factorial design. 

d Computed as is the interaction effect of any two-way factorial design. 

e Computed as is the within-cell error of any two-way factorial design. 
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TABLE 18.5 

Illustration of Type B design (between factor fixed, within factor random) 

Error term, 
Source Abbreviations "proper" 

Between countries B BWb 

Within countries 

Decades W 0 

Decades X Countries BW 0 

Years within BW 0 

• Used when 0 is not available . 

.. Use of 0 as error term can lead to F values that are seriously inflated. 

Type C (Between Random, Within Fixed) 

Error term, 
"conservative'" 

BW 

In this third case, Type C, Table 18.6 notes that the interaction MS is the appropriate 
error term for the within-sampling-units effect. It is also the appropriate error term 
for the between-sampling-units effect only if the interaction effect is truly zero. The 
llPpropriate error term for the between-subjects effect (and for the interaction) is the 
variation of the multiple observations made for each combination of row and 
column. 

Type D (Between Random, Within Random) 

In this fourth case, Type D, Table 18.7 shows that the interaction MS is the appropriate 
error term for both the between- and within-subjects effects. The interaction effect 
can be tested against the variation of the multiple observations made for each 
combination of row and column (as noted in the table). More detailed information 
nhout the consequences for significance testing of various combinations of fixed and 
random factors can be found in Green and Tukey (1960), Snedecor and Cochran 
(1989), and Winer, Brown, and Michels (1991). 

TABLE 18.6 

Illustration of Type C design (between factor random, within factor fixed) 

Error term, Error term, 
Source Abbreviations ''proper'' "conservative'" 

Bet ween countries B 0 BW 

Within countries 

Decades W BWb 

Decades X Countries BW 0 

Years within BW 0 

• IIsed when 0 is not available. 

• lise of 0 as error term can lead to F values that are seriously inflated. 
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TABLE 18.7 

Illustration of Type D design (both factors random) 

Error term, 
Source Abbreviations ''proper'' 

Between countries B BWb 

Within countries 

Decades W BWb 

Decades X Countries BW 0 

Years within BW 0 

• Not applicable to this design. 

b Use of 0 as error term can lead to F values that are seriously inflated. 

LATIN SQUARES AND 
COUNTERBALANCING 

Error term, 
"conservative"· 

In the example we gave of four subjects, each measured three times (in Table 18.1), 
there is no alternative to administering the three sessions of testing in the sequence 
1, 2, 3, because we want to find out how performance changes over time. We have 
suggested the term intrinsically repeated measures to describe situations like these, 
in which we must measure or observe the subjects more than once to address the 
question of interest (Rosenthal, Rosnow, & Rubin, 2000). We turn now to another 
common use of repeated measures in which, in principle, repeated measures are not 
required, but efficiency, precision, and statistical power may be increased if several 
treatments are administered to each of the subjects or other sampling units. We have 
used the term nonintrinsically repeated measures to describe such a situation, and 
we discuss intrinsically and nonintrinsically repeated measures in considerable detail 
in our book on contrasts and effect size indices (Rosenthal et al., 2000). As an 
illustration of nonintrinsically repeated measures, suppose we want to compare three 
medications in treating a rare disorder, but we have only three patients with that rare 
disorder. Indeed, we have so few eligible patients that we can randomly assign only 
a single patient to each medication. We cannot learn much from that approach, as we 
will never know whether any differences in treatment outcome were due to differences 
in the three medications or to ordinary individual differences among the patients. 

As an alternative, though, we can administer all three treatments to all three 
patients. The basic design is shown in Part A of Table 18.8, which shows that we 
have decided to administer all three drugs (A, B, and C) to each of our three patients. 
Each patient will receive the three drugs in the same sequence: A, then B, then C (or 
ABC). The problem in using this design, however, is that we entangle, or confound, 
two different variables: the drug variable (A vs. B vs. C) and the order of administration 
of the drugs (first drug vs. second drug vs. third drug). Suppose we hypothesized that 
Drug A would be most beneficial, and in our study we find that Drug A is best. It 
would not be appropriate to conclude that Drug A truly is better than Drugs B and 
C, because a plausible rival hypothesis is that the first-administered drug is best. To 
avoid this type of confounding, we instead use a technique called counterbalancing 
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TABLE 18.8 

Repeated-measures design with and without 
l'onfounding 

,\. Confounding of drug variable and order of administration 

Subjects 

Suhject 1 

Subject 2 

Suhject 3 

Drug A DrugB 

.1. Latin-square with counterbalancing to prevent 
c'unfounding 

DrugC 

Order of administration 

SC'Cluence 

S"'1uence 1 (ABC) 

'\"'1ucnce 2 (BCA) 

'\"'Iucnce 3 (CAB) 

1 

A 

B 

C 

2 

B 

C 

A 

3 

C 

A 

B 

lIirst mentioned in chapter 7) as shown in Part B of Table 18.8, in which the sequence 
III' administration of the treatments is balanced (or varied systematically) so that, on 
Ihe average, there is no longer a relationship between, or confounding of, the variables 
Ihat would have been entangled in our first proposed design. 

Counterbalancing is essential whenever we want to study matters of organization 
and sequencing in the presentation of repeated stimuli. As another illustration, a classic 
IllIestion often investigated by social psychologists concerns when it may be advantageous 
III present a message before the opposition has a chance to reach the same audience, and 
when it is better to present the message afterward, in order to have the last word 
(q~., Hovland, Mandell, Campbell, Brock, Luchins, Cohen, McGuire, Janis, Feierabend, & 
"nderson, 1957). Researchers who study this question use the term primacy to describe 
rases where opinions or actions are influenced more by arguments presented first, and 
,~·(·(·"cy where they are influenced more by arguments presented last. To test for primacy 
"nd recency, researchers use a counterbalanced design. Half the subjects, at random, 
u'l'eive one message first, and the remaining subjects receive the other message first. 
t Ising this approach should prevent the problem of confounding primacy and recency 
c'llects with the particular effects of the competing messages themselves (e.g., Corrozi & 
Kllsnow, 1968; Miller & Campbell, 1959; Rosnow, 1966, 1968). 

In our earlier discussion of counterbalancing, we mentioned that one design 
wilh built-in counterbalancing is the Latin square. Table 7.2 illustrates such a design, 
III which the number of rows equals the number of columns. A Latin square requires 
II ,cluare array of letters (or numbers) in which each letter (or number) appears once 
'Wel only once in each row and each column. Frequently the rows represent sequences 
III' administration of treatments, the columns represent the order of administration 
III' the treatments, and the letters represent individual treatments administered in 
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specific orders as part of specific sequences, as illustrated in Part B of Table 18.8. 
In Sequence 1, treatments are administered in the sequence A, then B, then C. In 
Sequences 2 and 3, the treatments are administered in different sequences, BCA and 
CAB, respectively. 

The requirement of a Latin square is satisfied as long as each row and each 
column contains each treatment condition once and only once. If sequences are found 
to differ, the difference must be due to the differences in the sequence of treatments, 
not to differences in the treatments administered, because all treatments are administered 
in each sequence. The difference also cannot be due to differences in order or position 
(i.e., first, second, third), as all sequences are composed of the same set of orders or 
positions. If orders differ, the variability must be due to differences in the order, not 
to differences in the treatments administered, as all treatments are administered in 
each order. Difference also cannot be due to differences in the sequence (e.g., ABC, 
BCA, CAB), because all orders comprise equal parts of each sequence. If treatments 
(e.g., A vs. B vs. C) are found to be different, those differences must be due to 
differences in treatment not to differences in sequence, because all sequences contain 
all treatments. Difference also cannot be due to differences in order, because all 
treatments occur equally often in each order. It is in these senses, then, that the 
systematic counterbalancing in Latin squares prevents confounding. 

ANALYSIS OF LATIN SQUARES 

In a Latin square design the sequence effect tells us how the sequences differ, and 
the order effect tells us how orders differ. Neither of these effects is usually the 
reason for the research, however. Usually, what we want to know is how the 
treatments differ. But where is the treatment in a Latin square? Table 18.9 shows 
(in Part A) the smallest possible Latin square, a 2 X 2 design. In this smallest 
possible Latin square, it turns out that the treatment effect is identical to (or an 
"alias" of) the Sequence X Order interaction. In this design the interaction compares 
the diagonal comprising the A treatment (the upper-left and lower-right cells) with 
the diagonal comprising the B treatment (the lower-left and upper-right cells); this 
interaction is equivalent to the test of the treatment effect. The sources of variance 
are shown in Part B of Table 18.9, where we also see that there are no degrees of 

TABLE 18.9 

Smallest possible Latin square 

A. The 2 x 2 Latin square 

Sequence 

Sequence 1 (AB) 

Sequence 2 (BA) 

1 

A 

B 

Order 

2 

B 

A 

B. Sources of variance for 2 x 2 Latin square 

Source 

Sequences 

Orders 

Treatments (Sequences X Orders) 

df 
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freedom (d!) available for error terms for the three sources of variance shown. 
Very conservative F tests can be computed, however, if the mean of the MS values 
of the remaining two is used as the error term for each effect. 

As the size of the Latin square increases, the df available for a suitable error 
term increase, and F tests become less conservative. The Sequences X Order interaction 
continues to provide the treatment effect, but the remainder of that interaction not 
associated with the treatment effect becomes the error term for all other effects. 
Though larger Latin squares yield more accurate F values (i.e., in the sense of fewer 
Type II errors), it remains a characteristic of Latin squares that, on the average, F 
values will be too small. The reason is that the denominator of those F tests is always 
some type of effect (i.e., row, column, or interaction) that could be nonzero. When 
nonzero effects are used as denominators of F tests, the resulting F values are too 
small. When the effects are zero, the F tests tend to be more accurate and less 
conservative. Some larger Latin square designs with their sources of variance and 
associated df are shown in Table 18.10. 

In general, if the Latin square has a sequences, a orders, and a treatments, then 
the df for each source of variance are as shown in Table 18.11. With a sequences, 
orders, and treatments, and with Ms, Mo, MT, and M denoting the means of sequences, 
orders, treatments, and the grand mean, respectively, we obtain the total sum of 
squares by using Equation 18.1: 

Total SS = 1: (X - M)2. 

We obtain the other needed sums of squares as follows: 

Sequences SS = 1:[a(Ms - M)2] 

Orders SS = 1:[a(Mo - M)2] 

Sequences X Orders SS = Total SS - Sequences SS - Orders SS 

Treatment SS =1:[a(MT-M)2] 

Residual SS = Sequences X Orders SS - Treatment SS. 

(18.2) 

(18.3) 

(18.4) 

(18.5) 

(18.6) 

For example, assume that four patients were administered four treatments in 
counterbalanced order with the results shown in Part A of Table 18.12. Note that the 
sequences are completely confounded with the patients (i.e., we could label the sequences 
as subjects if we preferred). Substituting in the first four equations above, we find 

Total SS = (4 - 6)2 + (3 - 6)2 + (8 - 6)2 + (5 - 6)2 
+ (0 - 6)2 + (6 - 6)2 + (7 - 6)2 + (7 -6)2 
+ (2 - 6)2 + (2 - 6)2 + (10 - 6)2 + (10 - 6)2 
+ (6 - 6)2 + (5 - 6)2 + (7 - 6)2 + (14 - 6)2 
186 

Sequences SS 4(5 --2. 6)2 + 4(5 - 6)2 + 4(6 - 6)2 + 4(8 - 6)2 
24 

Orders SS 4(3, 6)2 + 4(4 - 6)2 + 4(8 - 6)2 + 4(9 - 6)2 
104 

Sequences X Orders SS = 186 - 24 - 104 
58. 
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TABLE IS.10 

Three Latin squares and their sources of variance 

3 x 3 Latin square 

Order Source df 

1 2 3 Sequences 2 

Sequence 1 A B C Orders 2 

Sequence 2 B C A (Sequences X Orders) (4) 

Sequence 3 C A B Treatments 2 

Residual sequences X Orders 2 

4 x 4 Latin square 

Order Source df 

1 2 3 4 Sequences 3 

Sequence 1 A B C D Orders 3 

Sequence 2 B C D A (Sequences X Orders) (9) 

Sequence 3 C D A B Treatments 3 

Sequence 4 D A B C Residual sequences X Orders 6 
~ 

5 x 5 Latin square 

Order Source df 

1 2 3 4 5 Sequences 4 

Sequence 1 A B C D E Orders 4 

Sequence 2 B C D E A (Sequences X Orders) (16) 

Sequence 3 C D E A B Treatments 4 

Sequence 4 D E A B C Residual sequences X Orders 12 

Sequence 5 E A B C D 

Note: In any of these Latin squares we can also think of the sequences effect as part of the Treatment X Order interaction, 
and we can think of the orders effect as part of the Treatment X Sequences interaction. These are only conceptual 
alternatives and do not yield different statistical results. 

TABLE 18.11 

Sources of variance in Latin squares 

Source 

Sequences 

Orders 

[Sequences X Orders] 

Treatments 

Residual sequences X Orders 

df 

a-I 

a-I 

[(a-I?] 

a-I 

(a-I)(a-2) 



REPEATED MEASURES IN ANALYSIS OF VARIANCE 539 

To compute the Treatment SS using Equation 18.5, we have to collect the scores 
IIssociated with each of the four treatments (A, B, C, D). As we are doing the 
calculations by hand, in order to minimize clerical errors we can rearrange the display 
of the data from the Sequence X Order combination in Part A of Table 18.12 to the 
Sequence X Treatment combination in Part B. Then, 

Treatment SS = 4(6.5 - 6)2 + 4(5.0 - 6)2 + 4(7.5 - 6)2 + 4(5.0 - 6)2 

= 18. 

Finally, using Equation 18.6, we find 

Residual SS = 58 - 18 = 40. 

The summary ANOVA appears in Part C of Table 18.12. 

TABLE 18.12 

Computation of ANOVA for 4 x 4 Latin square 

A. Basic data for effects of four treatments 

Order 

1 2 3 4 Mean 

Sequence 1 (ABCD) 4 3 8 5 5 

Sequence 2 (BCDA) 0 6 7 7 5 

Sequence 3 (CDAB) 2 2 10 10 6 

Sequence 4 (DABC) 6 5 7 14 8 

Mean 3 4 8 9 6 

8. Rearrangement of basic data of Part A 

Treatments 

A B C D Mean 

Sequence 1 4 3 8 5 5 

Sequence 2 7 0 6 7 5 

Sequence 3 10 10 2 2 6 

Sequence 4 5 7 14 6 8 

Mean 6.5 5.0 7.5 5.0 6 

C. Summary ANOVA 

Source \ SS df MS F 1) p 

Sequences 24 3 8.00 1.20 .61 .39 

Orders 104 3 34.67 5.20 .85 .042 

(Sequences X Orders) (58) (9) 

Treatments 18 3 6.00 0.90 .56 .49 

Residual sequences X Orders 40 6 6.67 
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SOME LATIN SQUARES MAY BE 
BETTER THAN OTHERS 

When Latin square designs are used, it is recommended that, given a particular square 
from 3 X 3 to 12 X 12, the rows, columns, and treatments all be randomized to 
prevent bias in the selection of some specific square (Cochran & G. M. Cox, 1957, 
p. 121; D. R. Cox, 1958, p. 207). However, even when using randomization, we may 
want to exclude certain squares. For example, in the 4 X 4 square in Part A of 
Table 18.13, we see that Treatment A always occurs just before or just after C, and 
B always occurs just before or just after D. Our concern is that data obtained for the 
four treatments may be affected by the consistent adjacency of these pairs of treatments. 
The only way we can be sure that the adjacencies will not be troublesome is to 
compare the treatment effects obtained from that particular square with the treatment 
effects obtained from another square without such consistent adjacencies. 

Another 4 X 4 arrangement that we may not want to use is shown in Part B of 
Table 18.13. The problem in this case is that any treatment not the first in its sequence 
always follows the same treatment. That is, Treatment B follows only Treatment A 
(three times), Treatment C follows only Treatment B (three times), D follows only C 
(three times), and A follows only D (three times). We are concerned that results of 
the analysis of treatment effects for this 4 X 4 Latin square may therefore be partially 
confounded with the immediately preceding treatment. That is, any differences (or lack 
of differences) that we observe may not occur with different immediately preceding 
~ 

TABLE 18.13 

Illustrative 4 x 4 Latin squares 

A. Design with consistent adjacencies 

A C D B 

B D C A 

C A B D 

D B A C 

B. Problematic modification 

A B C D 

B C D A 

C D A B 

D A B C 

C. Improved modification 

A B C D 

B D A C 

C A D B 

D C B A 
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TABLE 18.14 

Improved 5 x 5 Latin square 

,\ B C D E 

1\ D A E C 

(' E B A D 

I> C E B A 

E A D C B 

treatments. An arrangement that does not present the possible problems of the two 
squares in Parts A and B is shown in Part C of Table 18.13. 

We leave it as an exercise for the reader to reexamine the 5 X 5 Latin square 
Ilf Table 18.10 and to check for any possible problem in the particular sequences. 
Table 18.14 shows an improved 5 X 5 Latin square that seems to us less problematic 
than the typical arrangement of Table 18.1 O. However, whenever selecting a particular 
I.atin square arrangement because it seems less problematic than perhaps some other 
arrangement might be, it is always advisable to randomly assign sampling units 
(subjects, organizations, teams, etc.) to the sequences. In addition, each particular 
treatment needs to be assigned to its letter at random. Because it is often difficult to 
decide whether, in a given study, a specific Latin square arrangement may be 
problematic, we prefer to use more sequences than would fit neatly into a single Latin 
square, or perhaps to use some other counterbalancing design, as we describe next. 

OTHER COUNTERBALANCING DESIGNS 

I.atin squares are used when the number of subjects or other sampling units equals 
the number of treatments we wish to administer to each subject. But suppose that we 
have more sampling units than we have treatments. What is to be done? Two general 
strategies that are quite useful are rectangular arrays and mUltiple squares. 

Rectangular Arrays 

If we have three treatments to administer to six subjects, we can randomly assign half 
the subjects to each of two squares of size 3 X 3 and treat each square as a different 
experiment or as a replication of the same experiment. Alternatively, we can assign 
each of the six subjects to a unique sequence of the three treatments. Because the 
number of unique sequences of treatments is t! (i.e., t-factorial, where t is the number 
of treatments), and in this case t! = 3! = (3)(2)(1) = 6, we have just the right number 
of subjects for this study. If we, have four treatments to administer to each subject 
and we want each subject to have a unique sequence, we need 4! = (4)(3)(2)(1) = 24 
subjects, and so on. Such arrangements may be described as tXt! designs, and their 
statistical analysis is analogous to that of the Latin square. Examples of two such 
designs are given in Tables 18.15 and 18.16. For the tXt! design in Table 18.15, 
t = 3, whereas t = 4 in Table 18.16. When t = 2, we have the familiar 2 X 2 Latin 
square once again. 
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TABLE 18.15 

Example of I x I! design with I = 3 

Order Source df 

1 2 3 Sequences 5 

Sequence 1 A B C Orders 2 

Sequence 2 A C B (Sequences X Orders) (10) 

Sequence 3 B A C Treatments 2 

Sequence 4 B C A Residual sequences X Orders 8 

Sequence 5 C A B 

Sequence 6 C B A 

TABLE 18.16 

Example of I x I! design with I = 4 

Order Source df 

1 2 3 4 Sequences 23 

Sequence A B C D Orders 3 
i!l 

Sequence 2 A B D C (Sequences X Orders) (69) 

Sequence 3 A C B D Treatments 3 

Sequence 4 A C D B Residual sequences X Orders 66 

Sequence 5 A D B C 

Sequence 6 A D C B 

Sequence 7 B A C D 

Sequence 8 B A D C 

Sequence 9 B C A D 

Sequence 10 B C D A 

Sequence 11 B D A C 

Sequence 12 B D C A 

Sequence 13 C A B D 

Sequence 14 C A D B 

Sequence 15 C B A D 

Sequence 16 C B D A 

Sequence 17 C D A B 

Sequence 18 C D B A 

Sequence 19 D A B C 

Sequence 20 D A C B 

Sequence 21 D B A C 

Sequence 22 D B C A 

Sequence 23 D C A B 

Sequence 24 D C B A 
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If we have fewer sampling units available than the t! required by our tXt! 
design, we can instead form a series of Latin squares. An alternative is to sample 
randomly from the t! sequences, though with the constraint that each treatment must 
occur in each order as nearly equally often as possible. This constraint tends to 
maximize the degree of counterbalancing that is possible even though complete 
counterbalancing may not be possible. If we have more sampling units available than 
the t! required by a tXt! design, two useful general arrangements are subjects-within­
,~equences and multiple rectangular arrays. 

SUbjects-Within-Sequences Designs 

If we have 2 X t! subjects available, we can randomly assign half the subjects to each 
of two rectangular arrays of size tXt! We then treat each array as a different experiment 
Of as a replication of the same experiment. The same type of procedure can be used for 
any multiple of t! subjects. Alternatively, we can assign several subjects at random to 
each of the t! sequences in a way that will keep the number of subjects per sequence as 
nearly equal as possible. For example, what if we have 18 subjects available for a study 
of three treatments? The six possible sequences of three treatments (3! = 6) are as dis­
played in Table 18.15, and we assign three subjects at random to each of those six 
sequences. In this design, subjects are not confounded with sequences as they are in Latin 
squares or rectangular arrays lacking replications for each sequence. Instead, subjects are 
nested within sequences so that differences between sequences can be tested. The sources 
of variance for this example are shown in Table 18.17. 

This design and analysis have a number of noteworthy features. First, there is 
more than a single error term in the design. In the preceding chapters on analysis of 

TABLE IS.17 

Sources of variance for subjects-within-sequences example 

Source 

Between subjects 

Sequences 

Subjects within sequences 

Within subjects 

Orders 

Orders X Sequencesb 

Treatments 

Residual orders X Sequences 

Orders X Subjects within sequences 

df 

(17) 

5 

12 

(36)" 

2 

10 

2 

8 

24 

Comments 

Tested against subjects 

Tested against Orders X Subjects 

U suall y not tested 

Tested against Orders X Subjects 

Tested against Orders X Subjects 

, Computed as (N of subjects) X (dJfor levels Of repeated measures). In this study there are N = 18 subjects and 
Ihree levels of the repeated-measures factor (dJ == 3 - 1 = 2), so there are N X dJ (levels) = 18 X 2 = 36 dJ 
for within subjects. Put another way, the dJfor within subjects is 1 less than the number of observations per subject, 
multiplied by the number of subjects. 

h This term is subdivided into the two listed below it, that is, "Treatments" and "Residual orders X Sequences." 
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variance, there was always only a single error term, and it was always associated with 
the individual differences among subjects (or other sampling units) collected from within 
each of the conditions of the study. In the present case there is also such an error term 
(subjects within sequences), and it is used to test whether the sequences of the study 
differ from one another. We want to note especially that this error term is within conditions 
but between subjects. The other error term in this design is the Orders X Subjects within­
sequences interaction. This error term is used to test all the within-subjects sources of 
variation, and it is itself a within-subjects source of variation. It is typical for error terms 
used to test within-subjects sources of variation that they are formed by a crossing of 
the repeated-measures factors by the random factor of sampling units, usually either 
subjects or subjects-within-conditions. Another feature of this design (which happens to 
be common to both Latin square and rectangular repeated-measures designs) is that in 
order to test for treatments, we must reach into the Order X Sequence interaction and 
extract the variation of the treatment means around the grand mean. That procedure 
represents only a minor complication in the analysis, however. 

The analysis is simply an extension of the computational procedures we have 
described so far in this chapter. Although we assume that the analysis will be done 
by computer, we can best explain it by starting with a 3 X 18 display consisting of 
3 levels of order and 18 levels of subjects. The between-subjects SS is broken down 
into a sequences SS and a subjects-within-sequences SS. The latter can be obtained 
as tpe difference between the between-subjects SS and the sequences SS. The order 
SS is found in the usual manner, and the Order X Subjects interaction is broken down 
into an Order X Sequences SS and an Order X Subjects-within-sequences SS. The 
latter can be obtained as the difference between the Order X Subjects SS and the 
Order X Sequences SS. 

THREE OR MORE FACTORS 

Up to this point in our discussion of repeated-measures ANOVA, we have examined 
two-factor designs consisting of a between-subjects factor and a within-subjects (or 
repeated-measures) factor. But repeated-measures designs may, of course, be more 
complex in having two or more between-subjects factors, two or more within-subjects 
factors, or both. 

Two or More Between-Subjects Factors 

Increasing the number of between-subjects factors does not increase the complexity of 
the design as much as increasing the number of within-subjects factors. Suppose we want 
to analyze the scores of women and men at three age levels, and to administer to each 
subject four subtests of a personality inventory. Our design might appear as in Part A of 
Table 18.18. If we assume two subjects for each of the 3 X 2 = 6 between-subjects 
conditions, then the sources of variance and df are as shown in Part B. 

The computation of the SS involves nothing new. It is easiest to think of this 
design as a 12-subject X 4-measurements array. Were we to calculate the overall 
ANOVA by hand, we would begin by computing all the between-subjects SS, starting 
with the total between-subjects SS. We then compute the age SS, the sex SS, and 
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TABLE 18.18 

I>esign comprising two between factors and one within factor 

A. The 3 X 2 x 4 design 

Between factors 

Age 

12 

14 

16 

II. Sources of variance and df 

Source 

Between subjects 

Age 

Sex 

Age X Sex 

Subjects (within conditions) 

Within subjects 

Subtests 

Subtests X Age 

Subtests X Sex 

Subtests X Age X Sex 

Sex 

Female 

Male 

Female 

Male 

Female 

Male 

df 

(II) 

2 

2 

6 

(36)" 

3 

6 

3 

6 

Subtests X Subjects (within conditions) 18 

Repeated measures 

Subtests 

1 2 3 

Subtests x Between subjects 

4 

• Computed as (N of subjects) X (df for levels of repeated measures). In this study there are N = 12 subjects and 
four levels of the repeated-measures factor (df = 4 - I = 3), so there are N X df (levels) = 12 X 3 = 36 df 

for within subjects. 

the Age X Sex SS and subtract these three SS from the total between-subjects SS. 
That would give us the subjects-within-conditions SS. As designs become more 
complicated, being able to compute the df for each source of variance becomes 
increasingly useful as a check on ,whether we have omitted any sources of variance. 
For example, because there are 12 subjects in this design, we know there are 
12 - 1 = 11 df available between subjects. We also know the df for age 
(3 - 1 = 2), sex (2 - 1 = 1), Age X Sex [(3 - 1 = 2) X (2 - 1 = 1) = 2], 
and subjects-within conditions [(2 - 1) X 6 = 6]. These four sources of variance 
are a decomposition of the total between-subjects source of variance; notice that 
the sum of their df equals the df for the total between-subjects variance. 
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The within-subjects sources of variation are made up of the main effect of subtests 
(df = 3) and the Subtests X Between-subjects interaction (df = 3 X 11 = 33). The 
latter interaction is further decomposed into a series of interactions: Subtests X Age; 
Subtests X Sex; Subtests X Age X Sex; and Subtests X Subjects (within conditions). 
The df of these four interactions adds up (6 + 3 + 6 + 18) to 33, which is the total 
df for the Subtests X Between-subjects interaction. 

Illustration of Computations 

To show the calculations, we use the basic data given in Table 18.19 for a 
2 (between) X 3 (between) X 4 (within) design. We begin by regarding the design 
as a simple l2-subject X 4-subtests array, for which we will first compute the row 
(subjects) and column (subtests) and the Row X Column interaction sums of 
squares as described at the beginning of this chapter. Thus, we find 

TABLE 18.19 

Total SS = L: (X - M? = (2 - 5)2 + (3 - 5)2 + (7 - 5)2 

+ ... + (5 - 5)2 + (7 - 5)2 + (8 - 5)2 

= 340 

Results of a repeated-measures study with two between-subjects factors and 
one within-subjects factor 

Between factors 

Age Sex 

12 Female 

12 Female 

12 Male 

12 Male 

14 Female 

14 Female 

14 Male 

14 Male 

16 Female 

16 Female 

16 Male 

16 Male 

Mean 

Subject 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

2 

5 

4 

5 

6 

5 

4 

3.0 

Repeated measures 

Subtests 

2 3 4 Mean 

3 7 8 5.0 

2 3 6 3.0 

3 3 2.0 

2 4 2.0 

4 7 8 6.0 

5 8 7 6.0 

2 4 5 3.0 

4 6 9 5.0 

9 9 9 8.0 

5 8 9 7.0 

6 9 8 7.0 

5 7 8 6.0 

4.0 6.0 7.0 5.0 
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Row (subject) SS = L[c(Mr - M)2] = 4(5.0 - 5)2 + 4(3.0 - 5)2 

+ 4(2.0 - 5)2 + ... + 4(7.0 - 5)2 

+ 4(7.0 - 5)2 + 4(6.0 - 5)2 

184 

Column (repeated measures) SS = L[r(Mc - M?] = 12(3.0 - 5)2 

+ 12(4.0 - 5)2 + 12(6.0 - 5)2 

+ 12(7.0 - 5)2 

120 

I~ow X Column (interaction) SS = Total SS - Row SS - Column SS 

= 340 - 184 - 120 

= 36. 

Of the sums of squares computed above, we use only the column SS (or subtest 
SS) directly in our final table of variance. The remaining sums of squares above 
will be used in the computation of other sums of squares required for that final 
lahle. 

Our next step is to decompose the row (or subjects) SS into its components of 
slIhject-age SS, subject-sex SS, Subject-age X Sex SS, and subjects-within conditions 
SS. We achieve this decomposition using the following formulas, beginning with the 
slim of squares for subject age: 

Subject-age SS = L[nst(MA - M)2], (18.7) 

where n is the number of subjects in each of the conditions formed by the crossing 
of the two between-subjects factors (or the harmonic mean of the numbers of subjects 
in each of those conditions when the ns are not equal), s is the number of levels of 
Ihe sex factor, t is the number of levels of the subtests (column) factor, MA is the 
mean of all conditions of a given age, and M is the grand mean (i.e., the mean of 
all condition means). We do the computations as follows: 

Subject-sex SS = L[nat(Ms - M)2], (18.8) 

where a is the number of levels of the age factor; n, t, and M are as above; and Ms 
is the mean of all conditions of a given sex. Next, 

Subject-age X Sex SS = L [nt(MAs - M?] 
- Subject-age SS - Subject-sex SS, (18.9) 

where MAS is the mean of all observations contributing to each of the combinations 
of the two between-subjects factors, and n, t, and M are as above. And finally, 

I 

SlIhjects-within-conditions SS =' Row (subjects) SS 
- Subject-age SS - Subject-sex SS 
~ Subject-age X Sex SS, (18.10) 

where the row (subjects) SS was computed from our initial 12-subjects X 4-subtests 
IIffay in Table 18.19. 
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Our arithmetic is simplified if we construct the table of means formed by the 
crossing of the two between-subjects factors of Table 18.19, as shown in Part A of 
Table 18.20. Using Equations 18.7-18.10, we find 

Subject-age SS = [2 X 2 X 4(3.0 - 5)2] + [2 X 2 X 4(5.0 - 5)2] 
+ [2 X 2 X 4(7.0 - 5)2] 

= 128 

Subject-sex SS = [2 X 3 X 4(5.83 - 5)2] 

+ [2 X 3 X 4(4.17 - 5)2] 

= 33 

Subject-age X Sex SS = [2 X 4(4.0-5)2] +[2 X 4(2.0 - 5)2] 

+ [2 X 4(6.0 - 5)2] + [2 X 4(4.0 - 5)2] 

+ [2 X 4(7.5 - 5)2] + [2 X 4(6.5 - 5)2] 

- Age SS - Sex SS 

164 - 128 - 33 

= 3 

Subjects-within-conditions SS = 184 - 128 - 33 - 3 

= 20. 

Now that we have computed all the needed between-subjects sources of 
variance, we turn to the within-subjects sources of variance that are made up of the 
main effect of subtests (the already computed column effect) and the crossing 
of that main effect with Age, Sex, Age X Sex, and Subjects (within conditions) to 
form four interactions The various interaction sums of squares are computed as 
follows: 

Subtests X Age SS = L:[ns(MrA - M)2] - Subtests SS - Age SS, (18.11) 

where MrA is the mean of all observations contributing to each combination of subtest 
(T) and age (A), and all other terms are as above. 

Subtests X Sex SS = L:[na(Mrs - M)2] - Subtests SS - Sex SS, (18.12) 

where Mrs is the mean of all observations contributing to each combination of subtest 
and sex, and all other terms are as above. 

Subtests X Age X Sex SS = L:[n(MrAs - M?] 
- Subtests SS 

-AgeSS 

-SexSS 

- Subtests X Age SS 

- Subtests X Sex SS 

- Age X Sex SS, (18.13) 
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TABLE 18.20 

Subtables of means for combinations of results in Table 18.19 

A. Age x Sex of subject 

Sex of subject 

Age Female Male Mean 

12 4.0~ 2.0~ 3.0!!§. 

14 6.0~ 4.0~ 5.0!!§. 

16 7.5~ 6.5~ 7.0!!§. 

Mean 5.831H. 4.171H. 5.0~ 

II. Subtests x Age 

Subtests 

Age 1 2 3 4 Mean 

12 1.2511 2.00 3.50 5.25 3.00!!§. 

14 2.75 3.75 6.25 7.25 5.00 

16 5.00 6.25 8.25 8.50 7.00 

Mean 3.00(g 4.00 6.00 7.00 5.00~ 

('. Subtests x Sex 

Subtests 

Sex 1 2 3 4 Mean 

h'nmle 3.831& 4.67 7.00 7.83 5.831H. 

Mule 2.17 3.33 5.00 6.17 4.17 

Mran 3.00(g 4.00 6.00 7.00 5.00~ 

n. Subtests x Sex x Age 

Subtests 

Aile Sex 1 2 3 4 Mean 

12 Female 1.51l 2.5 5.0 7.0 4.0~ 

12 Male 1.0 1.5 2.0 3.5 2.0 

14 Female 4.5 4.5 7.5 7.5 6.0 

I·' Male 1.0 3.0 5.0 7.0 4.0 
I 

16 Female 5.5 7.0 8.5 9.0 7.5 

II, Male 4.5 5.5 8.0 8.0 6.5 

Meun 3.0(g 4.0 6.0 7.0 5.0~ 

.\'f't.': Numbers shown within the L symbol indicate the number of observations on which each type of mean is 
"',,,,d. 
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where MTAS is the mean of all observations contributing to each combination of 
subtest, age, and sex, and all other terms are as above. 

Subtests X Subjects-within-conditions SS = Row X Column interaction SS 

- Subtests X Age SS 

- Subtests X Sex SS 

- Subtests X Age X Sex SS, (18.14) 

where the Row X Column interaction SS was computed earlier from our initial 
12-subjects X 4-subtests array in Table 18.19. Again, our arithmetic will be simplified 
if, for each of the next three interactions to be computed, we construct the appropriate 
subtables of means. From the results in Part B of Table 18.20, we compute 

Subtest X Age SS = [2 X 2(1.25 - 5)2] + [2 X 2(2.00 - 5f] 

+ [2 X 2(3.50 - 5)2] + ... + [2 X 2(6.25 - 5)2] 

+ [2 X 2(8.25 - 5)2] + [2 X 2(8.50 - 5)2] 

- Subtests SS - Age SS = 252 - 120 - 128 

= 4. 

From the results in Part C of Table 18.20, we compute 

Subtests X Sex SS = [2 X 3(3.83 - 5)2] + [2 X 3(4.67 - 5)2] + ... 
+ [2 X 3(5.00 - 5)2] + [2 X 3(6.17 - 5)2] 

- Subtests SS - Sex SS = 154 - 120 - 33 

= 1. 

From the results in Part D of Table 18.20, we compute 

Subtests X Age X Sex SS = 2(1.5 - 5)2 + 2(2.5 - 5)2 + ... 
+ 2(8.0 - 5)2 + 2(8.0 - 5)2 - Subtests SS 

- Age SS - Sex SS - Subtests X Age SS 

- Subtests X Sex SS - Age X Sex SS 

= 300 - 120 - 128 - 33 - 4 - 1 - 3 

=11 

Subtests X Subjects-within-conditions SS = 36 - 4 - 1 - 11 

= 20. 

We have now computed all the ingredients required to complete our table of vari­
ance, as shown in Table 18.21. The analysis of variance of these data shows that all three 
main effects were statistically significant. Although none of the interactions were 
significant, we note that the etas were quite substantial for several of those interactions, 
suggesting that replications with larger sample sizes might well reach statistical signifi­
cance. The example that we have been following used an equal number of subjects 
(n = 2) within each combination of the between-subjects factor. Had the number of 
subjects not been equal within those conditions, we could still have used the same compu­
tational procedures with only one small modification. We would have replaced n, wherever 
it occurred, by nh, the harmonic mean of the sample sizes (defined in Equation 14.6). 
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TABLE 18.21 

Summary ANOVA for results in Table 18.19 

Source SS df MS F 1]" P 

Between subjects (184) (11) 

Age 128 2 64.00 19.22 .93 .003 

Sex 33 33.00 9.91 .79 .02 

Age X Sex 3 2 1.50 0.45 .36 .66 

Subjects (within conditions) 20 6 3.33 

Within Subjects (156) (36) 

Subtests 120 3 40.00 36.04 .93 .0001 

Subtests X Age 4 6 .67 0.60 .41 .73 

Subtests X Sex 3 .33 0.30 .22 .82 

Subtests X Age X Sex 11 6 1.83 1.65 .60 .19 

Subtests X Subjects (within conditions) 20 18 1.11 

-'11= 
F(dfnumerator) 

F(dfnumerator) + (dfdenominator) 

The four interactions involving subtests in Table 18.21 are formed by the 
crossing of the subtests factor with each of the between-subjects effects in turn. This 
procedure can be illustrated by the incorporation of an additional between-subjects 
factor into the present design, say, diagnosis. We assume that half the children in each 
of the six conditions are hyperactive and half are not, as shown in Part A of Table 18.22. 
The diagnosis factor is listed as hyperactive versus normal. Suppose we have five 
children in each of our 12 between-subjects conditions, in which case the new listing 
of sources of variance are as shown in Part B of Table 18.22. We again form all 
interactions involving the within-subjects factor (i.e., subtests in this case) by prefixing 
the within-subjects factor to each of the between-subjects factors in turn. Even with 
this four-factor design (three between and one within), the computations are not 
difficult to understand. Once again, it is easiest to conceptualize the design as a 
Subjects X Subtests array, with all between-subjects main effect and interaction sums 
of squares subtracted from the total between-subjects SS to yield the subjects-within­
conditions SS. 

No matter how many between-subjects sources of variance there are, all of 
them are tested against the MS for subjects within conditions. This assumes that all 
hetween-subjects sources of vatjance are seen as fixed effects, the most frequent 
situation (but shortly we discuss the situation in which these effects are not all 
regarded as fixed). It is essential to keep in mind, however, that the various between­
subjects sources of variance have meaning only if the sum of the repeated-measures 
scores is meaningful. For example, if the four subtests of the personality inventory 
we have been using as our illustration are all scored so that a high number reflects 
"good adjustment" (or "poor adjustment"), the sum of those scores is meaningful, 



TABLE 18.22 

IDustrative design with three between factors and one within 
(repeated-measures) factor 

A. Basic design 

Between factors Repeated measures 

Subtests 

Age Sex Diagnosis 1 2 3 

Female 
Hyperactive 
Normal 

12 

Male 
Hyperactive 
Normal 

Female 
Hyperactive 
Normal 

14 

Male 
Hyperactive 
Normal 

Female 
Hyperactive 
Normal 

16 
Male Hyperactive 

Normal 

B. Sources of variance 

Source df 

4 

~---------------------------------------------------------------

Between subjects 

Age 

Sex 

Diagnosis 

Age X Sex 

Age X Diagnosis 

Sex X Diagnosis 

Age X Sex X Diagnosis 

Subjects (within conditions) 

Within subjects 

Subtests 

Subtests x Age 

Subtests X Sex 

Subtests X Diagnosis 

Subtests X Age X Sex 

Subtests X Age X Diagnosis 

Subtests X Sex X Diagnosis 

Subtests X Age X Sex X Diagnosis 

Subtests X Subjects 

(59) 

2 

2 

2 

2 

48 

(180)' 

3 

6 

3 

3 

6 

6 

3 

6 

144 

• Computed as (N of subjects) X (df for levels of repeated measures). In this study there are N = 60 
subjects and four levels of the repeated-measures factor (df = 4 - 1 = 3), so there are N X df (levels) = 
60 X 3 = 180 df for within subjects. 

552 
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ilnd all the between-subjects effects are interpretable. However, if some of the subtests 
I'cllect good adjustment and some reflect poor adjustment, the sum (and the mean) 
IIf the four scores are meaningless, and all between-subjects effects are essentially 
meaningless. (In situations of this sort we can readily transform the one or two scores 
~'oded in the opposite direction so that their direction of scoring is consistent with 
Ihat of the other scores.) 

It should also be noted that when we have decided that the sum of the repeated­
measures scores is meaningful, the components have not necessarily contributed 
~'qually to the sum. Those components that are more variable (in the sense of S2) 
l"IlIltribute more to the variation in the sum of the components. Thus, if the values of 
.'i'~ differ appreciably from each other, and if we want all components to contribute 
l'qually to the variation in the sum, we should first transform each component to its 
slandard scores with mean = 0 and (12 = 1. But even if the between-subjects sources 
IIf variance are meaningless because the sum of the repeated measures is not a 
meaningful variable, it is still possible for the within-subjects sources of variance to 
he quite informative. The interactions of the within-subjects factor and the between­
subjects factors indicate the extent to which the main effect of the repeated measure 
(i.e., the subtest in this example) is affected by the various between-subjects sources 
IIf variance. 

Where there is only a single within-subjects factor, as in the present 
illustrations, there is only a single error term for all the within-subjects sources of 
variation, the Repeated-measures factor X Subjects-within-conditions interaction, 
or (in this example) the Subtests X Subjects-within-conditions interaction. However, 
ilS we add within-subjects factors, the number of error terms grows very quickly, 
so that every main effect within subjects has its own error term, as does every 
interaction between two or more within-subjects factors. These error terms are 
generally formed by the crossing of each source of variance by the subjects-within­
l'onditions source of variance. Table 18.23 shows how quickly the number of error 
lerms for the within-subjects sources of variance grows as the number of within­
subjects factors grows. We see that for each additional within-subjects factor, the 
number of error terms more than doubles. We will illustrate only for three and for 
seven error terms. 

TABLE 18.23 

Number of within-subjects error terms required as a function of 
number of within-subjects factors 

Number of Number of Number of Number of 
factors error terms factors error terms 

6 63 

2 3 7 127 

3 7 8 255 

4 15 9 511 

5 31 10 1023 
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TWO WITHIN-SUBJECTS FACTORS 

Suppose our subjects are five female and five male teachers, each assigned a different 
set of four pupils to teach in a brief instructional situation. Of each of these 10 sets of 
four pupils, two are female and two are male. Furthermore, one female and one male 
pupil are designated (at random) to the particular teacher as showing special intellectual 
promise (high expectancy), but nothing is said of the remaining pupils (low expectancy). 
The main conditions of this design are displayed in Part A of Table 18.24. 

Special note should be taken that the four different pupils can still be regarded as 
providing repeated measures. The reason is that we decided we would use teachers as 
our sampling units (a random factor) and each pupil's score is viewed as a repeated 
measurement of the teacher who instructed that pupil. Further note should be taken that 

TABLE 18.24 

Design with two within-subjects factors 

A. Basic design 

Repeated measures 

Female 

Sex of teacher" Low High 

Female 

Male 

B. Error terms for two within-subjects factors 

Source 

Between subjects 

Sex of teacher 

Teachers (within sex) 

Within subjects 

Expectancy 

Expectancy X Sex of teacher 

Expectancy X Teachers (within sex) 

Pupil sex 

Pupil sex X Sex of teacher 

Pupil sex X Teachers (within sex) 

Expectancy X Pupil sex 

Expectancy X Pupil sex X Sex of teacher 

Expectancy X Pupil sex X Teachers (within sex) 

Low 

df 

(9) 

8 

8 

8 

Male 

High 

Error terms 

Error term for preceding line 

Error term for preceding two lines 

Error term for preceding two lines 

Error term for preceding two lines 

, Teachers are serving as subjects, and sex of teachers is the between-subjects factor. 

b Computed as (N of subjects) X (df for levels of repeated measures). This study has four levels of repeated measures 
(i.e., two levels of expectancy for each of two genders). Therefore, the df (levels) = 4 - I = 3, and as N = 10 subjects, 
the df for within subjects = 10 X 3 = 30. 
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TABLE 18.25 

Results of repeated-measures study with one between-subjects factor and two 
within-subjects factors 

Repeated measures 

Female pupil Male pupil 

Teacher Low High Low High Mean 

3 7 2 8 5.0 

Female 2 3 9 3 5 5.0 

teachers 3 5 8 5 6 6.0 

4 7 10 4 7 7.0 

5 7 11 6 4 7.0 

6 2 6 0 4 3.0 

7 1 5 5 3.0 

Male 8 3 7 3 3 4.0 

teachers 9 4 9 2 5 5.0 

10 5 8 4 3 5.0 

Mean 4.0 8.0 3.0 5.0 5.0 

the four repeated measurements can, in this study, be viewed as a 2 X 2 design, that is, 
two levels of expectancy by two levels of pupil sex. Sources of variance, dJ, and error 
terms are as shown in Part B of Table 18.24. It should be noted that each of the three 
repeated-measures error terms was formed by crossing the relevant repeated-measures 
factor by the random factor of sampling units, or in this case, teachers (within sex). 

To illustrate the computations for the 2 (between) X 2 (within) X 2 (within) table 
of results in Table 18.25, we begin by regarding the design as a simple lO-teacher X 
4-levels of repeated measurement array. We will compute first the row (teachers) and the 
column (repeated-measures) sums of squares, using the equations described previously: 

Total SS = ~(X - M? = (3 - 5)2 + (7 - 5)2(2 - 5)2 + ... 
+ (8 - 5)2 + (4 + 5)2 + (3 - 5)2 

= 260 

Row (teacher) SS = ~[c(MR - M)2] = 4(5.0 - 5)2 + 4(5.0 - 5)2 

+ 4(6.0 - 5)2 + ... + 4(4.0 - 5)2 

+ 4(5.0 - 5)2 + 4(5.0 - 5)2 

=72 

Column (repeated measures) SS = ~[r(Mc - M)2] = 10(4.0 - 5)2 + 10(8.0 - 5)2 

+ 10(3.0 - 5)2 + 10(5.0 - 5)2 

= 140 
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Row X Column (interaction) SS = Total SS - Row SS - Column SS 

= 260 - 72 - 140 

= 48. 

Our next step is to decompose the row (or teacher) SS into its components of 
sex-of-teacher SS and teachers-within-sex SS by means of the following definitional 
equations, beginning with the sum of squares for sex of teachers, where 

Sex-of-teacher SS = ~[npe(Ms - M)2], 

and n is the number of teachers nested within each sex of teacher (or nh if those ns are 
not equal), p is the number of levels of the pupil sex factor, e is the number of levels of 
the expectancy factor, Ms is the mean of all conditions of a given teacher sex, and M 
is the grand mean, (i.e., the mean of all condition means). Given that the mean scores 
obtained by female teachers and male teachers are 6.0 and 4.0, respectively, we find 

Sex-of-teacher SS = [5 X 2 X 2(6.0 - 5)2] + [5 X 2 X 2(4.0 - 5)2] = 40. 

Next we compute 

Teachers-within-sex SS = Row(teachers) SS - Sex-of-teacher SS 
= 72 - 40 = 32. 

We now tum our attention to the various within-teachers sources of variance. 
We consider first the SS for expectancy, Expectancy X Sex of teacher, and Expectancy X 

Teachers (within sex): 

Expectancy SS = ~[nsp(ME - M)2], 

where s is the number of levels of the sex-of-teacher factor, ME is the mean of all 
conditions of a given level of expectancy, and the other terms are as above. 

Expectancy X Sex-of-teacher SS = ~[np(MEs - M)2] 
- Expectancy SS - Sex-of-teacher SS, 

where MES is the mean of all observations contributing to each combination of 
expectancy and teacher sex, and the other terms are as above. 

Expectancy X Teachers-within-sex SS = ~[p(MET - M)2] 
- Expectancy SS 
- Row (teacher) SS 
- Expectancy X Sex-of-teacher SS, 

where MET is the mean of all observations contributing to each combination of 
expectancy and individual teacher, and the other terms are as above. Note that the 
row SS term is identical to the sex-of-teacher SS plus the teachers-within-sex SS. 

To help us in our arithmetic, we construct a table of the appropriate means, as 
shown in Part A of Table 18.26. From this table we find 

Expectancy SS = [5 X 2 X 2(3.5 - 5)2] + [5 X 2 X 2(6.5 - 5)2] = 90. 

Condensing the data in Part A in order to obtain the means of the Expectancy X Sex­
of-teacher combinations (MES) gives the 2 X 2 table in Part B of Table 18.26. We find 
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TABLE 18.26 

Expectancy x teachers' means for results shown in Table 18.25 

A. Two·way table of means 

Expectancy 

Teacher Low High Mean 

2.511. 7.5 5.011. 

"cmale 2 3.0 7.0 5.0 

Irllchers 3 5.0 7.0 6.0 

4 5.5 8.5 7.0 

5 6.5 7.5 7.0 

6 1.0 5.0 3.0 

7 1.0 5.0 3.0 

Mule 8 3.0 5.0 4.0 

Irllchers 9 3.0 7.0 5.0 

10 4.5 5.5 5.0 

Mean 3.5~ 6.5 5.01iQ 

H. Condensing of data in Part A 

Expectancy 

""lIcher sex 

"clllale 

Mille 

Low 

4.5l!Q 

2.5 

High 

7.5 

5.5 

,.\/,,/,,: Numbers shown within the L symbol indicate the number of observations on which each 

1\ '''' of mean is based. 

I~xpectancy X Sex-of-teacher SS = [5 X 2(4.5 - 5)2] + [5 X 2(7.5 - 5)2] 

lind we also find 

+ [5 X 2(2.5 - 5)2] + [5 X 2(5.5 - 5)2] 
- Expectancy SS - Sex-of-teacher SS 

= 130 - 90 - 40 = 0, 

bpcctancy X Teachers-within-sex SS = 2(2.5 - 5)2 + 2(7.5 - 5)2 
+ ... + 2(4.5 - 5)2 + 2(5.5 - 5)2 
- Expectancy SS 
- Row (teacher) SS 
- Expectancy X Sex-of-teacher SS 

= 180 - 90 - 72 - 0 = 18. 

Nute again that the row (teacher) SS is identical with the sex-of-teacher SS plus the 
tcuchers-within-sex SS. 
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We consider next the SS for Pupil-sex, Pupil-sex X Sex-of-teacher, and 
Pupil-sex X teachers (within sex): 

Pupil-sex SS = ~[nse(Mp - M)2], 

where Mp is the mean of all conditions of a given level of pupil sex, and the other 
terms are as above. 

Pupil-sex X Sex-of-teacher SS = ~[ne(Mps - M)2] - Pupil-sex SS 
- Sex-of-teacher SS, 

where Mps is the mean of all observations contributing to each combination of pupil 
sex and teacher sex, and the other terms are as above. 

Pupil-sex X Teachers-within-sex SS = ~[e(MpT - M)2] 
- Pupil-sex SS - Row (teacher) SS 

- Pupil-sex X Sex-of-teacher SS, 

where MPT is the mean of all observations contributing to each combination of pupil 
sex and individual teacher, and the other terms are as above. The row SS is identical 
with sex-of-teacher SS plus the teachers-within sex SS. 

Again we construct a table of the appropriate means, as shown in Part A of 
Tabl~ 18.27. From that table we find 

Pupil-sex SS = [5 X 2 X 2(6.0 - 5)2] + [5 X 2 X 2(4.0 - 5)2] = 40. 

Condensing the table in Part A to obtain the means of the Pupil-sex X Sex-of-teacher 
combinations (Mps) gives us the 2 X 2 table in Part B of Table 18.27, on the basis 
of which we find 

Pupil-sex X Sex-of teacher SS = [5 X 2(7.0 - 5)2] + [5 X 2(5.0 - 5)2] 

and 

+ [5 X 2(5.0 - 5)2] + [5 X 2(3.0 - 5)2] 

- Pupil-sex SS - Sex-of-teacher SS 

= 80 - 40 - 40 = 0 

Pupil-sex X Teachers-within-sex SS = 2(5.0 - 5)2 + 2(5.0 - 5)2 + ... 
+ 2(6.5 - 5)2 + 2(3.5 - 5)2 

- Pupil-sex SS - Row (teacher) SS 

- Pupil-sex X Sex-of-teacher SS 
128 - 40 - 72 - 0 

16. 

The row SS is identical to the sex-of-teacher SS plus the teachers-within-sex SS. 
Finally, we consider the SS for the two-way interaction of Expectancy X Pupil­

sex, the three-way interaction of Expectancy X Pupil-sex X Sex-of-teacher, and the 
three-way interaction of Expectancy X Pupil-sex X Teachers (within sex): 

Expectancy X Pupil-sex SS = ~[ns(MEP - M)2] - Expectancy SS - Pupil-sex SS 
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TARLE 18.27 

I'upil sex X teachers' means for results shown in Table 18.25 

A, Two-way table of means 

Pupil sex 

Teacher Female Male Mean 

5.0~ 5.0 5.011 

I'cmale 2 6.0 4.0 5.0 

"'uchers 3 6.5 5.5 6.0 

4 8.5 5.5 7.0 

5 9.0 5.0 7.0 

6 4.0 2.0 3.0 

7 3.0 3.0 3.0 

Male 8 5.0 3.0 4.0 

I('uchers 9 6.5 3.5 5.0 

10 6.5 3.5 5.0 

Mean 6.01JQ. 4.0 5.01iQ 

II, Condensing of data in Part A 

Pupil sex 

'Irucher sex Female Male 

I ','male 

Mule 

7.01!!! 

5.0 

5.0 

3.0 

NII/t'; Numbers shown within the L symbol indicate the number of observations on which 
rllCh type of mean is based. 

where MEP is the mean of all observations contributing to each combination of 
expectancy and pupil sex, and the other terms are as above, 

Expectancy X Pupil-sex X Sex-of-teacher SS = 2: [n (MEPS - M)2] 
- Expectancy SS 
- Pupil-sex SS 
- Sex-of-teacher SS 
- Expectancy X Pupil-sex SS 
- Expectancy X Sex-of-teacher SS 
- Pupil-sex X Sex-of-teacher SS, 

where MEPS is the mean of all observations contributing to each combination of 
expectancy, pupil sex, and sex of teacher, and the other terms are as above. 

Expectancy X Pupil-sex X Teachers-within-sex SS = 2: [CMEPT - M)2] 
- Expectancy SS 
- Pupil-sex SS 
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- Row (teacher) SS 
- Expectancy X Pupil-sex SS 
- Expectancy X Sex-of-teacher SS 
- Pupil-sex X Sex-of-teacher SS 
- Expectancy X Pupil sex X Sex-of-teacher SS 
- Expectancy X Teachers-within-sex SS 
- Pupil-sex X Teachers-within-sex SS 

(or more compactly, Total SS minus all other sums of squares), 

where MEPT is the mean of all observations contributing to each combination of 
expectancy, pupil sex, and individual teacher. In this example, there is only one such 
observation for each combination of these three factors, and Table 18.25 (the original 
10 teachers X 4 repeated-measures table) shows these combinations (MEPT). Note also 
that, in this example, 1: (MEPT - M)2 is identical to 1: (X - M)2 = Total SS. 

To show the calculations, we begin again with another condensed table, as 
shown in Part A of Table 18.28. Then, 

Expectancy X Pupil-sex SS = [5 X 2(4.0 - 5)2] + [5 X 2(3.0 - 5)2] 
+ [5 X 2(8.0 - 5)2] + [5 X 2(5.0 - 5)2] 
- Expectancy SS - Pupil-sex SS 

= 140 - 90 - 40 = 10. 

Next we tum to Part B of Table 18.28, which contains the table of eight means (MEPS) 
required for the three-way interaction of Expectancy X Pupil-sex X Sex of teacher. 

TABLE 18.28 

Expectancy x pupil sex and three-way 
interaction means of Table 18.25 

A. Expectancy X Pupil sex combination 

Expectancy 

Low 

High 

Pupil sex 

Female 

4.01!Q 

8.0 

Male 

3.0 

5.0 

B. Expectancy X pupil sex X sex of teacher combination 

Teacher sex 

Female 

Male 

Low 

5.0~ 

3.0 

Female 

High 

9.0 

7.0 

Low 

4.0 

2.0 

Male 

High 

6.0 

4.0 
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We find 

Expectancy X Pupil-sex X Sex of teacher SS = 5(5.0 - W + 5(9.0 - 5)2 
+ ... + 5(2.0 - 5)2 
+ 5(4.0 - 5)2 - 90 - 40 - 40 

10 - 0 - 0 = 180 - 180 
=0 

lind 

Expectancy X Pupil-sex X Teachers-within-sex SS = 260 (total SS) 
- 90 - 40 - 72 - 10 - 0 - 0 - 0 - 18 - 16 = 14. 

We have now computed all the SS required to complete our table of variance, 
and the results are shown in Table 18.29. The analysis of variance shows all three 
main effects and one two-way interaction to be significant. In this example we used 
lin equal number of teachers (n = 5) in each condition of teacher sex. Had these 
numbers not been equal, we could have used the same computational procedures with 
only one modification: We would have replaced the quantity n by nh wherever n was 
rcquired, with nh defined as the harmonic mean of the sample sizes found in each 
hctween-subjects condition of the study (see Equation 14.6). 

AGGREGATING ERROR TERMS 

When the dfper error term is small, as it is in Table 18.29, we may want to consider 
IIggregating the within-subjects error terms in order to obtain a more stable single 
estimate (in this example, based on 24 d/). This averaging together of error terms 

TARLE 18.29 

Summary ANOVA for results shown in Table 18.25 (one between-subjects and 
two within-subjects factors) 

SclUrce SS df MS F Tl P 

lIel ween subjects (72) (9) 

Sex of teacher 40 40.00 10.00 .75 .013 

Teachers (within sex) 32 8 4.00 

Within subjects (188) (30) 

Expectancy 90 90.00 40.00 .91 .0002 

Expectancy X Sex of teacher 0 0.00 0.00 .00 1.00 

Expectancy X Teachers (within sex) 18 8 2.25 

Pupil sex 40 40.00 20.00 .85 .002 

Pupil sex X Sex of teacher 0 0.00 0.00 .00 1.00 

Pupil sex X Teachers (within sex) 16 8 2.00 

Expectancy X Pupil sex 10 10.00 5.71 .65 .044 

Expectancy X Pupil sex X Sex of teacher 0 1 0.00 0.00 .00 1.00 

Expectancy X Pupil sex X Teachers (within sex) 14 8 1.75 
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(each weighted by its df) is generally recommended only if the ratio of the largest 
to the smallest error term is roughly 2.0 or less (Green & Tukey, 1960). Aggregation 
is often referred to as pooling, especially when the decision to aggregate is based on 
tests of significance of differences among error variances. In Table 18.29, the three 
within-subjects error terms range from 1.75 to 2.25, with the ratio of the largest mean 
square to the smallest mean square only 2.25/1.75 = 1.29. Therefore, those three 
error terms are good candidates for aggregation. 

The general formula for the aggregation of k terms is 

MS1(dfi) + MS2(dfz) + ... + MSk(dfk) 
MSaggregated = dfi + d:h + ... + dfk ' (18.15) 

where MS1 to MSk are the k error terms to be aggregated, and dfl to dfk are the k 
degrees of freedom that are associated with the k mean squares for error. For the 
ANOVA in Table 18.29, we have 

MS - 2.25(8) + 2.00(8) + 1.75(8) - 200 
aggregated - 8 + 8 + 8 - . . 

When it is more convenient to work with sums of squares, the general formula can 
be written as 

SSj + SS2 + ... + SSk 

MSaggregated = dfi + dfz + ... + dfk ' (18.16) 

where SSj to SSk are the k sums of squares of the k error sources of variance, and dfl 
to dfk are their associated degrees of freedom. For the data of Table 18.29, we have 

18 + 16 + 14 
MSaggregated = 8 + 8 + 8 = 2.00. 

Once we have computed an aggregated error term, it replaces all the individual 
error terms that contributed to its computation. Some of the F tests computed with 
the new error term will be larger (those in which the original MSerror was larger) and 
some will be smaller (those in which the original MSerror was smaller). 

THREE WITHIN-SUBJECTS FACTORS 

In our example of three within-subjects factors, we retain the basic plan of the 
preceding example but assume that each teacher teaches eight pupils instead of four. 
In addition, we assume that for each combination of expectancy and pupil sex, there 
is one hyperactive child and one normal child. The basic design is shown in Table 18.30, 
and the sources of variance, df, and error terms of that design are shown in Table 18.31. 
Note how easily we generate all new sources of variance simply by adding the new 
within-subjects factor of diagnosis and then crossing that term systematically with all 
preceding sources of variance. 

Just as in the previous example, we want to consider aggregating the various error 
terms to form a more stable overall error term. In this example we have one error term 
that is a four-way interaction, three error terms that are three-way interactions, and 



TABLE 18.30 

i)esign with three within-subjects factors 

Repeated measures 

Female 

Hyperactive Normal 

Sex of teacher" 

I'cmale 

Mule 

• lIetween-subjects factor . 

• , Level of expectancy. 

TABLE 18.31 

High Low High 

":rror terms for three within-subjects factors 

Source 

lIetween subjects 

Sex of teacher 

Teachers (within sex) 

Within subjects 

Expectancy 

Expectancy X Sex of teacher 

Expectancy X Teachers (within sex) 

Pupil sex 

Pupil sex X Sex of teacher 

Pupil sex X Teachers (within sex) 

Expectancy X Pupil sex 

Expectancy X Pupil sex X Sex of teacher 

Expectancy X Pupil sex X Teachers (within sex) 

Diagnosis 

Diagnosis X Sex of teacher 

Diagnosis X Teachers (within sex) 

Diagnosis X Expectancy 

Diagnosis X Expectancy X Sex of teacher 

Diagnosis X Expectancy X Teachers (within sex) 

Diagnosis X Pupil sex 

Diagnosis X Pupil sex X Sex of teacher 

Diagnosis X Pupil sex X Teachers (within sex) 

Diagnosis X Expectancy X Pupil sex 

Diagnosis X Expectancy X Sex (P) X Sex (T) 

df 

(9) 

8 

(70)" 

I 

8 

8 

8 

8 

8 

8 

Diagnosis X Expectancy X Sex (P) X Teachers (within sex) 8 

Male 

Hyperactive Normal 

Low High Low High 

Error terms 

Error term for preceding line 

Error term for preceding two lines 

Error term for preceding two lines 

Error term for preceding two lines 

Error term for preceding two lines 

Error term for preceding two lines 

Error term for preceding two lines 

Error term for preceding two lines 

• Computed as (N of subjects) X (dJfor levels of repeated measures). This study has eight levels arranged as a 2 X 2 X 2 
furmat, so dJ for levels of repeated measures = 8 - 1 = 7, the N of subjects = 10, and dJ for within subjects = 
III X 7 = 70. 

563 
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three error terms that are two-way interactions. In this situation it is useful to begin 
with the higher order interactions and aggregate them first. For example, we might 
begin by aggregating (F < 2) the three-way interactions (along with the four-way, 
because there is just one) to form the new error term for all terms tested by any of 
these error terms. We then aggregate the two-way interaction error terms (F < 2) to 
form the new error term for all terms tested by any of these error terms. Finally, if 
the two new error terms can be aggregated (F < 2), we can use this new super-error 
term to test all within-subjects sources of variation. In any of the aggregations 
described, the error terms should be weighted by their df. 

FIXED OR RANDOM FACTORS 

So far in our discussion of three or more factors in designs using repeated measures, 
we have assumed that all factors other than subjects-within-conditions have been fixed 
rather than random. That is, in fact, the most common situation. We should, however, 
note the consequences for significance testing of having other factors in the design 
that are random rather than fixed. In our illustration, assume we have randomly 
assigned five female and five male teachers to each of four schools to instruct two 
pupils briefly. One of each of the two pupils has been designated at random as a 
student of high intellectual potential. The design is shown in Table 18.32, and the 
sources of variance, df, and error terms are shown in Table 18.33. 
~ If all our variables, including school, had been fixed factors, there would have 
been only two error terms. Teachers (within conditions) would have served as the 
error term for all three between-subjects effects, and Expectancy X Teachers would 
have served as the error term for all four within-subjects effects. However, when 
schools are considered a random factor, we find five error terms rather than two. Now 
the sex-of-teacher effect is tested against the Sex-of-teacher X School interaction, an 
error term that has only 3 df. These 3 df contrast to the 32 df associated with the error 
term that we would use if schools were a fixed factor rather than a random factor. 

TABLE 18.32 

Fixed versus random factors? 

Between subjects Repeated measures 

School Sex Control High expectancy 

Female 

Male 

2 Female 

Male 

3 Female 

Male 

4 Female 

Male 
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' .. ABLE 18.33 

.:rror terms for two between- and one within-subjects ANOVA with one 
between factor random, not fixed 

Stlurce 

IIclween subjects 

Sex of teacher 

School 

Sex of teacher X School 

Teachers (within conditions) 

Wilhin subjects 

Expectancy 

Expectancy X Sex of teacher 

Expectancy X School 

Expectancy X Sex of teacher X School 

Expectancy X Teachers 

df 

(39) 

3 

3 

32 

(40)b 

3 

3 

32 

• Assuming school to be a random rather than a fixed factor. 

Error tenns· 

Error term for sex of teacher 

Error term for preceding two lines 

Error term for expectancy 

Error term for expectancy X Sex of teacher 

Error term for preceding two lines 

" ('omputed as (N of subjects) X (d! for levels of repeated measures). In this study there are N = 40 subjects and two 
,,"vcls of the repeated measures factor (d! = 2 - 1 = 1), so there are N X d! (levels) = 40 X I = 40 d! for within 
.uhjccts. 

The advantage of considering schools a random factor is that we can generalize to 
Ihe population of schools represented by those four schools. The disadvantage of 
considering schools a random factor is the low power to reject the null hypothesis 
IIssociated with our having only four schools in the study. 

In practice, it sometimes happens that we have the best of both worlds, when the 
MSerror considering the effect random is similar in size to the MSerror considering the effect 
lixed. In our example, that would occur if the mean square for Sex-of-teacher X School 
were similar in size to the mean square for teachers-within-conditions. If that were the 
case, we could aggregate the two error terms. We would weight each by its df and use 
Ihe new pooled error term instead of either of the two components. 

Turning to the within-subjects factors, we find that expectancy is tested against 
Ihe Expectancy X School interaction, and the Expectancy X Sex-of-teacher interaction 
is tested against the Expectancy X Sex-of-teacher X School interaction. The com­
ments made above in the discussion of the sex-of-teacher effect apply here as well. 
Note that both of the fixed effects (sex-of-teacher and expectancy) and their interaction 
(Sex-of-teacher X Expectancy) are tested against error terms that we form by crossing 
Ihe effect to be tested by the random effect (schools, in this example). More detailed 
discussions of forming error terms in repeated measures are available in Winer, Brown, 
and Michels (1991). 

When we have three or more factors, two or more of which are random effects, 
we cannot properly test one or more of the effects by any error term. Nevertheless, 
useful approximate procedures employing "quasi Fs" are available and have been 
discussed by Maxwell and Delaney (2000), Myers and Well (2003), Snedecor and 
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Cochran (1989), Wickens and Keppel (1983), and Winer, Brown, and Michels 
(1991). 

DID REPEATED MEASURES HELP? 

Perhaps the primary reason for using repeated-measures designs (Le., in which the 
effects of greatest interest are the main effects of the repeated-measures factors or the 
interactions involving the repeated-measures factors) is to use subjects as their "own 
control" in hopes of increasing the precision of the experiment. As we said at the 
beginning of this chapter, the more the scores of the subjects (or other sampling units) 
under one condition are correlated with the scores of the subjects under another 
condition of the same experiment, the more advantage we find in repeated-measures 
designs. Very low correlations between scores earned under one condition and 
scores earned under other conditions of the experiment suggest using a repeated­
measures design has little statistical advantage. There may still be a logistical 
advantage, however, because it is usually more efficient to measure n subjects k times 
each than to measure n X k subjects once each. 

To understand whether using repeated measures does indeed help, consider the 
simple repeated-measures design in Part A of Table 18.34, in which five subjects are 
each measured on three subtests. For these five subjects we can compute the correlation 
~T) between their performance on Subtests 1 and 2, 1 and 3, and 2 and 3. The resulting 
correlations are .64, .80, and .58, respectively, with a mean r of .67. This very 
substantial average correlation suggests that a repeated-measures design would be 
much more efficient than a between-subjects design. Computing the mean of three rs 

TABLE 18.34 

Five subjects tested three times each 

A. Scores on three subtests 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

Subject 5 

B. Summary ANOVA 

Source 

Between subjects 

Within subjects 

Subtests 

Subtests X Subjects 

1 

5 

3 

3 

2 

SS 

24.0 

11.2 

6.8 

Subtests 

2 

6 

6 

4 

2 

4 

df 

4 

2 

8 

3 

7 

4 

6 

3 

4 

MS 

6.00 

5.60 

0.85 
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was not arduous. Suppose, however, there were 10 subtests instead of 3. We would 
need to compute (10 X 9)/2 = 45 correlations. A more convenient approach is simply 
using the analysis of variance summary table. This approach involves the computation 
III" the intraclass r, an index that was described briefly in chapter 4 (notice that the 
subjects' scores in Part A of Table 18.34 are identical to those in Table 4.4, and the 
IInly difference is the substitution of the column heading "Subtests" in Table 18.34 
for "Judges" in Table 4.4). 

THE INTRACLASS r REVISITED 

In chapter 4 we used the intraclass r to obtain an estimate of judge-to-judge 
reliability. Stated more generally, the intraclass r is an index of the degree of 
similarity of all observations made on a given sampling unit, such as a subject. If 
all the pairs of observations made on the subjects (e.g., Subtest 1 and Subtest 2), 
show a high correlation, the intraclass r tends to be high. In fact, the intraclass r 
is a good estimate of the mean correlation obtained from the correlation of all 
possible pairs of observations made on subjects (e.g., Subtest 1 with 2, 1 with 3, 
2 with 3, etc.). To compute the intraclass r we begin with the mean squares of the 
analysis of variance, as shown in Part B of Table 18.34 (a repeat of Table 4.5, 
except for the new label of the repeated-measures variable). The intraclass r is 
computed from 

MSs-MSsXk 
r. - --------
mtraclass - MSs + (k - 1)MSsxk' (18.17) 

where MSs = mean square for subjects, MSSXk = mean square for SUbjects X 
Repeated-measures factor, and k = number of levels of the repeated-measures factor. 
For our example, 

l1ntraclass = 6.00 - 0.85 = .67 
6.00 + (3 - 1) 0.85 ' 

a value that agrees with the mean r of .67 reported earlier. 
As an illustration of the use of the intraclass r in a more complex design, 

consider an experiment in which the effects of two treatments are measured over three 
successive weeks. Our aim is to assess the typical correlation among the three 
occasions of measurement, but with the correlation computed separately within each 
treatment condition. Note that if we computed the correlation among the occasions 
for all subjects, our correlations would be inflated by the magnitude of the treatment 
effect. The data are shown in Part A of Table 18.35, and the summary ANOVA is 
shown in Part B. The intraclass ~, computed from Equation 18.17, is 

rmtraclass = .89 - .56 = .16 . 
. 89 + (3 - 1).56 

Had we computed the correlations among the three occasions separately within each 
treatment condition, our rs would have been .00, - .50, + .50, + .50, .00, + .50, with 
a mean r of .17, a value agreeing well with the intraclass r of .16 computed from the 
mean squares. 
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TABLE 18.35 

Design with two treatments measured on three occasions 

A. Scores on three occasions 

Occasions 

1 2 3 

Treatment A 

Subject 1 2 2 4 

Subject 2 2 0 3 

Subject 3 3 

Subject 4 3 2 

Treatment B 

Subject 5 3 3 5 

Subject 6 3 2 3 

Subject 7 4 2 4 

Subject 8 2 4 

B. :Summary ANOVA 

Source SS df MS 

Between subjects 

1. Treatments 6.00 6.00 

2. Subjects within treatments 5.33 6 0.89 

Within subjects (16) 

3. Occasions 16.00 2 8.00 

4. Occasions X Treatments 0.00 2 0.00 

5. Occasions x Subjects 6.66 12 0.56 

6. Aggregated terms 2 and 5 11.99 18 0.67 

7. Aggregated terms 2, 4, and 5 11.99 20 0.60 

Lines 6 and 7 of the summary ANOVA in Table 18.35 suggest two ways of 
aggregating sources of variance. Had we used the aggregated tenns, our intraclass rs 
would have been .10 and .14 for aggregated tenns 6 and 7, respectively. These values 
are not dramatically different from the original (not aggregated) value of .16. In the 
present example the use of any of the three error tenns would have been quite 
reasonable. In general, the fewer the df for the original error tenn, and the less 
dramatic the difference between the tenns considered for aggregation, the better it is 
in the long run to aggregate tenns. 

One thing that we usually should not do to find out the correlations among the 
three occasions of measurement is to correlate the scores for all subjects, disregarding 
their treatment conditions. In the present example, such a correlation would yield rs 
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III' .50, .17, .67, with a mean r of .44. The difference between this mean r of .44 and 
the mean r of .17 (when rs are computed within the two treatment conditions) is due 
{'ntirely to the effects of the treatment. The equivalent intrac1ass r is one in which the 
treatment effect is aggregated with the subjects-within-treatment effect and is then 
regarded as the MSs, for example, (SStreatments + SSsubjects)/(d/treatments + d!subjects) = 

III + 5.33)/(1 + 6) = 1.62. Hence, 

llntraclass = 1.62 - .56 = .39, 
1.62 + (3 - 1) .56 

II value greatly inflated by the addition of the treatment variation to the subject 
vllriation. 

('OMPOSITE VARIABLES AND 
AUDITIONAL ASSUMPTIONS 

.'ormation of Composite Variables 

In chapter 5 we discussed the strategy of forming composites and other redescriptions 
III' variables. In many repeated-measures designs each of the repeated measures can 
he viewed as a replication of the measurement of some underlying construct. For 
t'xmnple, if the repeated measurements are the 11 subtests of a standard measure of intel­
lillence, or the 4 subtests of a social adjustment inventory, or the 3 psychophysiological 
indices of stress reaction, then the sum of the 11, or 4, or 3 subtests constitutes a 
lIleaningful composite index of intelligence, social adjustment, or stress reaction. The 
IlCtween-subjects sources of variance are essentially analyses of the repeated measures 
viewed as a composite variable. Where the sum of the repeated measures is sensibly 
Interpretable as an index of some construct, repeated-measures analyses have special 
ullvantages in terms of statistical power and in terms of testing for homogeneity of 
rffects. 

The advantages of statistical power accrue because, as we add more measurements 
01' lin underlying construct, we are better able to observe the effects of experimental 
,'ollllitions on the composite measure of the construct than on randomly chosen subsets 
of the composite. The principle at work here is that we have a better chance to show 
"l'I'ects with better measured constructs, and all else being equal, more repeatedly 
Illt'llsured constructs are better measured (Guilford, 1954; Rosenthal & Rubin, 1986). 
'1111.' advantages of the repeated-measures analysis of the components over an analysis 
of the results only for the sum of the measures (Le., the composite) are that we can 
1C'lIrn whether the experimental treatments, or other factors of the design, are affecting 
dll'l'erent components or subtests differentially. That is exactly what the Treatment X 
5ubtests interaction will tell us. ; 

In applications of this kind, the repeated measurements tend to be positively 
(orl'clated, often between .20 and .80. It turns out that the advantages of repeated­
nlC'llsures designs, in the sense of using more rather than fewer repeated measures of 
• construct, tend to increase when the intercorrelations among the repeated 
mcusurements are lower. This effect can be seen to be reasonable when we note that 
'lCh measure contributes more that is unique to the composite when that measure is 
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not too highly correlated with other measures. If the correlations among the measures 
are 1.00, after all, anyone measure would be as good as the total. 

Assumptions of F Tests on Repeated Measures 

When we discussed the IID-nonnal assumptions underlying the use of t and F tests in 
chapters 13 and 14, we mentioned the implications of heterogeneity of variance. Here 
we want to note a special implication of heterogeneity of variance of repeated-measures 
variables for the interpretation of the sum of the repeated measures (i.e., the composite 
index of the construct). This implication is that individual variables contribute to the 
composite in proportion to their variance. Those measures with large variances may 
contribute much more to the fonnation of the composite than the investigator may 
intend. One way of dealing with this problem and ensuring that all variables will 
contribute equally to the composite is to transfonn each variable to Z scores (with a 
mean of zero and a standard deviation of 1.00). We have more to say about composite 
variables in chapter 20 (see also Rosenthal, 1987), but we should also note that F tests 
computed in actual research situations are usually distributed only approximately as F. 

It will be recalled that the IID-nonnal assumptions have to do with the independence 
of errors (or sampling units), homogeneity of variance, and nonnality. In the case of 
repeated-measures analyses, there is a further assumption having to do with the relative 
magiiitudes of the intercorrelations among the various levels of the repeated-measures 
factors. For practical purposes, we regard this assumption as met to the degree that we 
have homogeneity of correlation coefficients among the levels of the repeated-measures 
factors (Hays, 1981; Snedecor & Cochran, 1989; Winer, Brown, & Michels, 1991). In 
those repeated-measures designs in which there are two or more levels of between­
subjects factors (such as treatments, sex, age, ability), there is still another assumption, 
which is that the pattern of intercorrelations among levels of the repeated-measures 
factors is consistent from level to level of the between-subjects factors (Winer, 1971). 
Both assumptions apply only to F tests on repeated measures with more than a single 
dfin the numerator (i.e., omnibus F tests). Thus, any F test in which there are only two 
levels of the repeated-measures factor does not need to meet these assumptions. Indeed, 
when there are only two levels, only one correlation is possible! Even when there are 
more than two levels of the repeated-measures factor, however, these assumptions are not 
needed when we have tested some focused hypothesis by means of a contrast, because 
contrasts also have only a single df for the numerator of the F used to test them. 

CONTRASTS IN REPEATED MEASURES 

In chapter 15 we described the advantages of computing planned contrasts rather than 
using diffuse, unfocused omnibus F tests in the analysis of variance. Contrasts allow 
researchers to ask crisp, focused, specific questions of the data, and in return, the 
researchers receive crisp, focused, specific answers in tenns of effect size estimates 
and tests of significance. Similar benefits accrue in the realm of repeated-measures 
analysis of variance when we use contrasts rather than diffuse, unfocused, omnibus 
tests. But in the case of repeated-measures analyses, contrasts can provide an enonnous 
additional advantage. Contrasts often allow us to greatly simplify our analysis by 
completely removing the repeated-measures factor altogether. This great simplification 



REPEATED MEASURES IN ANALYSIS OF VARIANCE 571 

is made possible by the use of individual contrast scores for each subject or other 
slImpling unit (Rosenthal & Rosnow, 1985; Rosenthal, Rosnow, & Rubin, 2000). 

(:ontrast (L) Scores 

( 'ontrast scores, more commonly called L (for lambda) scores, are metrics that define, 
!'or each sampling unit, the degree to which that particular unit's repeated measures 
nrc consistent with the prediction made in terms of the "A weights defining it. Suppose 
we predicted that, over the course of three measurements, the subjects measured 
would exhibit a linear increase in performance scores, which we represent by contrast 
weights of -1,0, +1. If some given subject had three consecutive scores of 3,5, and 
7, that subject would provide better support for our prediction than would a subject 
who had scores of 5, 7, 3, or 5, 5, 5. We quantify the degree of support, by which 
we mean the L scores for each sampling unit, as follows: 

(18.18) 

which may be recognized as a variation on Equation 15.2; in Equation 18.18 we have 
\uhstituted the individual (Y) scores for the group means of Equation 15.2. 

To illustrate the use of Equation 18.18, we return to Table 18.1. That table displays 
the scores of four subjects who were each measured on three occasions. Subject I 
(,lIrned scores of 0, 7, and 3 on the three occasions of measurement. Had our prediction 
lleen that subjects' performance would increase linearly, our smallest integer contrast 
11.) weights would be -1, 0, + 1. Thus, we find the L score of Subject 1 to be 

L = ~(Y;."AJ = 0(-1) +7(0) + 3(+1) = 3. 

I~ur the remaining three subjects of Table 18.1, the L scores are 

Subject 2 L = 1(-1) + 7(0) + 4(+1) = 3 

Subject 3 L = 3(-1) + 8(0) + 5(+1) = 2 

Subject 4 L = 4(-1) + 8(0) + 6(+1) = 2 

To address the question of the degree to which the scores of this sample of 
~lIh.iects support our linear prediction (defined by "A weights of -1, 0, + 1), we compute 
It one-sample t test as follows: 

I 
tcontrast = j ( * ) S[ 

(18.19) 

where I is the mean of the L scor~s, and S[ is the variance (S2) of the L scores. 
Suhstituting in Equation 18.19, we find 

2.5 
tcontrast = = 8.66, 

j(±).3333 
which, with df = n - 1 = 3, is significant at p = .0016 one-tailed, and (from Equation 
I ~,12) rcontrast = .98. 
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TABLE 18.36 

Performance scores on three occasions for two conditions of tutoring 

Session 1 Session 2 Session 3 Mean L 

Tutored Sl 0 7 3 3.33 3 

S2 7 4 4.00 3 

S3 3 8 5 5.33 2 

S4 4 8 6 6.00 2 

M 2.0 7.5 4.5 4.67 2.5 

Control Ss 5 2.33 0 

S6 3 6 4 4.33 

S7 4 5 3 4.00 -1 

SB 0 6 2 2.67 2 

M 2.0 5.5 2.5 3.33 0.5 

Mean of means 2.0 6.5 3.5 4.00 1.5 

Compare the directness and simplicity of this single t test with the analysis of 
variance of the data of Table 18.1 as shown in Table 18.2. Not only is the analysis of 
variance of Table 18.2 more complicated than our one-sample t test on the L scores, but 
Table 18.2 never does address our prediction that performance will increase linearly. The 
sessions effect of Table 18.2 tells us only that there is some greater-than-chance hetero­
geneity of session means; it tells us nothing about the nature of that heterogeneity. 

We now consider a slightly more complex research question. Suppose we want 
to know whether one particular group will show a greater linear increase in performance 
over time than will another group. Table 18.36 displays the results of an experiment 
in which four children were randomly assigned to tutoring for the improvement of 
reading skills and four other children were randomly assigned to a control (untutored) 
group. All children were tested for their reading skills on three occasions: one, two, 
and three months after the treatment conditions were implemented. Although there 
would, of course, be considerable interest in the overall effectiveness of the tutoring, 
the primary reason for this particular small-scale study was to compare the degree to 
which the tutored and untutored children showed a linear increment in their 
performance skills over the three occasions of testing. 

Table 18.37 shows the analysis of variance of the data of Table 18.36. The 
between-subjects effect of treatment was quite large in magnitude, but given the size 
of this study, the p value is .14, or .07 if a one-tailed t test is employed. The within­
subjects terms showed an enormous effect of sessions, with a very low p value 
reflecting the great differences among scores earned on the three occasions of testing. 
There was also a substantial interaction of Sessions X Treatment, reflecting the fact 
that the treatment effect varied over the three sessions. 

Our mean polish of the data of Table 18.36 gives the results shown in Table 18.38. 
Table 18.38 contains not only (a) the residuals defining the interaction in the six cells 
of the 2 X 3 design, but also (b) the row effects, (c) the column effects, and (d) the 
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'l'ABLE 18.37 

Analysis of variance of the data of Table 18.36 

Suurce 55 df M5 

Ilrlween subjects (32.67) (7) 

Treatment 10.67 10.67 

Subjects nested 22.00 6 3.67 

Wilhin subjects (99.33) (16) 

Sessions 84.00 2 42.00 

Sessions X Treatment 5.33 2 2.67 

Sessions X Subjects 10.00 12 0.83 

F 

2.91 

50.40 

3.20 

II 

.57 

.95 

.59 

p 

.14 

IImnd mean. The mean polish provides a useful summary of the results of the study, 
hut it does nothing to address our primary question about the difference between the 
treatment group and the control group in the degree of linearity of improvement. 
Ilowever, the question is easy enough to address simply by the use of L scores. 

Because the L scores define the degree to which any individual subject reflected, 
showed, or bore out the prediction, we need only compare the L scores associated 
wilh each of the two conditions (i.e., tutored vs. untutored control). That comparison 
IS easily made from the following formula for a two-sample t test: 

LI-L2 
t = ~====;::::= 

(~+~)St' nl n2 

(18.20) 

und we find 

2.5 - 0.5 
t = = 2.83, 

/(~+~)1.00 
which, with df= N - 2 = 6, issignificantatp = .015 one-tailed and (from Equation 15.12) 
,',,"III'IlS! = .76. The results show directly and clearly that, as predicted, the children 
ussigned to the tutoring condition reflected a greater upward linearity of performance 
over occasions than did the children of the control group. 

'l'ABLE 18.38 

Mean polish of the data of Table 18.36 
" 
Sessions 

1 2 3 Row effects 

'1'I,lurcd 1- 67 
+.33 

('''"Iml +.67 -.33 
+.331 +.67 

-.67 -.33 

('ultlmn effects -2.00 +2.50 -.50 (4.00) 
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Had the experiment used more than two groups (e.g., several treatment and/or 
control groups), and had we wanted to examine a specific hypothesis stating that our 
treatment and control groups would show a particular pattern of L scores, we could 
have extended the two-group comparison of Equation 18.20 to the more general t test 
of Equation 15.4, which we rewrite here as 

L(UAj) 
tcontrast = ~r,==:T=== 

(" Af) 2 L..J nj Saggregated 

(18.21) 

(" Af) 2 L..J nj S L aggregated 

HIERARCHICALLY NESTED DESIGNS 

In the analyses of variance we have considered so far, only a single factor was usually 
nested within other factors, and that single factor was usually subjects (or other 
sampling units) nested within conditions. There are many data-analytic situations. 
however, in which we have a hierarchy of nested sampling units. For example, we 
may have a sample of states, within each of which there is a sample of counties, 
within each of which there is a sample of towns or cities, within each of which there 
is a sample of precincts, within each of which there is a sample of voters. In 
hi~archically nested designs of this sort, the analysis depends a great deal on whether 
each of the hierarchical levels is regarded as a fixed factor or a random factor. Data 
structures of this sort give us rich opportunities to maximize the power and precision 
of our investigations of treatment effects of many kinds. Consider the hierarchically 
nested data structure in which we have 

6 school systems sampled from the state, 

4 schools sampled from each system, 

2 classes sampled from each school, and 

20 children sampled from each classroom 

Schematically, we can represent the data structure as shown in Table 18.39. 
In the remainder of this chapter we review five schematic designs in the order 

of their increasing power and precision. The five designs are shown in Table 18.40, 
where we see that they differ in the level at which we introduce the treatment condition, 
that is, (1) between systems; (2) within systems; (3) within schools; (4) within 
classrooms; and (5) within children. Designs 2-5 are repeated-measures designs in 

TABLE 18.39 

lllustration of hierarchically nested design 

Systems 2 3 4 5 6 

/ / \ \ / / \ \ 
Schools 1 2 3 4 ..... . 21 22 23 24 

/ \ / \ 
Classes 1 2 .................... . 47 48 

/ \ 
Children 1 2Q ....................................................................... . 

/ \ 
941...960 
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'!'ABLE 18.40 

"'Ive schematic designs 

Ik'1ilgn 1: Between systems 

Systems 

Ik'Hlgn 2: Within systems 

System 1 

System 2 

System 3 

System 4 

System 5 

System 6 

Ik'Hlgn 3: Within schools 

School 1 

School 2 

School 24 

Ik>IIlgn 4: Within classrooms 

tholll"n 5: Within children 

Classroom 1 

Classroom 2 

Classroom 48 

Child 1 

Child 2 

Child 960 

Treatment Control 

1,2,3 4,5,6 

Treatment Control 

Treatment Control 

Treatment Control 

Treatment Control 
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which the sampling units are measured twice, once under the treatment condition and 
once again under the control condition. The following is a preview of each design 
shown in Table 18.40 and the most obvious tor F test; alternative tests of significance 
are described after we give this preview: 

Design 1: Between Systems. Six systems are nested within conditions (i.e., 
treatment vs. control), not crossed by conditions, so it is not a repeated-measures 
design. Most simply, we can compare the three treated systems with the three control 
systems using a two-sample t test on 4 df or an F test on 1 and 4 df. 

Design 2: Within Systems. The six systems are crossed by conditions (treatment 
vs. control), so this can be viewed as a repeated-measures design. Most simply, we 
can compare the treated subunits of each of the six systems with their corresponding 
control subunits using a one-sample t test on 5 df or an F test on 1 and 5 df 

Design 3: Within Schools. The 24 schools are crossed by conditions, and the 
simplest significance test uses a one-sample t test on 23 df or an F test on 1 and 
23df 

Design 4: Within Classrooms. The 48 classrooms are crossed by conditions, and 
the simplest test of significance uses a one-sample t test on 47 df or an F on 1 and 
47 df 

Design 5: Within Children. The 960 children are crossed by conditions, and the 
simplest test of significance uses a one-sample t test on 959 df or an F on 1 and 959 df 

THE CHOICE OF ERROR TERMS 

For each of the five designs proposed, our preview has described the simplest, most 
obvious t test or F test. Actually, for each of those designs there are 3 or 4 proper 
error terms for the F tests (or t tests). Which error term we select depends on 
whether we regard each potential source of variation as a random factor or a fixed 
factor. Recall that factors are random when we view their levels as having been 
sampled at random from a larger population of levels of those factors to which we 
want to generalize, and factors are fixed when we view their levels as exhaustive 
(i.e., as constituting the entire population of levels, so that we do not have the goal 
of generalizing the results to other levels of the factors than the ones specifically 
used in the study). In the present instance, we can view systems, schools, and 
classrooms as fixed or random. 

In hierarchically nested designs where classes are nested in schools, which 
are nested in systems, the four possible arrangements of fixed versus random 
factors are as shown in Part A of Table 18.41. Four arrangements of fixed versus 
random factors that would not be possible are shown in Part B of Table 18.41. The 
four impossible arrangements are characterized by having a fixed factor nested 
within a random factor. Such nesting is impossible because we cannot generalize 
to new systems while, for example, restricting ourselves to the particular schools 
nested within the sampled districts. If we generalize to other systems, we are forced 
also to generalize to other schools in those systems. 

To illustrate the error terms in the five schematic designs of Table 18.40, we 
again review each in turn. For these illustrations there is another factor lower in the 
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'l'ADLE 18.41 

"'Ixed versus random factors 

A. Arrangements that are possible 

Arrangements 

I.l'vel 

Systems 

S~huois 

( '1lIsses 

1 

Fixed 

Fixed 

Fixed 

2 

Random 

Random 

Random 

3 

Fixed 

Fixed 

Random 

II. Arrangements that are not possible 

Arrangements 

bvel 5 6 7 

Systems Fixed Random Random 

Sdluuis Random Fixed Fixed 

( 'hlsses Fixed Fixed Random 

4 

Fixed 

Random 

Random 

8 

Random 

Random 

Fixed 

hierarchy than classes, and that is children nested within classrooms. It is regarded as 
" random factor and can therefore be added as the lowest level of our hierarchy of 
I'uclors in Arrangements 1 to 4. In discussing the sources of variation, we use the term 
m'tltments to refer to the conditions (treatment vs. control) factor. 

l)esign 1 

Iksign 1 is the between-systems design in which all factors are nested within a treat­
ment or a control condition, and no factors are crossed. Three of the systems are 
rundomly assigned to the treatment condition and three to the control condition. In the 
IIImlysis of the data we have the sources of variation as shown in Table 18.42. The error 
term for treatments (i.e., the denominator of the F test for treatments) is the lowest 
numbered Roman numeral error term that we regard as a random factor. If we regard 
"ystems nested in treatments (I) as a random factor, then systems (I) is the error term 
for treatments. If we regard Term I as fixed but II as random, then II is the proper 
error term. If we regard both I and II as fixed and III as random, then III is the 
I'roper error term, and so on. If we could aggregate (e.g., by Paull's rule of F < 2.00) 
Ihe fixed terms above the first ral'j.dom term (the lower Roman numeral error terms) 
wilh that first random term, then the fixed terms can be regarded as random effects. 
Thus, if Terms I, II, and III can be aggregated, we can generalize not only to other 
,:Iusses in the 24 schools (III), but also to other schools in the systems (II), and to 
ulher systems (I) as well. If we cannot aggregate the three error terms, and we had 
regurded Terms I and II as fixed and III as random, we could generalize only to other 
,llIssrooms in the specific 24 schools that are part of the specific 6 systems. 
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TABLE 18.42 

Sources of variation in Design 1 (Table 18.40) 

Sources df 

Between units (systems) (5) 

Treatments 

Systems nested in treatments 4 

Within units (954) 

II Schools nested in systems 18 

III Classes nested in schools 24 

IV Children nested in classes 912 (48 X 19) 

Total 959 

Design 2 

In Design 2 the treatments are applied within each of the six systems, with two 
schools randomly assigned to the treatment condition and two schools randomly 
assigned to the control condition. Therefore, there is a partial "de-nestification" so 

"that treatments are now crossed by systems. That is to say, each condition (treatment 
and control) now co-occurs with every level of the systems factor of six levels. 
Within each combination of treatment and system, the remaining two schools arc 
nested, the classes are still nested in their schools, and the children are still nested in 
their classrooms. The sources of variation for this design are shown in Table 18.43. 
Just as in Design I, the error term for treatments (i.e., the conditions of treatment vs. 
control) is the lowest numbered Roman numeral error term that we regard as a random 
effect. The rest of the discussion of Design 1 (e.g., aggregation of error terms) applies 
also to Design 2. 

TABLE 18.43 

Sources of variation in Design 2 (Table 18.40) 

Sources df 

Between units (systems) 5 

Within units (954) 

Treatments 

Treatments X Systems 5 

II Schools nested in treatments X Systems 12 

III Classes nested in schools 24 

IV Children nested in classes 912 (48 X 19) 

Total 959 
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TABLE 18.44 

Sources of variation in Design 3 (Table 18.40) 

II 

III 

Sources 

Between units (schools) 

Systems 

Schools nested in systems 

Within units 

Treatments 

Treatments X Systems 

Treatments X Schools nested in systems 

Children nested in classes 

Total 

Design 3 

df 

(23) 

5 

18 

(936) 

5 

18 

912 

959 

(48 X 19) 

The conditions (treatment and control) are implemented within each of the 24 schools 
in Design 3. Of the two classrooms in each of the 24 schools, one is randomly 
assigned to the treatment condition and the other is randomly assigned to the control 
condition. The "classrooms" term disappears because classrooms are intentionally 
confounded with treatments. The 24 schools are still nested within systems, but they 
are now crossed by the condition factor, and the children are still nested in their 
classrooms. The sources of variation for this design are shown in Table 18.44. Just 
as in Designs 1 and 2, the error term for treatments (i.e., treatment condition vs. 
control condition) is the lowest numbered Roman numeral error term that we regard 
as a random factor. The rest of the discussion of Design 1 applies also to Design 3. 

Design 4 

The conditions (treatment and control) in Design 4 are implemented in each of the 48 
classrooms, with 10 children randomly assigned to the treatment condition and 10 
children randomly assigned to the control condition. Classrooms are now the units of 
analysis, and they are crossed by the treatment factor. Children are still nested, but 
now within their Treatment X Classroom combination (i.e., within one of the 96 semi­
classrooms of 10 children each). The sources of variation for this design are shown in 
Table 18.45. The selection of error terms for treatments is just as for the preceding 
designs (i.e., the lowest numbered Roman numeral error term that we regard as a 
random factor). The rest of the discussion of Design 1 applies also to Design 4. 

Design 5 

The conditions (treatment and control), in Design 5 are implemented within each 
of the 960 sampling units (i.e., children). Thus, each child is administered both the 
treatment and the control condition, with half the children randomly assigned to 
the treatment condition first, and the remainder to the control condition first. 
(For simplicity, we do not build the sequence of treatment first versus control first 
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TABLE 18.45 

Sources of variation in Design 4 (Table 18.40) 

II 

III 

IV 

Sources 

Between units (classrooms) 

Systems 

Schools nested in systems 

Classes nested in schools 

Within units 

Treatments 

Treatments X Systems 

Treatments X Schools nested in systems 

Treatments X Classes nested in schools 

Children nested in semiclasses 

Total 

df 

(47) 

5 

18 

24 

(912) 

5 

18 

24 

864 (96 semiclasses X 9) 

959 

into the analysis in Design 5, but we do so next in Design 5A). Children are now 
th~ units of analysis and they are crossed by the treatment factor. The sources of 
variation for Design 5 are shown in Table 18.46. The selection of error terms for 
the treatments factor is just as for the preceding designs (i.e., the lowest numbered 
Roman numeral error term that we regard as a random factor). The rest of the 
discussion of Design 1 applies also to Design 5. 

TABLE 18.46 

Sources of variation in Design 5 (Table 18.40) 

Sources df 

Between units (children) (959) 

Systems 5 

Schools nested in systems 18 

Classes nested in schools 24 

Children nested in classes 912 (48 X 19) 

Within Units (960) 

Treatments 

Treatments X Systems 5 

II Treatments X Schools nested in systems 18 

III Treatments X Classes nested in schools 24 

IV Treatments X Children nested in classes 912 

Total 1,919 
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Uesign SA 

The variant of Design 5 designated Design 5A builds the sequence of administra­
lion of treatments to children into the design as an additional factor. Design 5A 
uHows us to investigate the overall effect of the sequence (treatment, then control 
vs. control, then treatment) and the effect of the Treatment X Sequence interaction, 
which is actually an "alias" of the order effect comparing the first-administered to 
Ihe second-administered condition. A major improvement of the analysis shown in 
Table 18.47 for Design 5A over that of Design 5 (in Table 18.46) is the systematic 
decomposition of the 912 df error terms of Design 5 into five separate sources of 
variation based on sequences (df = 1), systems (df = 5), schools (df = 18), classes 
(c(f = 24), and children (df = 864), which gives greater flexibility in the selection 
of error terms. Selection of error terms for treatments is just as in the preceding 
designs. Selection of error terms for the Treatments X Sequences interaction 
(i.e., the effect of order) is the lowest lettered (A, then B, etc.) error term that we 
regard as a random factor. 

TABLE 18.47 

Sources of variation in Design 5A 

A 

B 

C 

II 

III 

D IV 

Sources 

Between units (children) 

Systems 

Schools nested in systems 

Classes nested in schools 

Sequences 

Sequences X Systems 

Sequences X Schools nested in systems 

Sequences X Classes nested in schools 

Children nested in sequences X Classes 

Within units 

Treatments 

Treatments X Systems 

Treatments X Schools nested 

Treatments X Classes nested 

Treatments X Sequences (order) 

Treatments X Sequences X Systems 

Treatments X Sequences X Schools 

Treatments X Sequences X Classes 

Treatments X Children nested 

Total 

df 

(959) 

5 

18 

24 

1 

5 

18 

24 

864 (96 X 9) 

(960) 

5 

18 

24 

5 

18 

24 

864 

1,919 
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CHAPTER 

19 
SIGNIFICANCE 
TESTING AND 
ASSOCIATION 

IN TABLES 
OF COUNTS 

III Ihis chapter we present some material on the analysis of frequency counts that 
1I1'l' cast into tabular form. Such tables of counts are also commonly known as 
"I/I,ingency tables, and by far the most popular data-analytic procedure used with 
Ilwlll is the chi-square (X2) test. Indeed, in an authoritative tutorial on "association 
IIlId estimation in contingency tables," the statistician and social scientist Frederick 
Mosleller (1968) remarked that "the first act of most social scientists upon seeing 
II contingency table is to compute chi-square for it" (p. 1). He added, "Sometimes 
Ihis process is enlightening, sometimes wasteful, but sometimes it does not go quite 
'"r enough" (p. 1). The chi-square test was introduced by Karl Pearson in 1900. 
Sligier (1986), in his book on the history of statistics, noted that Pearson had 
I,,'cn preoccupied with the randomness of Monte Carlo roulette and, while in 
nll-rcspondence with another statistician (Francis Edgeworth), had described 
I)rciilllinary ideas for a go~dness-of-fit statistical significance test. In 1894, Pearson 
rllhlished a polemic in which he urged colleagues to implore the French government 
III dose the gaming salons and "hand over the remaining resources of the Casino 
III Ihc Academie des Sciences for the endowment of a laboratory of orthodox 
1)l'IIhnhility" (quoted in Stigler, pp. 328-329). The chi-square test apparently evolved 
III Pcnrson's thinking in this pragmatic context. 

585 
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Perhaps the most famous application of Pearson's significance test, however, 
was published in 1936 by R. A. Fisher to evaluate the great Austrian biologist 
Gregor Mendel's own reported data. In their history of the concept of probability, 
Gigerenzer et aI. (1989) noted that the chi-square test had in fact been applied to 
the assessment of Mendelian hypotheses as early as 1912 by the American statisti­
cian J. A. Harris. It was Fisher, however, who in 1925 was inspired to use the test 
to decide whether deviations from expected Mendelian ratios were statistically 
significant enough to allow rejection of the hypothesis in question (Gigerenzer 
et aI., 1989, p. 150). In 1936, Fisher wrote a paper in which he argued that Mendel's 
results were so close to what he had theoretically predicted as to raise a suspicion 
that the data had been "cooked." Among Mendel's predictions, for example, was 
a 3:1 ratio for round versus wrinkled peas, and his results were 5,474 round and 
1,850 wrinkled peas. Similarly, a 3: 1 ratio had been predicted for yellow to green 
peas, and the reported data were almost perfectly correct: 6,022 yellow and 2,001 
green peas. Fisher surmised that it was not Mendel but an overzealous research 
assistant who had "adjusted" the results to the Mendelian ratio (Gigerenzer et aI., 
1989, pp. 151-152). 

We have much to say about chi-square in this chapter, but because it is an approx­
imate method, we also discuss an exact probability test developed by Fisher for 2 X 2 
contingency tables when expected frequencies are quite small. When working with tables 
of counts larger than 2 X 2, there are several possible strategies, which we discuss in 
this chapter, including again the use of contrasts. We also describe an inspection proce­
dure developed by Mosteller, which is particularly useful for larger tables of counts. In 
the case of 2 X 2 tables in biomedical trials, the Mosteller procedure frequently preserves 
a relationship known as the odds ratio. We illustrate the limitations of the odds ratio 
(and two other popular effect-size indicators in biomedical trials) and describe an adjusted 
approach based on the binomial effect-size display (Rosenthal, Rosnow, & Rubin, 2000). 
The 2 X 2 is not the smallest imaginable table of counts, nor are we limited only to 
two-dimensional tables of counts, and the chapter concludes with a discussion of one­
sample tables in which there are two or more levels of just a single variable (1 X k tables 
of counts). 

We are often asked which procedure or which strategy we recommend when 
researchers feel they must narrow their choices to one particular data-analytic approach. 
As we have said before, we almost always prefer statistical procedures that address 
specific, focused questions rather than diffuse, unfocused ones. But even within this 
framework, more than one approach is usually possible. That being the case, our habit 
is to recommend perhaps analyzing the data more than once, that is, by more than 
one focused test or by an approach from more than one exploratory perspective. The 
tenor of the conclusions reached should be unchanged, in which case we ought to 
have more confidence in the robustness of our inferences. Different strategies leading 
to different conclusions is a not-very-subtle hint to think deeply about why those 
conclusions are so tenuous. Continuing in the spirit of methodological pluralism, we 
again make a point in this chapter of demonstrating the utility (and the limitations) 
of different strategies for analyzing tables of counts. And as in previous discussions, 
we concentrate not just on the p values, but also on r-type indices of effect sizes for 
I-df chi-square and other focused procedures. 



SIGNIFICANCE TESTING AND ASSOCIATION IN TABLES OF COUNTS 587 

THE l-df CHI-SQUARE TEST 

As is true of all statistical significance tests, the chi-square test can be understood in 
lenns of a conceptual relationship (Equation 11.10) that we have referred to repeatedly 
in previous chapters, namely, 

Significance test = Size of effect X Size of study. 

hlr 2 X 2 tables of independent frequencies, one specific form of this relationship was 
~Iuted as follows in chapter 2 in the very first equation in this book (Equation 2.1): 

xfl) = <1>2 X N, 

where xtl) is the chi-square test statistic on df = 1, and we determine dfin any two­
,limcnsional table of counts by multiplying the number of rows minus 1 by the number 
IIf columns minus 1. Thus, for a 2 X 2 table of counts we have (2 - 1)(2 - 1) = 
I 1(1: We also referred to the term <1>2 (phi-square) in our discussion of correlation in 
dlupter 11, where <1>2 was defined as the squared product-moment correlation between 
Ihc variable represented by the two rows and the variable represented by the two 
l"olumns in a 2 X 2 table of counts. As usual, N refers to the total number of sampling 
ullits, or in this case to the total number of independent frequencies in all four cells 
III' Ihe 2 X 2 table of counts. 

Thus, xtl) can also be understood as a test of significance of the effect size 
rstimate <1>2. To be consistent with our preference for product-moment correlation 
l"ocflicients (rather than their squares) as effect size estimates, we might prefer to say 
Ihllt Z (the standard normal deviate and the square root of xtl)) is a test of significance 
of 41 because, as previously expressed in Equation 11.15, 

When computing X2 from tables of counts, it is essential to keep the independence 
lI.ssumption in mind. Thus, in a 2 X 2 table, there must be N independent sampling 
ullits, each having contributed to only one of the four cells of the 2 X 2 table. It 
would not do, for example, to have N /2 sampling units, each having contributed two 
nhservations to the total number of observations (N). 

We would also like the frequencies that are expected in each cell, if the null 
hypothesis of no relationship is true, not to be too small. At one time it was thought 
Ihut an expected frequency should not fall below 5 for any cell. Evidence now 
Indicates, however, that very usable X2 values can be obtained even with expected 
hr1lucncies as low as 1, that is, as long as the total number of independent obser­
\-lIlions (N) is not too small. We know from the work of Gregory Camilli and 
K"llIlcth Hopkins (1978) that an N of 20 is large enough, but that small expected 
'n.'llucncies may work quite well in even smaller studies. The same authors also 
,huwed that corrections for continuity may do more harm than good. One adjust­
lI\ent for continuity, the Yates correction, involves reducing each occurrence of the 
tefm () - E by 0.5 before using the computational formula for xfl), expressed in 
'I,Iluntion 11.14 as 

2 _ .... (0 _E)2 
XiI) - £.. E ' 
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where 0 is the observed frequency in each cell, and E is the expected frequency in 
that cell (see our earlier discussion in chapter 11). (We have more to say about the 
Yates correction later in this chapter.) 

LARGER TABLES OF COUNTS 

There is a growing literature on the analysis of tables of counts of any size, much of it 
emphasizing the log-linear model. A definitive text using that model was coauthored by 
Yvonne Bishop, Stephen Fienberg, and Paul Holland (1975). An excellent brief introduc­
tion can be found in Hays (1994), and discussions of varying intermediate lengths are 
available in texts by Agresti (2002), Everitt (1977, 1992), Fienberg (1977), Fleiss, Levin, 
and Paik (2003), Kennedy (1983, 1992), and Upton (1978). The log-linear model 
approaches tables of counts in a manner analogous to analysis of variance. Though we 
do not describe the log-linear model in this book, our approach to contingency tables 
larger than 2 X 2 is consistent with the use of log-linear contrasts as developed by John 
Kennedy and Andy Bush (1988) and with our preference for testing focused rather than 
omnibus hypotheses. Just as in our approach to the F statistic, in which we want the 
numerator df to be no greater than unity, we also want the df for any X2 tests to be no 
greater than unity. (The denominator df for F is roughly analogous to N in tables of 
counts, and given a choice, we like those quantities to be large rather than small.) 

Dummy-Coding Qualitative Data 

In chapter 11 we saw how we could quantify qualitative data in the specific case of the 
2 X 2 table of counts reproduced in Table 19.1. As noted earlier, the small group sizes are 
for pedagogical convenience, as we assume that the sample sizes in an investigation of 
this nature would be substantially larger. The qualitative difference shown between the 
two groups can be quantified simply by assigning the value of 0 to one group and the 
value of 1 to the other. Thus, if we gave "being a Republican" a 1 and "being a Democrat" 
a 0, we would have a scale of "Republican-ness," and if we assigned a 1 to "being a 
Democrat," we would have a scale of "Democrat-ness." Similarly, we can assign a 0 or a 1 
to the dependent variable of item response. If we assigned a 1 to "yes" and a 0 to "no," we 
would have a scale of agreement with the item, or "yes-ness," and reversing the numbers 
would give us a scale of disagreement, or "no-ness." Using the procedure described in 
chapter 11 (and Equation 11.12), we find that ¢ = .60 when being a Republican is coded 
1 and responding "yes" is coded 1, whereas "Democrat" and "no" are coded O. 

TABLE 19.1 

Illustration of 2 x 2 table of counts 

Democrats RepUblicans L 

Yes 4 5 

No 4 5 

L 5 5 10 
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Imagine, however, that we have instead the 2 X 3 contingency table shown 
in Part A of Table 19.2. We could still dummy-code the yes-versus-no dependent 
vuriable as before. But what should we do with the three levels of the independent 
vuriable? Suppose we know nothing at all about th~ composition of the "Others" 

'I'AOLE 19.2 

Illustration of 2 x 3 table of counts 

J\. The 2 x 3 table 

Independent variable 

Democrats Republicans Others ~ 

Yes 4 2 7 
Ilrpendent variable 

No 4 2 7 

~ 5 5 4 14 

... Individual respondents and dummy-coded variables 

Dependent variable Independent variable 

Agreement "Democrat-ness" "Republican-ness" "Other-ness" 

M"'IKlIlIlent I I 0 0 

M"'IKlIlIlent 2 0 0 

M"'IKlI1dent 3 0 0 

M"'IKlndent 4 0 0 

M"',KllIllent 5 0 0 

M~"Klndent 6 0 0 

1I'·',KllIllent 7 1 0 0 1 

1I"',Klndent 8 0 0 0 

1I"',MllIllent 9 0 0 0 

""'IKlndent 10 0 0 0 

..... ' .. ,ndent II 0 1 0 0 

.t>IMlndcnt 12 0 0 1 0 

.... 'Ml/loIcnt 13 0 0 0 

_"IMlIldt'nt 14 0 0 0 

". 11I11'I'C:llrrelations among the four variables 
• 

Agreement ''Democrat-ness'' "Republican-ness" ''Other-ness'' .. 
At· .... llk'nt -.45 +.45 .00 

"""""'fIIl·ness" -.56 -.47 

\"'III.hlit'llIl.ness·· -.47 

.JlIII'I nrss" 
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group; then it would make no sense to assign that group a value of .5. The reason 
is that doing so would mean creating a scale in which that group is assumed to 
belong halfway between the anchoring ends of our Democrat-Republican scale. 
That might be a reasonable numerical assignment for some political group, but not 
for one whose composition is a mystery to us. Instead, we would create a series 
of dummy variables as follows: 

"Democrat-ness" Democrats = 1; Republicans = 0; Others = 0 

"Republican-ness" Republicans = 1; Democrats = 0; Others = 0 

"Other-ness" Others = 1; Democrats = 0; Republicans = 0 

Given the three dummy-coded groups and the single dummy-coded dependent 
variable of "Yes-ness" (or agreement with the item presented), we might rewrite the 
data as shown in Part B of Table 19.2. The table of intercorrelations (phi coefficients) 
among the four variables is shown in Part C. Inspecting that correlation matrix informs 
us that the Republicans, compared with the non-Republicans (Democrats-plus-Others), 
were more likely to agree with the particular item (i.e., answer it "yes"). The Demo­
crats, compared with the non-Democrats (Republicans-plus-Others), were less likely 
to agree with the item, and being in the category Other rather than non-Other 
(Democrats-plus-Republicans) was unrelated to agreement. Notice as well that the 
~three correlations among the independent variables are all negative and comparatively 
strong, as we might expect. That is, we might expect this result on the assumption 
that the more one belongs to Group A, the "less" one can belong to Group B or 
Group C. In the extreme case of just two variables (e.g., Democrat vs. Republican), 
the intercorrelation would be -1.00, so no information would be gained by the 
use of both variables. 

Ordering the Levels of a Dimension 

Sometimes we can do better than dummy-coding the variables. Instead, if we can 
order the levels of a dimension on some underlying conceptual continuum, we can 
create a score that is based on the position of each row or each column on the 
continuum. Suppose we obtain the observational data shown in Part A of Table 19.3. 
Rather than form a series of dummy variables, we might choose to conceptualize 
"severity of depression" as a predictor variable (i.e., an independent variable), 
so that 

Mildly depressed = 1 

Moderately depressed = 2 

Severely depressed = 3 

or 0] 
or 1 

or 2 

[
or -1 

or 0 

or + 1 

Similarly, we can create a scaled dependent variable of "degree of improvement after 
therapy," so that 

No improvement = 1 

Slight improvement = 2 

Moderate improvement = 3 

[
or 0 

or 1 

or 2 

or -1 

or 0 
or + 1 
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'I'ABLE 19.3 

('ounts with ordered levels 

A. Observed frequencies 

Level of improvement 

I,t'vel of depression None 

Mildly depressed 

Moderately depressed 2 

Srvcrely depressed 5 

~: 8 

Slight 

2 

5 

2 

9 

Moderate 1: 

5 8 

7 

8 

8 

24 

II. Scaled scores for independent variable (IV) and dependent variable (DV) 

Level of depression (IV) 

Mild (n = 8) Moderate (n = 8) Severe (n = 8) 

IV DV IV DV IV DV 

I 1 2 1 3 1 

I 2 2 1 3 1 

I 2 2 2 3 1 

I 3 2 2 3 1 

I 3 2 2 3 1 

I 3 2 2 3 2 

I 3 2 2 3 2 

I 3 2 3 3 3 

We then simply compute the correlation (r) between the level of depression 
lind the level of improvement. Part B of Table 19.3 shows, for each of the 24 scores, 
Ihe independent variable (IV) score of 1, 2, or 3 and the dependent variable 
(I)V) score of 1, 2, or 3. Correlating those paired scores gives us r = -.52, 
implying that increasing levels of depression had a tendency to be associated with 
llecreasing levels of improvement. As described in chapter 11, we can test 
Ihe significance of that r by means of t (using Equation 2.2). It would not do 
simply to test significance by means of the Xf4) test on the results in Part A, that is, 
Ihe chi-square test with df = (3 - 1)(3 - 1) = 4. The reason is not just that 
Ihe expected frequencies might be somewhat low for our taste. Rather, it is that the 
uverall xf4) addresses a different, more diffuse hypothesis, namely, that there is 
"some type of relationship" between rows and columns in Part A, instead of 
Ihe more focused hypothesis of a linear relationship addressed by Equation 2.2 
((he t test for r), In reporting these results we would want to make clear that this 
was a relational-type study, and thus, no conclusion of a causal relationship is 
implied, 
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DISTRIBUTIONS OF CHI-SQUARE 

The chi-square for a contingency table of any size is most easily computed from the 
general expression of the formula reiterated earlier (Equation 11.14) as 

(0 - E)2 
X2 = L E 

This quantity, when based on independent observations and expected frequencies not 
too small, tends to be distributed as chi-square on df = (number of rows - 1) X 

(number of columns -1). 
As is the case for t (chapter 13) and for F (chapter 14), there is a different chi­

square distribution for every value of df However, recall that F distributions begin 
at zero and range to positive infinity, whereas the symmetrical bell shape of t distri­
butions is always centered at O. Hence, we noted that the expected value of t is zero 
when the null hypothesis (Ho) is true, and the expected value of F is df/(df - 2), 
where these df are for the denominator mean square. All chi-square distributions also 
begin at zero and range upward to positive infinity. The expected value of a chi-square 
distribution when the Ho of no relationship between row and column frequencies is 
true is equal to the degrees of freedom defining the particular chi-square distribution. 
Thus, for X2 tests based on 1, 4, and 10 df, the average values of the X2 obtained if 
tlhe Ho is true are 1, 4, and 10, respectively. The median value of a given chi-square 

df= I, Mean = 1, Median = .46 

° 
FIGURE 19.1 

df = 4, Mean = 4, Median = 3.36, Mode = 2 

5 10 

ValuesofX2 

Three chi-square distributions, with df = 1, 4, and 10, respectively. 

15 20 
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'1'A8LE 19.4 

('hi-square values required for significance at various p levels 

p level 

IV .SO .50 .30 .20 .10 .05 .02 .01 .001 

.06 .46 1.07 1.64 2.71 3.84 5.41 6.64 10.83 

.45 1.39 2.41 3.22 4.60 5.99 7.82 9.21 13.82 

1.00 2.37 3.66 4.64 6.25 7.82 9.84 11.34 16.27 

·1 1.65 3.36 4.88 5.99 7.78 9.49 11.67 13.28 18.46 

2.34 4.35 6.06 7.29 9.24 11.07 13.39 15.09 20.52 

II 3.07 5.35 7.23 8.56 10.64 12.59 15.03 16.81 22.46 

K 4.59 7.34 9.52 11.03 13.36 15.51 18.17 20.09 26.12 

'" 6.18 9.34 11.78 13.44 15.99 18.31 21.16 23.21 29.59 

1\ 10.31 14.34 17.32 19.31 22.31 25.00 28.26 30.58 37.70 

.'II 14.58 19.34 22.78 25.04 28.41 31.41 35.02 37.57 45.32 

!\ 18.94 24.34 28.17 30.68 34.38 37.65 41.57 44.31 52.62 

ICI 23.36 29.34 33.53 36.25 40.26 43.77 47.96 50.89 59.70 

\ .. ,,' For df > 30, we can estimate the p value for any X2 by first finding the standard normal deviate Z associated with 
"'.'1' (c.g., Z = 1.96 is associated with p = .05 two-tailed). We find Z from Z = .fiX!- - /2dj - 1. 

.hslribution tends to be just less than the mean (df), and the mode for X2 distributions 
III ,({ = 2 or more is df - 2. 

As is also characteristic of F, values of X2 further and further into the right-hand 
Illil are less and less likely if the null hypothesis is true and are used to suggest that 
Iht' null hypothesis is probably false. Although in data-analytic work we use tables of 
"hi-square and computer output rather than pictured distributions, it is instructive to 
,",to some examples of X2 distributions. Figure 19.1 (after Lindquist, 1953) displays 
Ihrce such distributions. Notice that they move to the right with an increase in df, and 
III('Y lend to show greater symmetry as well. Table 19.4 shows the differences in 
\'lIl'ious X2 distributions by giving the area found to the right of the tabled values. 
·!'tIllS, for a single degree of freedom, the table shows that a X2 value of 3.84 would 
II(' found only 5% (i.e., .05) of the time if the null hypothesis of no relationship were 
Inlt'. A value of 10.83 or greater would be found only 0.1 % (i.e., .001) of the time. 

PROCEDURES FOR LARGER 
('ONTINGENCY TABLES 

I 

"'III' our illustration of the analysis of a table larger than 2 X 2, we present the results 
01 II ., X 3 study that will serve as a continuing illustration through much of our 
dh.nlssion (Gilbert, McPeek, & Mosteller, 1977). The units in this study consist of 
,,' medical investigations that can be categorized along two dimensions, each com­
,pttlling three levels. One dimension is the degree of experimental control achieved by 
Uk' investigators; the second dimension is the degree of enthusiasm shown by the 
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TABLE 19.5 

Study by Gilbert, McPeek, and Mosteller (1977) 

A. The 3 x 3 table of counts 

Degree of enthusiasm 

Degree of control High Medium Low 1: 

High 0 3 3 6 

Medium 10 3 2 15 

Low 24 7 32 

L 34 13 6 53 

B. Expected frequencies for results in Part A 

Degree of enthusiasm 

Degree of control High Medium Low 1: 

High 3.85 1.47 0.68 6.00 

Medium 9.62 3.68 1.70 15.00 

Low 20.53 7.85 3.62 32.00 
~ 

L 34.00 13.00 6.00 53.00 

C. Table of (0 - E)2/E values (or "partial" chi-square values) 

Degree of enthusiasm 

Degree of control High Medium Low 1: 

High 3.85 1.59 7.92 13.36 

Medium 0.02 0.13 0.05 0.20 

Low 0.59 0.09 1.90 2.58 

L 4.46 1.81 9.87 16.14 

investigators for their newly tested medical treatments. The categorizing of those 
53 investigations is shown in Part A of Table 19.5. We begin by describing the computation 
of an omnibus chi-square (i.e., X2 with df > 1) on those data. As we have stated 
repeatedly, omnibus statistical tests are generally deficient in that they are diffuse and 
unfocused, seldom telling us precisely what we want to know. Thus, we will also illustrate 
some alternative or follow-up analyses for the same data. 

Omnibus Chi-Square Analysis 

For each of the observed (0) frequencies in Part A of Table 19.5, we need also to 
compute the expected (E) values around which those observed frequencies fluctuate 
only moderately if the null hypothesis of no relationship between the rows and 
columns is true. We find the expected (E) value for each cell by multiplying the row 
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IlIlal of the row to which the cell belongs by the column total to which the cell 
hdongs, then dividing the product by the total number (N) of observations. That is, 

E = Row total X Column total. (19.1) 
N 

'Iii illustrate for the upper-left cell value of zero in the table of counts, substituting in 
1:4luation 19.1 gives us an expected frequency of (6 X 34)/53 = 3.85. When we do 
Ihcse calculations for each cell of observed frequencies, we obtain the expected 
I'rl'4uencies shown in Part B of Table 19.5. Notice that the row and column totals 
I i,c., the marginal values) are identical in A and B, as they should be if our calculations 
IIrc correct. 

We now simply substitute in the general equation for the chi-square test, which 
WIIS given as 

illl4l we find 

2 (0 - 3.85)2 (3 - 1.47)2 (3 - 0.68)2 
X - + +----

(4) - 3.85 1.47 0.68 

(10 - 9.62)2 (3 - 3.68)2 (2 - 1.70)2 
+ + +----

9.62 3.68 1.70 
(24 - 20.53)2 (7 - 7.85)2 (1 - 3.62)2 

+ + +----
20.53 7.85 3.62 

= 16.13. 

Another way of visualizing these calculations is shown in Part C of Table 19.5, where 
Ihe sum of the (0 - EnE cell entries is the value of Xt4)' (The final table value of 16.14 
diffcrs slightly from the result above, 16.13, because the "partial" chi-square values and 
nlllrginal values are rounded off to two decimal places.) The degrees of freedom are 
dl'noted by the subscript in xt4)' Another reporting standard notes the degrees of freedom 
lind total sample size in parentheses, followed by the significance level, which in this 
""lImple would be reported as X2(4, N = 53) = 16.13, p = .0028. No effect size estimate 
I~ indicated because this is an omnibus chi-square (i.e., df > 1).' 

A chi-square value this large or larger (i.e., occurring only .0028 of the time 
In rcpeated sampling if the null hypothesis of no relationship between the row and 
~'lIll1mn variables of experimental control and enthusiasm of the investigator is true) 
unfortunately tells us only that there is likely to be some sort of relationship. However, 
Ihe significant X2 tells us nothing at all about the type of relationship there might 
hl', The situation is analogous to that of an omnibus F test (i.e., F with more than 
I III in the numerator) in which we must also examine the condition means to see 
whllt the results actually show. In the present case we might inspect the individual 
CO E)2/E cell entries (or 'lpartial" chi-square values) to see which contributed 
mllst and least to the omnibus X2. Then again, as we show next, more satisfactory 
IIpproaches to tables larger than 2 X 2 are available than settling for an omnibus 
x: Icst of df > 1. 
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Analysis of Variance on Qualitative Data 

One alternative to the X2 test on qualitative data involves the application of analysis 
of variance. In this approach, suggested by William Cochran (1950), we begin by 
quantifying the qualitative data as we described earlier in this chapter. If the rows or 
columns representing the dependent variable can be scaled or ordered, as in our ear­
lier case of three levels of improvement (scored 1, 2, or 3), then each sampling unit 
can be assigned one of several numbers to serve as the dependent variable score. Even 
if scaling is not possible, we can still create a number of dependent variables, each 
one dummy-coded (0 or 1). Once we have scaled or dummy-coded (a special case of 
scaling) a score for each unit (e.g., for each subject), we compute the analysis of 
variance in the usual way. However, now the unit's scores will be only 0 or 1; or 1, 
2, or 3; or some other (usually small) set of possible values. 

Except for very small studies (say, df < 20), and for very extreme splits of 
dichotomous (Le., 0 vs. 1) data, the F tests obtained from the analysis of variance 
generally give quite accurate results (Edwards, 1972; Hsu & Feldt, 1969; Lunney, 1970; 
Snedecor & Cochran, 1989; Winer, Brown, & Michels, 1991). Commonly regarded as 
an extreme dichotomous split would be one in which 90% of the observations were of 
one type (0 or 1) and 10% were of the other type. When neither especially small 
sample sizes nor extreme splits pose a problem, Cochran (1950) suggested that results 
based on F might, under some conditions, be more accurate than those based on chi­
square. Ralph D' Agostino (1971; following Snedecor & Cochran, 1967) showed that, 
even for fairly extreme splits, transformations (e.g., arcsin, logit) can usually be used 
fa make the analysis of variance still work well. 

We will illustrate the use of analysis of variance by using the data of our continuing 
example, but we can do better than dichotomize the dependent variable of degree of 
enthusiasm. We can assign the scale scores of 1, 2, and 3 to the categories low, medium, and 
high levels of enthusiasm, respectively. We then write the scores for each of the three levels 
of the independent variable of degree of experimental control as shown in Table 19.6 

TABLE 19.6 

Analysis of variance of X2 results reported by Gilbert, McPeek, and Mosteller 
(1977) 

A. Listing of scores in Part A of Table 19.5 

Degree of control Listing of scores Mean 

High (6 observations) 2 2 2 1 1 1 1.50 

Medium (15 observations) 3 3 3 3 3 3 3 3 3 3 2 2 2 1 1 2.53 

Low (32 observations) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 2.72 

B. Summary ANOVA 

Source 

Between conditions 

Within conditions 

SS 

7.505 

17.702 

df 

2 

50 

MS 

3.753 

0.354 

F 

10.60 

1] p 

.55 1.5-4 
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(Part A). The results of the overall ANOVA are shown in Part B, and we note that the 
/' value of the omnibus F test (p = .(0015) is smaller than the p value of the omnibus 
~·hi-square (p = .0028). We might have expected this outcome if we felt that degree of 
cnlhusiasm would be affected by degree of control, because the scores used in the analysis 
III' variance were able to use the information that 3 > 2 > 1. The omnibus X2 would not 
hllve been any different even if levels of enthusiasm (columns) had been interchanged . 

• 'ocused Contrasts on Qualitative Data 

Although our omnibus F used more information than did the omnibus X2, the omnibus 
,.. still addressed only a diffuse question. For the conditions of high, medium, and low 
Ilcgrce of control in Part A of Table 19.6, we see that the row means are 1.50, 2.53, and 
!,72, respectively. The pattern of these means implies that studies reflecting a higher 
Ilcgree of control elicited, on average, less enthusiasm from the investigators than did 
,Iudies reflecting a lower degree of control. Of course, the p value for that statement has 
nlll yet been determined. The omnibus F implies only that the three row means differ 
,"mchow. As we saw in chapter 15, most omnibus tests of significance are best replaced 
hy planned contrasts. In the present case, let us assume that we predicted a negative 
hncar relationship between degree of experimental control and level of enthusiasm for 
'h~' rcsults. We compute a planned contrast with A weights of -1, 0, +1 for the mean 
Il'vcls of enthusiasm found for studies categorized as reflecting high, medium, and low 
Ill'grees of control, respectively. The formula for tcontrast in Equation 15.4 was 

_ ~(MiAJ 
{contrast - j ( At ) , 

MS 'th' ~-WI ill ni 

1",11 substituting in this equation we find 

(contrast = 0.50)(-1) + (2.53)(0) + (2.72)(+1) 

354[(_1)2 + (0)2 + (+1)2] 
. 6 15 32 

1.22 
=--=4.61, 

/.0701 
which, with df = 50, has an associated one-tailed p = 1.4-5 or two-tailed p = 2.8-5• 

U"ing Equation 15.12, we find rcontrast = .55. 
How do we report these results? In an earlier discussion we mentioned our 

1't\'l'crcnce for reporting the effect size indicator as positive when the pattern of 
uhscl'ved results is in the predicted direction and negative when the observed relation­
"hip is in the opposite direction of what was predicted. This convention is particularly 
1I\t'1'1I1 in meta-analytic work (to be discussed in chapter 21). On the other hand, some 
rl'!!curchers might prefer to report the rcontrast as negative in this case just to remind 
rl'lIl1crs (and themselves) that high degrees of control were associated with low degrees 
01 cnlhusiasm. Because of these two practices, it is recommended that the researcher 
... pluin in a sentence or two which practice is being followed in the research report. 
It, Ihis discussion we will think of rcontrast as - .55 simply as a reminder to ourselves 

I 'thAI high degrees of control are associated with low degrees of enthusiasm. 
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In our discussion of contrasts (in chapter 15) we mentioned that we often 
want to compute focused statistical tests on other people's data. In such situations 
we may lack the information required to compute Equation 15.4 because, for 
example, we are not given MSwithin (i.e., S~ooled) or the sample sizes for each of the 
groups. In that earlier discussion we described a procedure for computing Fcontrast 

(Equation 15.5) when all we have are the minimal ingredients of an omnibus F test 
and the condition means. We mentioned that it is easy enough to compute the 
alerting r between those condition means and our lambda weights (also symbolized 
as r~fi',). Given this basic information, we can also usually get a very useful 
approximate tcontrast from the following equation (Rosenthal & Rosnow, 1985): 

tcontrast = (r~lerting)(Fomnibus)( t:ij;lUmerator), (19.2) 

where rilerting is the square of the correlation between the condition means and their 
associated contrast (i\) weights; Fomnibus is the overall, diffuse F test comparing the 
condition means; and d/numerator is the number of degrees of freedom in the numerator 
of the Fomnibus. It will be recalled from our discussion in chapter 15 that multiplying 
Fomnibus by d/numerator gives us the maximum possible contrast F that can be carved out 
of the sum of squares of the numerator of the overall F test. 

For our example, we return to the omnibus F(2, 50) = 10.60 as shown in the ANOVA 
of Table 19.6. We obtained that F by comparing the three degrees of experimental control. 
Now all we require to apply Equation 19.2 is the correlation between the condition means 
of 1.50, 2.53, and 2.72 and their associated contrast weights of -1, 0, and + 1, respec­
tively, which we square to obtain r~A (i.e., r~erting). Using a calculator we find that r~erting = 
,,8635, and therefore tcontrast = /(.8635)(10.60)(2) = 4.28, p = 8.4-5 two-tailed, and ,. 
rcontrast = - .52, a result not so very different from the rcontrast of -.55 obtained from the 
tcontrast value of 4.61 reported a few paragraphs earlier. (We again think of our obtained 
rcontrast as a negative value simply to remind ourselves that degree of control was inversely 
related to level of enthusiasm.) 

Correlational Approach 

A fourth and quite direct estimate of the size of the relationship between the categorized 
variables is illustrated in Table 19.7. Because the independent variable of degree of experi­
mental control can be scaled (i.e., high = 3, medium = 2, low = 1), we can correlate 
it with the dependent variable of enthusiasm (also scored 1, 2, 3). Those scaled scores 
are shown in Table 19.7, and correlating the 53 paired scores results in r(51) = -.49, 
t(51) = 3.97, p = 2.3-4 two-tailed, a value that is in fairly good agreement with those 
obtained by our two previous methods (yielding values of -.52 and - .55). 

SUBDIVIDING TABLES TO TEST SPECIFIC 
HYPOTHESES 

By using an analysis of variance approach to tables of counts, we were able to apply 
familiar methods (t tests, contrasts, and correlations) to the investigation of specific 
hypotheses rather than having to settle for an overall, unfocused, diffuse X2• Methods 
are also available for computing contrasts in the log-linear models, but we will not 
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'I'MILE 19.7 

S,'aled scores for independent variable (IV) of degree of 
"ontrol and dependent variable (nV) of degree of enthusiasm 

Degree of control (IV) 

IIIgh (n = 6) Medium (n = 15) Low (n = 32) 

IV DV IV DV IV DV 

I 1 2 1 1 1 

I 1 2 1 1 2 

I 1 2 2 1 2 

I 2 2 2 1 2 

I 2 2 2 1 2 

I 2 2 3 1 2 

2 3 1 2 

2 3 1 2 

2 3 1 3 

2 3 1 3 

2 3 1 3 

2 3 1 3 

2 3 1 3 

2 3 1 3 

2 3 1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 

1 3 , 
1 3 

1 3 

1 3 
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cover them here. For a detailed discussion, see Bishop, Fienberg, and Holland (1975). 
Here we describe only some simple, useful methods for subdividing tables of counts 
into one or more 2 X 2 tables, each based on only a single df That is, each table 
addresses only a single question. Although these are not contrasts in the usual sense, 
they are very much in the spirit of contrasts. 

Chi-Square Corner-Cells Test 

When data in both the rows and the columns can be arranged in a meaningful order 
from more to less of that variable, a simple X[l) test can be performed on the four 
comer cells of the contingency table. Because this test does not use as much information 
as the analysis of variance with contrasts, we recommend it only as a quick preliminary 
test. The chi-square comer-cells test examines the effects of the most extreme levels 
of the independent variable on the distribution of cases between the most extreme 
possible outcomes. The example of degree of experimental control and degree of 
enthusiasm is a good case in point. Because both the rows and the columns in the 
original 3 X 3 table (Part A of Table 19.5) were arranged in an order of magnitude 
(high, medium, low), the comer-cells test is applicable. 

The four comers of the original 3 X 3 table of counts are shown again in Part A 
of Table 19.8, and the expected frequencies are shown in Part B. For example, to obtain 
the expected frequency in the upper-left comer, we substituted in Equation 19.1 to find 
(3 X 24)/28 = 2.57. The resulting xfl) is the sum of the (0 - E)2/E values in Part C 
or, more precisely calculated, 20.16, p = 7.1-6, and <I> = - .85. The size of the effect 

TABLE 19.8 

D1ustration for chi-square comer-cells test 

A. Corners of table of counts in Table 19.5 

High Low 1: 

High 0 3 3 

Low 24 25 

~ 24 4 28 

B. Expected frequencies computed from marginals 

Higb Low 1: 

High 2.57 0.43 3.00 

Low 21.43 3.57 25.00 

~ 24.00 4.00 28.00 

C. Table of (0 - ENE values 

Higb Low 1: 

High 2.57 15.36 17.93 

Low 0.31 1.85 2.16 

~ 2.88 17.21 20.09 
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1\, of course, "inflated" by our having compared extreme groups rather than using all, 
or nearly all, the scores. There is nothing wrong with this approach, as good research 
,bign frequently involves choosing extreme groups. However, it is important to keep 
III mind that the large X2 and phi are due in part to our having chosen extreme groups 
1111 hoth the independent and the dependent variables. Another issue to be addressed, 
Ihough, is that the expected frequency of 0.43 is too small for comfort. One way to 
Ill'! an "independent opinion" about the correct significance level is to use the Fisher 
,'xnd test, which we consider in some detail in a moment. Another way to get a second 
IIpinion is to use the combined-category chi-square test. 

('ombined-Category Chi-Square Test 

This test combines adjacent rows or columns that have been meaningfully arranged 
lrom higher to lower levels of the variables that are defined by the rows and 
\'lIlumns. Our corner-cells test involved the four corners of the 3 X 3 table of 
\'lIunts in Table 19.5, as shown in Part A of Table 19.8. Expected frequencies for 
Ihc four corners were given in Part B of Table 19.8, where the upper-right corner 
n'lI shows the very low expected frequency (0.43). Hence, that cell is most in need 
III having its expected frequency increased. There are two ways of increasing the 
",peeted frequency by combining categories: We can recruit (a) the row or (b) the 
\'lIlumn adjacent to the cell (or any other cell that is in need of augmented expected 
hl'llucncy). Recruiting the adjacent row, we get the obtained and expected frequen­
ncs in Part A of Table 19.9, yielding xtl) = 6.32, p = .012, ¢ = -.40. And 
Il'nuiting the adjacent column, we get the obtained and expected frequencies in 
I'arl B of Table 19.9, yielding xtl) = 12.21, p = .0005, ¢ = -.57. 

"MILE 19.9 

Illustration for combined-category chi-square test 

.\. Rl'cruiting the adjacent row of Table 19.5 

Obtained frequencies Expected frequencies 

High Low l: High Low l: 

III/(h 10 5 15 High 12.75 2.25 15.00 

I"w 24 25 Low 21.25 3.75 25.00 

~, 34 6 40 L 34.00 6.00 40.00 

n. R,'cruiting the adjacent column of Table 19.5 

Obtained frequencies Expected frequencies 

High Low l: High Low l: 

Ih!!h 0 6 6 High 3.79 2.21 6.00 

IIIW 24 8 32 Low 20.21 11.79 32.00 

" 
24 14 38 L 24.00 14.00 38.00 
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It is not appropriate to compute both of those chi-squares and present only the 
results of the more "favorable" test. We either report both sets of results or adopt a set of 
rules beforehand telling us which chi-square to compute. For example, Rule 1 might be 
that we choose the table of which the smallest expected frequency is 5 or more. Were both 
tables (or neither table) to give an expected frequency of 5 or more, we would go to 
Rule 2, which might be that we choose the table with the more nearly equal (in percentage 
of total N) column totals, on the grounds that binomial data are better behaved when the 
splits are closer to 50:50. A third rule, if it is needed, might be to choose the table with the 
more nearly equal row totals (i.e., in the percentage of total N), on the grounds that 
groups more nearly equal in size generally yield more powerful tests of significance. Note 
that in our terminology we have used columns to refer to the dependent variable and rows 
to refer to the independent variable. If we choose to set up our table differently, the rows 
and columns of Rules 2 and 3 above become the columns and rows, respectively. Of 
course, whatever rationale we adopt, we need to report it as well as the relevant results. 

In the present situation, Rule 1 would not help, because neither the recruitment 
of rows nor the recruitment of columns would lead to the smallest expected frequency 
reaching or exceeding 5. Rule 2, however, would lead us to choose the column 
recruitment method, because it yields a column split of 63% versus 37% of the total 
N, whereas the row recruitment method yields a column split of 85% versus 15% of 
the total N. In this example the column recruitment method results in <l> = - .57, a 
value that agrees fairly well with the correlations obtained by the various other 

~ procedures described earlier (- .55, - .52, - .49). Sometimes neither the recruitment 
of rows nor the recruitment of columns helps much to increase the expected frequency 
of the cell with the smallest expected frequency. In that case we can continue to recruit 
columns or rows until we have achieved a satisfactory expected frequency. 

FISHER EXACT PROBABILITY TEST 

The Fisher exact test is another way to get a second opinion about the data in a 2 X 2 
table of counts. A detailed discussion is available in Siegel (1956) and in Siegel ami 
Castellan (1988), and a shorter discussion can be found in Hays (1994) and various other 
texts. We find the Fisher exact test especially useful when we have a 2 X 2 table of 
independent observations, as in the 2 X 2 chi-square situation, but when the expected 
frequencies are very low. The Fisher exact test gives us the one-tailed p that could have 
occurred for a particular table of counts, or one reflecting a still stronger relationship 
between the two variables, if the null hypothesis of no relationship between the row and 
column variables were true and if the row and column totals were regarded as fixed. 
With cells and marginal values labeled as illustrated below: 

Dependent variable 

Group High Low 

High A B (A + B) 

Low C D (C + D) 

(A + C) (B + D) N = (A + B + C + D) 
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we find p for anyone outcome (i.e., the obtained outcome, or one more extremely 
disconfirming of the null hypothesis of no relationship between row and column 
vllriables) from the following equation: 

(A + B) ! (C + D) ! (A + C) ! (B + D) ! 
p= 

N!A!B!C!D! 
(19.3) 

In lIsing the Fisher exact test we compute p for our obtained table and for each 
fJo,uible table showing a more extreme outcome than the one we obtained. The p that 
we use to test our hypothesis of no relationship is the sum of those p values. 

"'Asher Exact Test on the Most Extreme 
('ell Entries 

The data for which we are seeking a second opinion are those in Part A of Table 19.8. 
In Ihis case the table of counts is the most extreme one (i.e., the result most inconsistent 
wilh the null hypothesis of no relationship between the variables) that we could 
plIssibly obtain given the fixed row and column marginal totals. We know that these 
lire Ihe most extreme results because when one of the four cell entries is zero, we 
,'unllot have a more extreme result (i.e., given the fact that the marginals are fixed). 
Therefore, we need only obtain a single p value, and applying Equation 19.3 to those 
,'xlreme cell entries gives us 

(3!) (25!)(24!)(4!) 
p = (28!)(0!)(3!)(24!)(1!) = .0012, 

which we interpret to mean that there is only a 12-in-1O,000 chance of obtaining cell 
,'nlries as extreme as those shown in Part A of Table 19.8 if there is no relationship 
Ill'lween the independent and dependent variables (given the fixed row and column 
lolals for those data). Using Equation 19.3 would be burdensome without a computer 
III' a programmable scientific calculator with sufficient memory. (Recall that, e.g., 
11! = 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X 12 = 479,001,600; 
nlso recall that O! = 1! = 1.) There are tables available for the Fisher exact test (e.g., 
Siegel, 1956; Siegel & Castellan, 1988; Zar, 1984), but it is preferable to compute 
Ih .. , actual p rather than to use only critical values of p. 

Our Fisher exact probability result of .0012 (or 1.2-3), although significant, is not 
IIt'm'ly as impressive as the p of 7.1-6 (or .0000071) based on our chi-square comer-cells 
I('sl, The difference appears to be due primarily to the unusually small expected frequency 
IClA3) in Cell B of Table 19.8 (Part B). That expected frequency is small enough to make 
us apprehensive about the accuracy of the chi-square comer-cells test. 

What about an effect size estimate? A serviceable approximation is obtained from 
Ihe slandard normal deviate (Z) that corresponds to our obtained p. Squaring Z and 
thvitlillg by N gives us an estimate of the effect size analogous to that obtained by 
X/liN = <1>2. As described in chapter 11, we generally prefer the "nonsquared" effect­
"i/e estimate, and thus, we use a variant of Equation 11.16, namely, 

jZi 
<l>estimated = V Ii' (19.4) 
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because, as previously expressed in Equation 4.15, 

rv =/f; 
and 

(19.5 

The Fisher exact test p value for our data was .0012, so Z = 3.04, and substitutinf 
in Equation 19.4 we find 

/(3.04)2 
rvestimated = ~ = - .57, 

a value that is considerably more accurate than the <l> of - .85 we found when we 
computed xJl) based in part on the very small expected frequency of 0.43 (in Table 19.8). 
We have obtained a more accurate estimate of the effect size correlation because the p 
value from which we found Z and our Z2 (i.e., Xfl) was more accurately estimated from 
the Fisher exact test than it had been from the suspect X[I) with its very small expected 
frequency (of 0.43). 

Especially when sample sizes are small, we can often obtain somewhat more 
accurate effect-size estimates from Fisher's exact test by going from the exact one­
tailed p value to t instead of to Z, that is, by using Equation 12.1: 

fiFi2 

r-
- t2 + df' 

rather than by using 

r=rv=fJ=ftj· 
The t values and Z values associated with particular p values can be approxi­

mated from tables but are more accurately determined by computer programs (some 
available online at reliable Web sites) and certain scientific calculators. For the data 
in Table 19.8 (Part A) we find that the one-tailed p of .0012 is associated with a I 

value of 3.36, with df = N - 2 = 28 - 2 = 26. Consequently, we obtain the effect 
size r from Equation 12.1: 

~ r=yf2+di= (3.36)2 = _ 55 
(3.36)2 + 26 ., 

a value only slightly different from the - .57 obtained when we used / xJl) / N 
(Equation 4.15) to compute the effect size correlation. 

Fisher Exact Test on Less Extreme Cell Entries 

For the 2 X 2 table of corners in Part A of Table 19.8, the four cell entries were 
the most extreme that could have occurred as evidence against the hypothesis of 
no relationship between the row and column variables, given the fixed marginal 
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'I'A IILE 19.10 

Illustration of "relatively" extreme cell entries, 
nflt as extreme as in Table 19.8 (part A) 

High 

luw 23 

~: 24 

Low 

2 

2 

4 

3 

25 

28 

IlIlllls. Earlier we stated that, if the outcome obtained is not the most extreme 
1'lIssible, we must compute p values for the observed result and for every outcome 
"'''1'(' extreme. The p value we then need is the sum of the p values obtained from 
nil Ihose tables (i.e., our own data-outcome p plus the p values of all outcomes 
lIIurc extreme). As an illustration, suppose we obtained the results in Table 19.10, 
U'sliits not as extreme as those in Part A of Table 19.8. Applying Equation 19.3 to 
Ihe data in Table 19.10, we find 

(31) (25!)(24!)( 4!) 
p = (28!)(1!)(2!)(23!)(2!) = .044 

The p of .044 is the Fisher exact probability of the particular data in Table 19.10, 
hili the p value we need is for those data and any result more extreme. One approach 
III linding all of the outcomes more extreme than a given outcome is to reduce by 1 
thl' smallest cell frequency, a procedure that increases by 1 the two adjacent frequencies 
IIlIll decreases by 1 the diagonally opposite frequency, while the marginal totals remain 
ullchanged. We then continue this procedure until one of our cell frequencies is zero. 
III this case the only more extreme result possible is that shown in Table 19.8, for 
which we found that the Fisher exact p was .0012. Thus, we simply sum these two 
I' values to obtain: 

p = .044 + .0021 = .045. 

Nutice that the margin totals in Table 19.10 remain the same as those in Part A of 
'1'lIhlc 19.8; only the cell counts change. 

Before we leave this section of the Fisher exact test as a procedure for getting 
II 'iccond opinion on a 1-df chi-square, we want to comment briefly on both those 
I('sts (Fisher exact and xtl) as examples of nonparametric statistical procedures. 
,,~ we stated in chapter 13, we know that t tests and F tests depend on the 
II~Sllll1ption of normal distributions, though both are fairly effective even when that 
lI~slIll1ption is not rigorously met. It is widely believed that chi-square tests are 
IIlIlIpurametric in the sense that no assumption about the population distribution is 
lIIudc, Long ago, Cochran (1950) pointed out that chi-square tests may depend as 
1II111:h as do F tests on the assumption of normality. Nonparametric tests are tests 
lit which it is less important to know the shape of the population distribution from 
which the sampling units were drawn (Snedecor & Cochran, 1989), but it appears 
Ihllt chi-square tests are not so "nonparametric" after all. The Fisher exact test is far 
IIIlIrc truly nonparametric. One of the reasons we have not tried to cover nonparametric 
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tests in this book is that data transformations often make the more flexible and 
powerful "parametric" procedures work about as well as the nonparametric 
procedures. 

STRENGTHENING THE FISHER 
EXACT TEST 

We have seen that we are most likely to want to use the Fisher exact test when 
the sample sizes are small (i.e., when some of the expected frequencies are very 
small). However, it is just in such cases that the Fisher test is quite conservative 
(because counts increase not gradually but only in discontinuous jumps, such as 
2 to 3 rather than 2 to 2.1 or 2.2), leading us too often to conclude that there is 
no significant effect. Fortunately, Overall (1980) and Overall, Rhoades, and Starbuck 
(1987) described a procedure that appreciably strengthens the Fisher exact test. To 
use that procedure we need only augment by 1 the frequencies of those cells of 
the 2 X 2 table in which the observed frequency is greater than the expected 
frequency, and then we proceed with the usual computation of the Fisher exact 
test. 

Suppose a small study in which 5 of 11 patients are randomly assigned to a 
new treatment procedure and the remaining 6 are assigned to the control group. If the 
null hypothesis of no difference between treatment and control were true, what would 
be the probability of obtaining the results shown in Part A of Table 19.11? We could 
begin to answer that question by using the Fisher test, knowing that if we obtain a 
significant result (say, .05 or less), the true probability is lower still. Substituting in 
Equation 19.3, the Fisher exact test probability is 

(5!)(6!)(8!)(3!) 
p = (11!)(5!)(0!)(3!)(3!) = .12. 

Because one of the cell entries is zero, there is no more extreme outcome possible 
than shown in Part A of Table 19.11, and so the one-tailedp of .12 is the only p value 
required for the Fisher test of these data. 

To use the adjustment suggested by Overall, we begin by computing the expected 
frequency for each cell in Table 19.11. Thus, the expected frequency for Cell A is 
computed as [(A + B) (A + C)1/N, and all the resulting expected frequencies are 
shown in Part B of the table. Because in Part A the cells in the upper-left to lower­
right diagonal show larger obtained frequencies (5 and 3) than the corresponding 
expected frequencies in Part B (3.64 and 1.64), we augment those cells in Part A by 
1 each and recompute the Fisher exact test. This augmentation gives us the table of 
"obtained" frequencies in Part C of Table 19.11, and applying Equation 19.3 to those 
results yields 

(6!)(7!)(9!) (4!) 
p = (13!)(6!)(0!)(3!)(4!) = .049. 

Thus, with the use of Overall's correction, the one-tailed p of .12 of the uncorrected 
Fisher exact test has been reduced to a one-tailed p < .05. 
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I'AIII,I<: 19.11 

Slrengthening the Fisher exact test 

A. "'requencies obtained in a small study 

Outcome 

c '1IIlIlItion Improved Not improved 

I' 'Il<'l'imental 5 0 

1'''"11'111 3 3 

, 8 3 

II. ";xpected frequencies for results in Part A 

C'lIIlIlItlon 

1 '1l<'I'imental 

I '"nll'lll 

Improved 

3.64 

4.36 

8 

Outcome 

Not improved 

1.36 

1.64 

3 

C'. "Obtained" frequencies after augmentation 

C'llIIclltlon 

I, 'I"'rimcntal 

I '''"Iml 

!. 

Improved 

6 

3 

9 

Outcome 

Not improved 

o 
4 

4 

AU.JUSTMENTS FOR xlI) IN 2 X 2 TABLES 

1: 

5 

6 

11 

5 

6 

11 

6 

7 

13 

Suppose that for the data in Part A of Table 19.11 we had used not the Fisher exact 
"' .. 1 hUI the more common X2 test. We could use the general formula for chi-square 
11;.llu!llion 11.14) or, as illustrated in chapter 11, the raw score formula in Equation 11.13. 
Suhsliluting in Equation 11.13 in this case would give us 

2 _ N(BC - AD) 2 

X(I) - (A + B)(C + D) (A + C)(B + D) 

11[(0)(3) - (S)(3)Y 
=~--~----~--~~--~ 

(S + 0)(3 + 3)(S + 3)(0 + 3) 

= 3.44. 

To obtain the significance l~vel, we find the Z from ~ to be 1.8S, and p = .032 
IIlw-luiled. Notice that this value is quite close to the adjusted Fisher test result of .049 
l"'rnlhough all four cells in Part B of Table 19.11 have expected frequencies less than S, 
1U1111 wo cells have expected frequencies between 1 and 2. Suppose that we had not computed 
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TABLE 19.12 

Expected frequencies of augmented cell entries in 
Part C of Table 19.10 

Condition 

Experimental 

Control 

Improved 

4.15 

4.85 

9 

Outcome 

Not improved 

1.85 

2.15 

4 

6 

7 

13 

the strengthened Fisher test and were concerned about the small expected frequencies. A 
traditional adjustment of X2 is the Yates correction for continuity (referred to earlier in 
this chapter). When applied to the data in Table 19.11, the Yates correction yields a Xf,) 
of 1.37 and a Z of 1.17, with a one-tailed p of .12, just as we found with the overly 
conservative, unadjusted Fisher exact test. 

Fortunately, more accurate procedures than the Yates correction are available to 
help us guard against the increase in Type I errors that may occur when some cells 
of the Xtl) have very small expected frequencies. One of these procedures, also attrib­
utable to Overall (1980), first uses the same augmentation procedure we used to 
strengthen the Fisher exact test and then employs the Yates correction. To illustrate. 
the original cell frequencies of 5,0, 3, 3 (in Part A of Table 19.11) were augmented 
~o 6, 0, 3, 4 (in Part C of Table 19.11), yielding a Fisher exact p = .049. The expected 
frequencies for the four augmented cell entries are shown in Table 19.12. The second 
step is to compute chi-square with the Yates correction, as follows: 

N(IBC _ ADI- N)2 
2 _ 2 

X(l) - (A + B)(C + D)(A + C)(B + D)' (19.6) 

which gives us 

2 _ 13(1(0)(3) - (6)(4)1- I] r _ 
X(l) - (6 + 0)(3 + 4)(6 + 3)(0 + 4) - 2.63. 

For the significance level, we again find Z from a, yielding 1.62, and the one­
tailed p = .053. 

TABLE 19.13 

Summary of p values with and without Overall (1980) adjustment 

Fisher exact 

No adjustment .12" 

Overall (1980) adjustments .049 

a The Yates-corrected .fX[;, yielded the same p of .12. 

.032 

.053 
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Table 19.13 provides a recap of the various results. The table shows the p values 
ohtained by the g test and the Fisher exact test with and without the Overall (1980) 
adjustments. The p value of the Fisher exact test is noticeably different from the other 
thrcc p values, which differ relatively little among themselves. When the unadjusted Xfl) 
\l'CmS risky, either of the Overall (1980) adjustments can be recommended. For other 
procedures, see Haber (1986) and Overall, Rhoades, and Starbuck (1987). 

('OMPLETE PARTITIONING 
(W LARGER TABLES 

In chapter 15 we showed that for any diffuse, overall F test with numerator df = k 
wc can compute a set of k orthogonal contrasts, each of which addresses a focused, 
prccise question. In an analogous way we can take a table of counts larger than 2 X 2, 
with df = (number of rows -1) X (number of columns - 1) = k and subdivide or 
partition the table into a set of k tables of 2 X 2 size that address focused, precise 
qucstions. A summary of procedures for partitioning, as well as a general method for 
l'olllputing Xfl) for any of the resulting 2 X 2 tables, was presented by Jean Bresnahan 
and Martin Shapiro (1966). 

Illustration of Partitioning 

()nc procedure for the complete partitioning of a table of counts begins, for example, 
with the upper-left comer cell, so that for the top row the two new cells will contain 
thc frequency of the upper-left cell and the remainder of the frequencies in that row, 
Il·sJ1cctively. For the bottom row, the two new cells will contain the frequency of the 
IIrst column minus the frequency of the top-left cell and the balance of all frequencies 
not in either the top row or the leftmost column, respectively. We illustrate with our 
l"IlIItinuing example of degree of enthusiasm as a function of degree of experimental 
\"ol1trol. 

Because there are (3 - 1 )(3 - 1) = 4 df, we can partition the 3 X 3 overall 
tahlc (in Part A of Table 19.5) into four I-df (i.e., 2 X 2) subtables. The following 
IOllr steps in constructing our four subtables are all illustrated in Table 19.14. 

First, as shown in Part A of Table 19.14, we make the partition of the overall 
tlthlc that is indicated by the vertical and horizontal lines within the table. That is, we 
'l'parate the first column from the remaining two columns and also separate the first 
lOW from the remaining two rows. Summary values resulting from this partition, 
indicated as Subtable 1, are shown in Part B. 

Second, we subdivide the overall table in Part A by omitting the first column 
\,olllpletely and then repeating the procedure shown for the remainder of the overall 
IlIhlc. In Part C of Table 19.14, the vertical and horizontal lines within the table 
,how this partitioning of the overall table, and in Part D, we see the resulting 
Suhtable 2. 

Third, as we have now run out of columns to drop, we begin to drop rows. We 
't'turn to the overall table in Part A and drop the top row, leaving as our remainder the 
pltrtitioned table in Part E. The vertical and horizontal lines within the table indicate 
whcre we make the partitions of the remainder table to yield Subtable 3 in Part F. 



TABLE 19.14 

Partitioning of table of counts in Part A of Table 19.5 

A. Partitions producing Subtable 1 

Enthusiasm 

Control High Medium Low 

High 0 3 3 6 
Medium 10 3 2 IS 
Low 24 7 I 32 
L 34 13 6 53 

B. Subtable 1 

High Lower 1: 

High 0 6 6 
Lower 34 13 47 

L 34 19 53 

C. Partitions producing Subtable 2 

Medium Low 1: 

High 3 3 6 
Medium 3 2 5 
Low 7 I 8 
L 13 6 19 

D. Subtable 2 

Medium Low 1: 
~ 

High 3 3 6 
Lower 10 3 13 

L 13 6 19 

E. Partitions producing Subtable 3 

High Medium Low 1: 

Medium 10 3 2 15 
Low 24 7 32 
L 34 10 3 47 

F. Subtable 3 

High Lower 1: 

Medium 10 5 IS 
Lower 24 8 32 

L 34 13 47 

G. Subtable 4 

Medium Low 1: 

Medium 3 2 5 
Low 7 8 

L 10 3 13 

610 
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Finally, as we have now run out of rows to drop, we can return to dropping 
l'olumns. We drop the first column of the remainder table in Part E to produce Subtable 
.. in Part G. 

('omputing xlI) Tests on Subtables 

The general formula for computing a I-df chi-square test for each subtable is 

(19.7) 

The first component is defined as 

"2" 11 _ ~ (Oe - Ee)2 
X ce S-L"J Ee ' (19.8) 

which denotes the sum (over the four cells of the subtable) of the standard chi-square 
IllIantity (0 - E)2/E, but where the expected frequencies have been computed not 
11'11111 the subtable but from the full table. The second component is 

" 2" _ ~ (Or - Er)2 
X rows- L"J Er ' (19.9) 

Ill'noting the sum (over the two row totals of the subtable) of the standard chi-square 
IllIantity (0 - £)2/ E, but where the observed row total is based on the subtable 
lind the expected row total is obtained from the full table-derived expected 
IrclJuencies found in the subtable. The third component of the general formula is 

"X2" columns = ± (~ ~kEk?, (19.10) 

which is defined as for the rows in Equation 19.9. And finally, 

" 2" t t 1- (at - Et )2 
X oa - Et ' (19.11) 

dellotes the squared difference between the observed and expected total (N) for the 
IIlIhlable. 

To illustrate the computations, we begin with the expected frequencies of the 
original 3 X 3 table, shown again in Table 19.15. Next we display in Table 19.16 

'I'A 111.1<: 19.15 

.:xpected frequencies of original 3 x 3 Table 19.5 

Degree of enthusiasm 

lkollrt-e of control High Medinm Low l: 

IIlllh 3.85 1.47 0.68 6.00 
I 

!\Ird!um 9.62 3.68 1.70 15.00 

I,uw 20.53 7.85 3.62 32.00 

)~ 34.00 13.00 6.00 53.00 
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TABLE 19.16 

Subtables of observed and expected frequencies 

Observed frequencies Expected frequencies 

Subtable 1 

I 

0 

I 

6 

I 

6 3.85 2.15 6.00 

34 13 47 30.15 16.85 47.00 

34 19 53 34.00 19.00 53.00 

Subtable 2 3 3 6 1.47 0.68 2.15 

10 3 13 11.53 5.32 16.85 

13 6 19 13.00 6.00 19.00 

Subtable 3 10 5 15 9.62 5.38 15.00 

24 8 32 20.53 11.47 32.00 

34 13 47 30.15 16.85 47.00 

Subtable 4 3 2 5 3.68 1.70 5.38 

7 8 7.85 3.62 11.47 

10 3 13 11.53 5.32 16.85 

the four subtables of observed frequencies, each accompanied by its own table of 
e"'xpected frequencies. The expected frequencies are based not on the adjacent 
subtables of observed frequencies, but on the expected frequencies in Table 19.15. 
This is most clearly seen in the expected frequencies for Subtable 4 in Table 19.16, 
which are identical to the corresponding expected frequencies in Table 19.15. As 
another illustration, for the observed frequency of 34 in Subtable 1 of Table 19.16, 
the expected frequency is based on the sum of the relevant expected frequencies 
in Table 19.15. The expected frequency of 30.15 (Table 19.16) is simply the sum 
of the expected frequencies of 9.62 (medium control) and 20.53 (low control) in 
Table 19.15. 

Finally, we display the results of each step of our calculations in Table 19.17, 
designed to provide computational checks. However, we illustrate the computational 

TABLE 19.17 

Partitioned iiI) tests of results in Table 19.16 

Partitioned xiI) = "X?" cells "f'" rows "-x:" columns + "f'" total 

Subtable 1 12.12 12.12 0 0 + 0 

Subtable 2 2.95 10.72 7.77 0 + 0 

Subtable 3 0.31 1.68 0 1.37 + 0 

Subtable 4 0.76 2.17 1.08 1.21 + 0.88 

L 16.14 26.69 8.85 2.58 + 0.88 
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'I'ABLE 19.18 

Summary of chi-square, p-level, and phi coefficients 

.... blable xli) p 4> 

12.12 .0005 .48 

2.95 .09 .39 

.1 0.31 .58 .08 

.. 0.76 .38 .24 

,I"tails only for Subtab1e 4. Substituting in Equations 19.8-19.11, we find 

"2" 11 (3 - 3.68)2 (2 - 1.70)2 (7 - 7.85)2 (1 - 3.62)2 2 17 
X ce s= + + + = . 

3.68 1.70 7.85 3.62 

" 2" r w = (5 - 5.38)2 + (8 - 11.47)2 = 1.08 
X 0 s 5.38 11.47 

" 2" col mn = (10 - 11.53)2 + (3 - 5.32)2 = 121 
X u s 11.53 5.32 . 

"2" 1 (13 - 16.85)2 088 X tota = = . . 
16.85 

As a check on our calculations, we see that the sum of the four partitioned xtl) 
,·"Iues in Table 19.17 is equivalent (within rounding error) to the overall xt4) based on 
the original 3 X 3 table of counts. Now we can see which of the components of the 
IIverall chi-square has made the greatest contribution to that overall test. That contribution 
.f; hased in part on the strength of the correlation (<!» found in each subtable and partly 
.,11 the N for each subtable. Therefore, as usual, we want to compare phi coefficients as 
much as we want to compare xtl) values, as summarized in Table 19.18. 

Notice that Subtable 1 showed the largest and the most significant result. That 
IIlIhtuble presented data indicating that higher levels of enthusiasm were associated 
wilh lower levels of experimental control. Subtable 2, although not significant at the 
.n~ level, showed nearly as large an effect as Subtable 1. But we need to be cautious 
III interpreting this result. The expected frequencies for Subtable 2 inform us that most 
"I' Ihe "X2" cells' value is due to the upper-right cell with expected frequency of only 
n.M. Consequently, we may not want to place too much confidence in the result of 
SlIhluble 2. Regarding the remaining data, Subtab1es 3 and 4 appear to require little 
l·Ul11l11ent. A further word of caution is required, however: When interpreting individual 
2 X 2 chi-square results, there is a tendency to look only at the observed frequencies. 
A~'curate interpretation of the computed X2 results requires that we examine the 
uhserved frequencies in relation to the expected frequencies. 

The particular partitioning of our overall 3 X 3 table is not unique. Just as many 
11('111 of orthogonal contrasts can be computed for omnibus F tests, alternative sets of 
2 X 2 tables can be computed for omnibus X2 tests. For example, instead of beginning 
wilh the upper-left cell of the full table, we could have followed the exactly analogous 
I,rucedure beginning with some other comer. When we begin with the lower-left cell, 
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TABLE 19.19 

Subtables formed by alternative partitioning of Table 19.5, starting with 
lower-left cell 

Observed frequencies Expected frequencies p 

Subtable I 10 11 13.47 7.53 

24 8 20.53 11.47 
4.13 .042 

Subtable 2 6 5 5.15 2.38 

7 7.85 3.62 
2.36 .12 

Subtable 3 0 6 3.85 2.15 

10 5 9.62 5.38 
8.29 .004 

Subtable 4 3 3 1.47 0.68 

3 2 3.68 1.70 
1.34 .25 

.2M 

.35 

.63 

.35 

we obtain the four sets of observed and expected frequencies, xtl) results, p levels. 
and phi coefficients shown in Table 19.19. Each of the four subtables supports the 
same hypothesis that decreasing degrees of experimental control are associated with 
increasing levels of enthusiasm about the results, but the size of the effect and its 
level of significance vary. 

A further point about partitioning, however, is that just because it is possible to 
partition a table of frequencies completely is no reason to do so. It is a useful explor­
atory procedure and may be quite valuable as a source of hypotheses for further 
investigation. Typically, however, we would approach the 2 X 2 xtl) tests in the same 
spirit that we approach contrasts following an analysis of variance. We compute the 
df = 1 tests that we planned to make, that is, those that address the specific questions 
of interest. 

THE CORNER-CELLS TEST SUBTABLE 

When the data are ordered from more to less in both the rows and the columns (as 
in the case of our continuing example), it is natural to use the comer-cells test we 
described earlier. The modification we make here is based on the idea of partitioning 
a table completely. It involves using the expected frequencies computed from the full 
table, not just from the comer cells alone. Our computations are the same as for any 
of the subtables of a partitioned table, stated in Equation 19.7 as 

xtl) partitioned = "xz" cells - "xz" rows - "xz" columns + "xz" total. 

For the comer-cells test of our continuing example, as shown in Table 19.20, we find 

xtl) = 14.25 - 0.55 - 0.03 + 0.02 = 13.69. 

For a one-tailed test of significance, we find Z from ~ yielding 3.70, so p = .00011, 
and <P = .70. 
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'I'A IILE 19.20 

('orner cells of 3 x 3 tables of observed and expected frequencies in Table 19.5 

Observed frequency Expected frequency 

High Low }; High Low }; 

Ihllh 0 3 3 High 3.85 0.68 4.53 

t .. w 24 25 Low 20.53 3.62 24.15 

): 24 4 28 L 24.38 4.30 28.68 

This comer-cells test with expected frequencies based on the entire table yields 
" somewhat more conservative value of X2 and <I> than the original comer-cells test 
wilh expected frequencies based only on the data from the four comer cells. That xtl) 
WIIS 20.16, <I> = .85, which was probably inflated by an unusually low expected frequency 
III' 0.43 in one of the cells. 

('ONTRASTS IN PROPORTIONS 

Throughout our discussion of subdividing contingency tables larger than 2 X 2, we 
l'llIphasized the conceptual relationship between the utility of contrasts following the 
ilnalysis of variance and the utility of 2 X 2 contingency tables following the analysis 
III' larger tables of counts. It sometimes happens in larger tables that one dimension 
l'lIn be ordered from more to less and information from the other dimension can be 
l'xpressed as a proportion of the total frequency found in each level of the ordered 
dimension. In such situations, contrasts can be computed directly from a formula 
~uggested by Donald B. Rubin (personal communication, January 4, 1981). We 
illustrate this procedure first for a study with a large total sample, as Rubin's originally 
~lIggested formula works best with large total samples. With smaller samples it can 
hccome more problematic, which we demonstrate in the next section, in which we 
IIlso suggest a simple adjustment of the standard error estimate. 

In this example we imagine a large clinical study (N = 1,976) in which it was 
Jlrcdicted that one treatment per week would be half as beneficial as two treatments per 
wcek, and that the benefits (the dependent variable) are defined in terms of two levels 
of self-rated personal satisfaction: not very satisfied (A) and very satisfied (B). The 
independent variable of the number of weekly treatments is defined by three levels: no 
trcntments, one treatment, and two treatments. Table 19.21 shows the results in a 2 X 3 
tllhle of counts, with rows indicating the two levels of satisfaction and columns indicating 
the three levels of number of weekly treatments. Suppose we predicted a linear increase 
in treatment benefits as the number of treatments increased from zero to one to two. 
I :llr each of our three treatment levels, we compute the proportion of subjects that were 
vcry satisfied as shown in Table 19.21, in the row labeled p = Bin. 

The linear contrast weights we will use are shown in the bottom row of Table 19.21 
( 1,0, + 1), and Rubin's suggested formula for testing the linear contrast in proportions 
is 

(19.12) 
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TABLE 19.21 

Observed frequencies for effects of number of treatments on 
satisfaction in between-subjects design 

Level of satisfaction 

Not very satisfied (A) 

Very satisfied (B) 

Sample size (n) 

p = Bin 

Sf = Pi(1 - Pi)/ni 

Linear contrast (i\) 

Number of weekly treatments 

None One Two 

189 164 653 

145 174 651 

334 338 1,304 

.434 .515 .499 

.000736 .000739 .000192 

-1 0 +1 

where the numerator is the sum of the proportions (Pi) after each proportion has been 
multiplied by its corresponding contrast weight (Ai). The denominator in the equation 
is the square root of the sum of the squared standard errors (Sr) of each proportion 
after they have been multiplied by their corresponding squared contrast weight, where 
Sr (the squared standard error of each proportion) is defined as 

Sf = Pi(1 - pD 
1 ni· 

In the case of a large total N, the contrast r can be estimated from 

_ Zcontrast 
rcontrast - m ' 

where N = total number of observations. 

(19.13) 

(19.14) 

We illustrate the application of Equation 19.13 for the proportion indicated as 
.434, and we calculate 

Sf = .434(1 - .434) = .000736. 
1 334 

For the remaining two proportions, indicated as .515 and .499, we find that Sr = .000739 
and .000192, respectively. Substituting in Equation 19.12 yields 

.434(-1) + .515(0) + .499(+1) _ 
Zcontrast = /000736(1) + .000739(0) + .000192(1) - 2.13, 

with one-tailed p = .017, and from Equation 19.14, we find 

2.13 048 rcontrast = 11976 = . , 

indicating that there is not a large linear relationship. 
Suppose we had an alternative theory that predicted a quadratic, n-shaped 

relationship between the number of weekly treatments and satisfaction (i.e., No 
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Ircatment < 1 treatment> 2 treatments). Substituting in Equation 19.12, with lambda 
weights of -1, +2, and -1, our planned contrast for this hypothesized relationship 
hccomes 

.434(-1) + .515(+2) + .499(-1) 
Zcontrast = = 1.56, 

/000736(1) + .000739(4) + .000192(1) 

with one-tailed p = .060, and the associated contrast r (from Equation 19.14) is 

1.56 035 
rcontrast = ~ = . , 

y'1,976 

II value not very different from the rcontrast based on our earlier linear prediction 
II" = .048). 

As we stated in an earlier chapter, it is no great trick to fit a contrast to data 
wc have already seen, but that contrast should be differentiated from a planned contrast. 
III this example, a very simple and sensible unplanned contrast is the theoretically 
parsimonious one that treated research participants (i.e., one treatment or two treatments) 
wcrc more satisfied than untreated participants, with Zcontrast = 2.35, two-tailed p = 
,II 19, and rcontrast = .053. We report the two-tailed p because that result was not predicted. 
III addition, we may want to multiply the two-tailed p of .019 by 3 to yield .057, on 
Ihc assumption that there are three two-tailed ways to compare anyone group with the 
IIlhcr two (see the section on Bonferroni procedures in chapter 14). When there are 
IIlIly three treatment conditions, unplanned pairwise comparisons are not a major prob­
Il'llI because only three such comparisons are possible. In our example comparing three 
Il'calment conditions, one treatment is better than no treatment (xl!) = 4.38, Z = 2.09, 
" .()l8 one-tailed, and <I> = .081); two treatments are better than no treatment (xt!) = 
·I,~I, Z = 2.12, p = .017 one-tailed, and <I> = .052), but two treatments are not any 
h,.'lIcr than one treatment with xt!) = 0.260, Z = - .51, p = .61 two-tailed, and <I> = 

,013. Note that the effect size <I>'s absolute value of .013 is given a negative sign to 
Illdicate that the results are in the unpredicted direction. 

AI:rERNATIVE ANALYSES FOR SMALLER 
SAMPLE STUDIES 

Wl' stated that Equation 19.12 is a large sample test, and we now illustrate its 
IIll1ilations (and a useful adjustment) with samples considerably smaller than the total 
N in Table 19.21. We also describe some alternative analyses. For our illustrations we 
IIII'Il 10 the data in Table 19.22, where the dependent variable comprises two levels 
cA IIl1d B) and there are three levels of the independent variable (Conditions 1,2,3). 
Our attention is focused on the observed frequencies in Level B, as we predicted a 
'IIIIIdratic trend, so that the results in Conditions 1 and 3 would be better than in 
('olluition 2, with no predicted difference between Conditions 1 and 3. Thus, the 
qUlldratic contrast is U-shaped, with lambda weights of + 1, -2, + 1. Summary values 
IItt' computed as before, where we form the proportions of interest by dividing the 
""Ullls in Level B by the appropriate sample n, and the squared standard error of each 
prllJlllrtion is obtained by Equation 19.13. 
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TABLE 19.22 

Observed frequencies for effects of three treatments on outcome in 
between-subjects design 

Independent variable 

Dependent variable Condition 1 Condition 2 Condition 3 

Level A 8 16 8 

Level B 12 4 12 

Sample size (n) 20 20 20 

P = Level Bin .60 .20 .60 

Sf = Pi(l- Pi)/ni .012 .008 .012 

Quadratic contrast (A) +1 -2 +l 

Contrast Z on Proportions 

For our first analysis, we again substitute in Equation 19.12 to compute the contrast 
Z on proportions: 

1: (pi i\) 
Zcontrast = J ( 2 2) 

1: Si Ai 

= .60(+1) + .20(-2) + .60(+1) = 3381 
;'012(1) + .008(4) + .012(1) . , 

with P = 3.6-4 one-tailed and, using Equation 19.14, rcontrast = 3.381/ J60 = .436. 
When the total sample N is small, however, we obtain a more accurate estimate of 
rcontrast from t using Equation 12.1: 

~ 
r = yf2+dj' 

where we get the value of t from the p value of Z using t tables, calculators, or 
computers. The p value for Z of 3.381 is 3.6-4 (i.e., .00036), and the corresponding 
t(57) = 3.575, so from Equation 12.1 we find 

r= (3.575)2 = 428 
(3.575)2 + 57 . , 

in this case, a value close to r = .436 from Z using Equation 19.14. 

Contrast Z from r pr.. 

An alternative would be to estimate the contrast Z by carving it out of the omnibus chi­
square with the help of an analog of the alerting r previously given as 1M". Table 19.23 
illustrates the steps in computing the omnibus chi-square, where we go from the table 
of observed frequencies, to expected frequencies, to (0 - £)2/£ values. The omnibus 
x}2) is the sum of those "partial" chi-square values, shown as 8.573 in Part C. An analog 
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'!'AlILE 19.23 

Counts, expected frequencies, and "partial" chi-square values for observed 
rrequencies in Table 19.22 

A. Observed frequencies 

Itt-pendent variable Condition 1 Condition 2 Condition 3 l; 

I "'vel A 8 16 8 32 

\.,·vel B 12 4 12 28 

\' 20 20 20 60 

II. I<:xpected frequencies 

Ih,'pendent variable Condition 1 Condition 2 Condition 3 l; 

I"vel A 10,667 10,667 10,667 32,000 

I"'vel B 9.333 9.333 9,333 28.000 

,: 20.000 20.000 20.000 60.000 

C', (() - E)2/E values 

I h,'IIcndent variable Condition 1 Condition 2 Condition 3 l; 

I.·vl'l A .667 2.667 .667 4,001 

I ,'vel B .762 3.048 .762 4.572 

,; 1.429 5.715 1.429 8.573 

III' Ihe alerting r given earlier is the r we get by correlating proportions and lambdas (rpA). 

hIt' (he data in Table 19.22, by correlating the p = Bin proportions of .60, .20, .60 with 
Iht'I .. respective lambdas of + 1, -2, + 1, we find rpA = 1.00 and thus r~A = 1.00. 
nl.'~ause Zcontrast = a = /r~A x x~>), we take the square root of the product of r~A 
IIIIlCS the omnibus chi-square and get Zcontrast = /1.00 X 8.573 = 2.928, and p = .0017. 
(i('1I1ng the contrast r from Equation 19.14 gives r = Z/m = 2.928//60 = .378. In 
\It'W of the smaller total sample, however, we prefer to get the contrast r from t using 
hl"aliol1 12.1: 

r = Jt21(t2 + df) = /(3,056)2/[(3,056)2 + 57] = .375. 

('ontrast F from rMr. 

""olher alternative is the contrast F test, which we can carve out of the omnibus F on 
Ilk' (Iummy-coded scores. Part A of Table 19.24 shows those dummy-coded scores, where 
1,('\'1.'1 A is coded 0 and Level B is coded 1. The summary ANOVA is shown in Part B, 
wllCl'C the omnibus F(2, 57) = 4.75. Correlating the condition means (,60, .20, .60) with 
IIk'il' rcspective lambda weight~ (+ 1, -2, + 1) gives 1'MA = 1.00. Multiplying r~A by the 
u"l.'mll between-conditions sum of squares tells us the proportion of the between-conditions 
""III of squares that is associat~ with a particular contrast. In this case, as r~A = 1.00, 

\ Wt' know that the quadratic contrast accounts for all of the overall between-conditions 
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TABLE 19.24 

Dummy-coded scores and summary ANOVA for results in Table 19.22 

A. Dummy-coded scores (A = 0; B = 1) 

Condition 1 Condition 2 Condition 3 

0,0,0,0,0 0,0,0,0,0 0,0,0,0, ° 
0,0,0,1,1 0,0,0,0,0 0,0,0,1, 1 

1, 1, 1, 1, 1 0,0,0,0, ° 1,1,1,1,1 

1, 1, 1, 1, 1 0, 1, 1, 1, 1 1, 1, 1, 1, 1 

L 12 4 12 

N 20 20 20 

M 0.60 0.20 0.60 

S2 .2526 .1684 .2526 

A +1 -2 +1 

B. Overall ANOVA 

Source SS df MS F P 

Between 2.1333 2 1.0667 4.75 .012 

Within 12.8000 57 0.2246 

T9-tal 14.9333 59 

sum of squares. Substituting in Equation 15.6 gives us 

F. - r~A X SSbetween _ 1.00 X 2.1333 - 9 50 
contrast - MSwithin - 0.2246 -., 

which, with numerator df = 1 and denominator df = 57, has an associated p of 3.2-3• The 

contrast rcanbe found directly from /F/(F + d!ctenominator) = /9.50/(9.50 + 57) = .378, 
a value very close to those obtained from the r;lerting X Jdmnibus procedures (.37X 
and .375). 

Contrast t from Dummy-Coded Scores 

We can in this case, of course, quickly calculate the contrast t simply by taking 
the square root of the contrast F. Hence, tcontrast = /9.50 = 3.082 and, with df = 
57, the associated one-tailed p = 1.6-3, and r = .378. Another alternative would 
be to compute tcontrast from Equation 19.2, in which the basic ingredients are the 
same as those above, or we can compute it from the information in Part A of Table 
19.24. That is, we estimate the pooled variance from the S2 values, and given the 
condition means and sample sizes shown in Part A, we substitute in Equation 
15.4: 
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TABLE 19.25 

Summary of four "rcontrast from t" 
results 

Method rcontras. 

( 'ontrast z on proportions .428 

('ontrast z from rp/' .375 

( 'ontrast F from 1M/, .378 

('ontrast t obtained directly .378 

III find 

tcontrast = (.60)(+1) + (.20)(-2) + (.60)(+1), 

2246[(+1)2 + (_2)2 + (+1)2] 
. 20 20 20 

0.80 = 3.082, 
/2246(0.30) 

UIIlI P = .0016 one-tailed, and rcontrast = .378 from Equation 15.12. 

Adjustment for Computing Zcontrast by 
.';cluation 19.12 

Tnhle 19.25 summarizes the rcontrast values that we obtained from t by the four methods 
tll'scribed in this section. Notice that the first method (contrast z on proportions) yielded 
1\ noticeably higher r than did the other methods. As we said earlier, Equation 19.12 is a 
hl .. ~e-sample formula, and when used with small samples it often yields estimates of r 
thnt are too high (and estimates of p that are too low). A convenient procedure for mak­
III/-l Equation 19.12 more usefully conservative with small samples is to define Sr as .25/n. 
'111is adjustment makes the standard error of the proportion the maximum possible value 
hI" IIny given n. For our data of Table 19.22, substituting in Equation 19.12 gives us 

Z _ L(PJ\j) 
contrast - jL(Sr'Af) 

.60(+1) + .20(-2) + .60(+1) = 2.921, 

(.~g)(I)] + [( ·~g)(4)] + [( .~g)(1)] 
wilh f1 = .0017 and, from Equation 15.12, rcontrast = .374, a value more consistent 
with Ihe results of the other three methods described in this section. 

H'I'ANDARDIZING ROW AND 
('OLUMN TOTALS ,I 

All the number of rows and columns of tables of counts grows larger, it becomes more 
.,," more difficult to determine ',by inspection just what is going on in the data. A major 
JJft~llcll1 is that our attention is likely to be drawn to very large cell frequencies. For 
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TABLE 19.26 

Table of counts 

24 10 

36 15 

48 20 

132 55 

6 

9 

12 

33 

example, in Table 19.26, what stands out? We are most likely to see the 132 as a standout 
cell. Actually, though, that cell frequency is exactly what we would expect if the null 
hypothesis of no relationship between the row and column variables were true. As 
mentioned earlier, we can do better than inspecting the raw counts by making a table of 
partial chi-square values, that is, the (0 - E)2 / E cell values. That would at least tell us 
where the bulk of the omnibus X2 value comes from. However, what should we do about 
very small expected frequencies that yield perhaps exaggeratedly large (0 - E)2 / E values? 
Mosteller (1968) described a method of standardizing the margins of tables of counts in 
order to get a clearer look at what is actually going on. The method sets all row totals 
equal to each other and all column totals equal to each other. 

An Example 

We first illustrate the Mosteller method of standardizing the margins with the earlier 
;example of 53 medical investigations that were categorized by Gilbert, McPeek, and 
Mosteller (1977) according to the degree of experimental control and the degree of 
the experimenter's enthusiasm about the results. Part A of Table 19.27 shows again 
the original 3 X 3 table of counts that we have seen before in this chapter. The first 
step is to divide each cell count by the sum of the column in which we find the count. 
For example, we divide the cell count of 24 in the lower-left corner of Part A by 34 
(the sum at the bottom of the first column). The results of these computations are 
shown in Part B, where we see that the first step has equalized to 1.00 the column 
totals, but the row totals are far from equal. Thus, the next step is to set those row 
totals as equal, which we do by dividing each cell entry in Part B by its row total. 
For example, we divide the cell entry of .71 in the lower-left corner of Part B by 1.42 
(the row total in Part B). The results of these computations are shown in Part C, where 
we see that the second step has equalized to 1.00 the row totals, but the column totals 
are now unequal again. 

For simplicity we present only two decimal places, but it is usually prudent to 
work with three or four decimal places when calculating the results by hand. We now 
continue the process begun in Table 19.27 by dividing the new cell entries in Part C by 
the column totals, and then the cell entries in the resulting table by their new row totals, 
and so on, until the row totals are equal and the column totals are equal. The individual 
row totals will not equal the individual column totals except in cases where the number 
of rows and columns is equal, as in the present illustration. The steps in these repetitions 
(called iterations) following the standardization of Part C of Table 19.27 are summarized 
in Table 19.28. In this summary table the subtables on the right always follow the 
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TAIJLE 19.27 

Illustration of first two steps in standardizing the margins 

A. Results reported by Gilbert, McPeek, and Mosteller (1977) 

Degree of enthusiasm 

1k'lIree of control High Medium Low ~ 

IIi):h 0 3 3 6 

Medium 10 3 2 15 

Luw 24 7 32 

~: 34 13 6 53 

II. Results after dividing each entry in Part A by its column total 

High Medium Low ~ 

IIillh .00 .23 .50 .73 

M",lium .29 .23 .33 .85 

I.ow .71 .54 .17 1.42 

~: 1.00 1.00 1.00 3.00 

C '. Results after dividing each entry in Part B by its row total 

High Medium Low ~ 

IIllIh .00 .32 .68 1.00 

M",lium .34 .27 .39 1.00 

I.ow .50 .38 .12 1.00 

~: .84 .97 1.19 3.00 

~uhtables immediately to their left; the results of the division in a subtable on the right 
lire displayed in the subtable below on the left, so that progress through the whole of 
'l'nhlc 19.28 is like reading sentences down a page. 

The final subtable is at the bottom right of Table 19.28, where we see that the row 
It Ilnls are equal and the column totals are equal. We can take one more step to throw the 
hllill results into bolder relief: We can subtract from each cell entry of the final subtable 
Ihe grand mean of all cells. Table 19.29 shows again (in Part A) the cell values from the 
lillnl subtable, and the grand mean is 3.00/9 = .33. After subtracting the grand mean 
Imm the individual cell values, we have the subtable shown in Part B of Table 19.29. 
'Ille interpretation of this adjusted subtable is quite direct and, of course, quite consistent 
wilh the results in our continuing analysis of the original data. The greatest overrepre­
IIC.'lIlution is in the upper-right and lower-left comers, and the greatest underrepresentation 
i_ in the upper-left and lower-right comers. Thus, the higher the degree of control the 
IlIwcr the level of enthusiasni. Cell entries from the middle row and the middle column 
lire nil fairly small. It is the comers where the action is, and the crossed-linear contrast 
weights in Part C of Table 19.29 fit these results very well. 



TABLE 19.28 

Steps in standardizing the margins of the bottom subtable (C) in Table 19.27 

Dividing by column totals 

High Medium Low 1: 

High .00 .33 .58 0.91 

Medium .41 .28 .32 1.01 

Low .59 .39 .10 1.08 

~ 1.00 1.00 1.00 3.00 

High .00 .36 .61 0.97 

Medium .42 .28 .30 1.00 

Low .58 .36 .09 1.03 

~ 1.00 1.00 1.00 3.00 

High .00 .37 .62 0.99 

Medium .43 .27 .30 1.00 

Low .57 .36 .08 1.01 

~ 1.00 1.00 1.00 3.00 

TABLE 19.29 

Throwing the standardized results into bolder 
relief 

A. Final subtable (lower-right corner) of Table 19.28 

j,~ Enthusiasm 

Control High Medium Low 

High .00 .38 .62 

Medium .43 .27 .30 

Low .57 .35 .08 

B. After subtracting the grand mean (.33) from each entry 

Enthusiasm 

Control High Medium Low 

High -.33 .05 .29 

Medium .10 -.06 -.03 

Low .24 .02 -.25 

C. Crossed-linear contrast weights to represent the results 

Control 

High 

Medium 

Low 

624 

High 

-1 

o 
+1 

Enthusiasm 

Medium 

o 
o 
o 

Low 

+1 

o 
-1 

Dividing by row totals 

High Medium Low 1: 

.00 .36 .64 1.00 

.40 .28 .32 1.()() 

.55 .36 .09 1.()() 

.95 1.00 1.05 3.()(} 

.00 .37 .63 1.()() 

.42 .27 .31 1.00 

.56 .35 .09 1.00 

.98 .99 1.03 3.()(} 

.00 .38 .62 I.()() 

.43 .27 .30 I.()() 

.57 .35 .08 I.()() 

1.00 1.00 1.00 3.00 
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The correlation over the nine cells of the relative frequencies in Part B of Table 19.29 
lind the weights in Part C is r = .966, which tells us how good the fit of the data is to 
the crossed-linear contrast weights. We can regard this correlation as a kind of "alerting r" 
and use it to get an estimate of Jdontrast as long as we have an omnibus chi-square for 
the original raw data of counts (where Xt4) = 16.13 in this example). That is, with ralerting 
Ilelined as above, we calculate 

X~ontrast = r;lerting X X~mnibus, (19.15) 

lind for the data just above, we find 

X~ontrast = (,966)2 X 16.13 = 15.05, 

with p = 1.0-4• Alternatively, Zcontrast = JJdontrast = 3.88, with one-tailed p = 5.2-5• 

Recalling that r alerting in this case is the correlation between k predicted values 
III' contrast weights (i.e., the A weights in Part C of Table 19.29) and the data for each 
III' the k conditions (in Part B of Table 19.29), we see that, although a useful effect-size 
estimate, it is based only on k conditions (9 cell values in this case). To estimate the 
I;""I,,,sl for our Jdontrast. we will instead want to use the information from the original 53 
'"lIlpling units. One formula that we can use is Equation 4.15, (<I> = Idl)1 N), so, since 
xiii = X~ontrast. we find 

X~ontrast = /15.05 = _ 53 
rcontrast = N 53 ., 

lind we have described the contrast r as negative to reflect the inverse relationship 
Ill,tween the row and column variables. Usually a more accurate procedure, especially 
with smaller sample sizes, is to estimate the contrast r from t, as we did earlier. In 
this case we go from our obtained one-tailed p value of 5.2-5 (i.e., .000052 to the 
i1~sociated critical t value on df= N - 2 = 51, which is t(51) = 4.21), and then from 
1;.4Iuation 12.1 we find 

rcontrast = j t2 : df = 
(4.21)2 

----=-.51. 
(4.21)2 + 51 

Ullth estimates of rcontrast fall well within the range of values reported earlier ( - .55, - .52, 
111141 -.49). 

A More Complex Example 

", II further illustration of standardizing the margins, as well as another example of 
('1I.!'loratory data analysis, Table 19.30 shows in Part A the results of a cross-classification 
III 1,264 college students. The row variable is the field of study in which students said 
Ih~'y had intended to concentrate, and the column variable is the field of study in which 
Ihey uctually took their degree. After the first step in standardizing the column margin, 
we ohtuin the results in Part B. We omit the next 10 row and column iterations and show 
the linul table in Part C. To throw those results into bolder relief, we subtract from each 
l'tll entry the grand mean of all the cells (i.e., 4.00/16 = .25) and get the residuals in 

'''In D. 
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TABLE 19.30 

More complex example of standardizing the margins 

A. Observed frequencies in a 4 x 4 table of counts 

Field in which degree was awarded 

Intended field of study Humanities Social science Biological science Physical science l: 

Humanities 133 158 14 4 309 

Social science 57 312 17 5 391 

Biological science 16 72 94 10 192 

Physical science 34 102 56 180 372 

~ 240 644 181 199 1,264 

B. After dividing each entry in Part A by its column total 

Humanities Social science Biological science Physical science 1: 

Humanities .55 .25 .08 .02 .90 

Social science .24 .48 .09 .03 .84 

Biological science .07 .11 .52 .05 .75 

Physical science .14 .16 .31 .90 1.51 

L 1.00 1.00 1.00 1.00 4.00 

C. Final table after 10 more iterations 

Humanities Social science Biological science Physical science 1: 

Humanities .60 .26 .09 .05 1.00 

Social science .27 .55 .12 .06 1.00 

Biological science .08 .13 .66 .13 1.(]() 

Physical science .05 .06 .13 .76 1.00 

~ 1.00 1.00 1.00 1.00 4.00 

D. After subtracting the grand mean (.25) from each entry in Part C 

Humanities Social science Biological science Physical science 

Humanities .35 .01 -.16 -.20 

Social science .02 .30 -.13 -.19 

Biological science -.17 -.12 .41 -.12 

Physical science -.20 -.19 -.12 .51 

The overwhelming result, of course, is that students are much more likely to 
graduate in their intended field than in any other. Contrast weights will help us evaluate 
the extent to which that is the case. Such weights are shown in Part A of Table 19.31. 
Correlating those weights with the relative frequencies shown in Part D of Table 19.30 
gives us r = .951, indicating a very good fit between the data and the contrast weights. 
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TABLE 19.31 

Contrast weights for two ad hoc hypotheses 
10 account for the final results in Table 19.30 

A. Students are much more likely to graduate in their 
Intcnded field than in any other field 

H SS BS PS 

1\ 3 -1 -1 -1 

SS -1 3 -1 -1 

liS -1 -1 3 -1 

I'S -1 -1 -1 3 

II. When students do not graduate in their intended field, 
they are more likely to graduate in a field more 
udjacent (rather than not adjacent) on a theoretical 
scale of ''soft'' to "hard" sciences 

1\ 

SS 

liS 

I'S 

H 

o 

-2 

-1 

SS 

2 

o 

-1 

BS 

-1 

o 
2 

PS 

-1 

-2 

o 

Naturally, we also remind readers that our comparison is based on an ad hoc observation, 
1I0t on a specific prediction or a contrast planned before our exploration of the results. 

That qualification notwithstanding, we can go a little further in understanding 
tlw data if we assume that the four fields of study can be arrayed along a dimension 
of "soft" to "hard." That is, humanities are "softer" than the social sciences, which 
III tllrn are "softer" than the biological sciences, and these in turn are "softer" than 
Ihl.' physical sciences. If that ordering is acceptable as a theoretical assumption, we 
may suggest (as another ad hoc hypothesis) that when people do not graduate in their 
1IIII.'nded field, they are more likely to graduate in a field more adjacent (rather than 
1101 adjacent) on the soft-versus-hard dimension. The weights indicated in Part B of 
'I'lIhle 19.31 are appropriate to this hypothesis and are orthogonal to the weights shown 
III Pm1 A. The correlation of the weights in Part B of Table 19.31 with the relative 
Irl.'qllencies in Part D of Table 19.30 is r = .193, which supports the idea of at least 
1\ lIIoderate relationship between second choices of field for graduation and adjacency 
III Ihe original choice. 

OUDS RATIO, RELATIVE RISK, 
RISK DIFFERENCE, AND PHI 

lilll·lier in this chapter we noted that the Mosteller procedure often preserves a 
pllrlicular effect-size indicator for 2 X 2 tables, where that effect size indicator is 
howll as the odds ratio. We turn now to the odds ratio and to two other common 
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TABLE 19.32 

The 1954 Salk poliomyelitis vaccine trial 

Condition 

A. Coding of cells 

Control 

Treatment 

Paralytic polio present 

A 

C 

B. Raw counts in four conditions 

Placebo 115 

Vaccination 33 

C. Binomial effect-size display of r = .011 

Placebo 50.5 

Vaccination 49.5 

Total 100.0 

Paralytic polio absent 

B 

D 

201,114 

200,712 

49.5 

50.5 

100.0 

effect-size indicators, relative risk and risk difference; these three indicators are 
frequently used in biomedical research. As a case in point we use the 1954 Salk 
vaccine study, which was mentioned briefly in chapter 11 (and the results were 
shown in Table 11.9). What was so striking about those results was the minuscule 
value of phi (r = .011), and we noted that effect size correlations smaller than .10 
are not at all unusual in influential biomedical trials (see again Table 11.8). In this 
section we describe some limitations of the odds ratio, relative risk, and risk 
difference, and we suggest an adjustment by means of BESD (binomial effect-size 
display) standardized tables. 

To set the stage for this discussion, we refer to Table 19.32. The part labeled 
A shows the coding of the four cells, and B shows the Salk vaccine study results 
discussed in chapter 11, but with the cells rearranged to fit the model in Part A. 
Part C shows the binomial effect-size display of an effect size of r = .011. Recall 
that the results in Part B were those judged by Brownlee (1955) to be "convincing 
evidence for the effectiveness of the vaccine" (p. 1010), that is, despite particular 
deficiencies he found in the investigation as a whole. It will also be recalled that the 
binomial effect-size display is applicable to any r-type effect size. We compute the 
"success rate" for the BESD as 100(.50 ± r/2). Therefore, an r of .011 (rounded 
to .01) in the Salk trial yields a vaccination success rate (i.e., paralytic polio absent) 
of 100(.50 + .005) = 50.5 and a placebo success rate of 100(.50 - .005) = 49.5. 
The difference between these rates divided by 100 is .01, the effect size indexed by 
r rounded to two decimal places. Recall that the BESD procedure is specifically 
designed to display the effect size r in a standard 2 X 2 table of n = 100 for each 
row and each column total. 
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Relative Risk 

With reference to the cells labeled A, B, C, D in Table 19.32, relative risk (RR) is 
defined as 

RR _ (~)/(_C ) 
- A+B C+D' 

(19.16) 

that is, the ratio of the proportion of the control patients at risk to the proportion of 
the treated patients at risk. Applied to the Salk vaccine trial, the relative risk is 

RR = ( 115 )/( 33 ) = 348 
115 + 201,114 33 + 200,712 .. 

A limitation of relative risk as an effect size estimate is illustrated in Table 19.33, 
where the extreme "success rate" variable (the column variable) is survival (i.e., live 
vs. die). We ask readers to examine the three outcomes closely and to ask themselves 
the following question: "If I had to be in the control group, would it matter to me whether 
I was in Study 1, Study 2, or Study 3?" We think most people would have preferred 
Study 1 to Study 2. We also think that virtually no one would prefer membership in the 

'I'AIJLE 19.33 

Three hypothetical examples of four effect-size estimates in 2 X 2 contingency 
laables 

Die Live Relative risk Odds ratio Risk ditTerence Phi (4)) 

( ""lIml A B (Eq. 19.16) (Eq. 19.17) (Eq. 19.18) (Eq. 11.12) 

'l'1l'UllI1ent C D 

SllIely I 

Die Live 

( '1I"lml 10 990 10,00 10.09 .01 ,06 

'l'rrlllll1Cnt 999 

Hllllly 2 

Die Live 

('111111'01 10 10 10.00 19.00 .45 .50 

!"l'/liment 19 

""Ildy 3 

Die Live 

('II"lfnl 10 0 10.00 00 .90 ,90 

"fulmenl 9 
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control group in Study 3. Yet, despite the obviously important phenomenological 
differences among the three studies, Table 19.33 shows that all three relative risks arc 
identical (RR = 10.00). That feature may be a serious limitation on the value and 
informativeness of the relative risk index. 

Odds Ratio 

With Cells A, B, C, D again as shown in Table 19.32, the odds ratio (OR) is 
defined as 

OR = (~) /(~), (19.17) 

that is, in the context of Table 19.33, the ratio of the not-surviving control patients to 
the surviving control patients divided by the ratio of the not-surviving treated patients 
to the surviving treated patients. Applied to the Salk vaccine trial (Table 19.32), where 
the dependent variable was the presence or absence of paralytic polio, the odds ratio is 

OR = ( 115 )/( 33 ) = 348 
201,114 200,712 .. 

Incidentally, were we to use Mosteller's procedure to standardize the margins of the 
raw counts in Part B of Table 19.32, and then to substitute in Equation 19.17 the new 
cell values (.651, .349, .349, .651 for Cells A, B, C, D, respectively), we would obtain 
the same odds ratio (3.48). 

Notice that the odds ratio in Table 19.33 behaves more as expected than does 
th~' relative risk. That is, the OR increases with our phenomenological discomfort 
as we go from the results of Study 1 to those of Study 2 to those of Study 3. But 
the high odds ratio for Study 1 seems alarmist. Suppose the data were as shown 
in Results A of Table 19.34, which indicates an even smaller proportion of patients 
at risk; the odds ratio is still 10, which is an even more alarmist result. The odds 
ratio for Study 3 in Table 19.33 is also unattractive; but because all the controls 
die, perhaps we can forgive the infinite odds ratio. However, very different 
phenomenological results yield an identical odds ratio. If the data resembled 
Results B of Table 19.34, we would again have an infinite odds ratio, definitely an 

TABLE 19.34 

Further illustrations of extreme outcomes 

Results A Results B 

Die Live Totals Die Live Totals 

Control 10 999,990 106 Control 1,000,000 0 106 

Treated 999,999 106 Treated 999,999 10" 

Totals 11 1,999,989 2(106) Totals 1,999,999 2(106) 

Note: In Results A, the relative risk (RR) = 10.00, the odds ratio (OR) = 10.00, the risk difference (RO) = .000009. 
xfl) = 7.36, and <I> = .0019. In Results B, the RR = 1.00, OR = 00, RD = .000001, xfl) = 1.00, and <I> = .00071. 
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alarmist result. In this case, even the problematic relative risk index would yield 
a phenomenologically more realistic result of 1.00. 

Risk Difference 

With cells again labeled as shown in Table 19.32, the risk difference (RD) is defined as 

RD = (A ~ B) - (C ~ D)' (19.18) 

Ihal is, the difference between the proportion of the control patients at risk and the pro­
portion of the treated patients at risk. Applied to the Salk vaccine results in Table 19.32, 
Ihe risk difference is 

RD = ( 115 ) _ ( 33 ) = .0004 
115 + 201,114 33 + 200,712 ' 

a value somewhat smaller than the effect size index <p calculated to be .011. 
The last column of Table 19.33 shows the <P between the independent variable 

IIf control-versus-treatment (scored 0, 1) and the dependent variable of die-versus-live 
wlso scored 0, 1). Comparing risk differences with <P in that table shows that RD is 
IIl'vcr unreasonably far from the value of <p. For that reason, the RD index may be 
Ihe one least likely to be quite misleading under special circumstances. Thus, if we 
hnd 10 choose among RR, OR, and RD, we would select RD as our all-purpose index 
IImong these three. But even here we feel we can do better. 

Shmdardizing the Three Risk Indices 

Wl' have proposed an adjustment that standardizes the RR, OR, and RD indices 
tl{osenthal, 2000; Rosenthal, Rosnow, & Rubin, 2000). We compute the r between 
Ihe independent and dependent variables and then display that r in a BESD as described 
l'ul'licr. Table 19.35 shows these BESD-based results for the three studies of Table 
11),.n Total sample sizes in the tables of counts of Table 19.33 vary considerably 
12,000, to 40, to 20). However, the corresponding BESD-based indices of Table 19.35 
nil show the standard margins of 100 (which, of course, is a design feature of the 
BESD). The calculation of our new effect-size indices is straightforward. We simply 
,'ompute the relative risks, odds ratios, and risk differences on our BESD tables to 
IIhlnin standardized (BESD-based) relative risks, odds ratios, and risk differences. The 
,'omputation of these three indices is simplified because the A and D cells of a BESD 
nlways have the same value (as do the Band C cells). 

With cells of the 2 X 2 table now labeled A, C, C, A from upper left to lower 
lI~hl (as shown at the top of Table 19.35), the calculation is simple and direct. The 
BESD-standardized relative risk is calculated as 

A 
RRBESD-based = C' (19.19) 

'I'll apply Equation 19.19 to the Salk vaccine BESD (in Part C of Table 19.32), 
where the values of Cells A and C are 50.5 and 49.5, respectively, the BESD-based 
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TABLE 19.35 

BESD-standardized outcomes of Table 19.33 

Die Live Relative risk Odds ratio Risk difference Phi (c!J 

Control A C (Eq. 19.19) (Eq. 19.20) (Eq. 19.21) (Eq. 11.1 

Treatment C A 

Study 1 

Die Live 

Control 53 47 1.13 1.27 .06 .06 

Treatment 47 53 

Study 2 

Die Live 

Control 75 25 3.00 9.00 .50 .50 

Treatment 2S 75 

Study 3 

Die Live 

Control 9S S 19.00 361.00 .90 .90 

Treatment S 9S 

RR = 50.5/49.5 = 1.02. The odds ratio standardized is calculated as 

ORBESD-based = ( ~ r (19.20: 

which, applied to the Salk vaccine BESD yields BESD-based OR = (50.5/49.5)2 = 
1.04. Finally, the risk difference standardized, which is now actually equivalent to <1>. 

is calculated as 

A-C 
RDBESD-based =--

100 
(19.21 ) 

and applied to the Salk vaccine BESD (Table 19.32) yields BESD-based RD = 
(50.5 - 49.5)/100 = .01. 

Table 19.35 compares these BESD-standardized indices using the outcomes 01 
Table 19.33. We see the BESD-based RR in Table 19.35 increasing, as it should, in going 
from Study 1 to Study 3. The BESD-based OR in Table 19.35 also increases from Study I 
to Study 3, but without the alarmist value in Study 1 and the infinite value in Study 3. 
(A standardized odds ratio could go to infinity only if <I> were exactly 1.00, an unlikely 
event in behavioral, social, or biomedical research.) The BESD-based RD is shown in 
Table 19.35 to be identical to the effect size index <1>, an attractive feature emphasizing 
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Ihe interpretability of r-type effect-size indices when exhibited in a BESD. 

ONE-SAMPLE TABLES OF COUNTS 

Up to this point in our discussion of tables of independent counts, all of the tables 
have been two-dimensional. That is, two or more levels of one variable were repre­
sented in the rows and also two or more levels of another variable were represented 
in the columns of the table. In this section we note that there are also tables of counts 
in which there are two or more columns but only a single row, that is, 1 X k tables. 
For example, we began by mentioning Fisher's reanalysis of Mendel's reported data 
where the observed ratio of yellow to green peas was remarkably close to the expected 
Mendelian 3: 1 ratio-suspiciously close, Fisher argued. 

As another illustration, suppose that, in a small survey of voters in an election in 
which there were only two candidates, A and B, we observe that 60 voted for A and 40 
voted for B. What is the probability that these values were obtained by random sampling 
from a population in which exactly half the voters preferred each of the two candidates? 
In this illustration we must supply the expected value of voters for A versus voters for 
B. The null hypothesis is that half the voters are expected to vote for each candidate, 
lind therefore the expected frequency for A is equal to the expected frequency for B. 
Thus, the expected frequency in this case is the total number of sampling units (N = 100 
Villers) divided by 2, or 50 expected voters for each of the candidates. 

We now simply substitute in the general equation for chi-square, where 

X2 = ~(O-E)2 
E 

(60-50)2 (40-50)2 
= 50 + 50 = 4.0, 

which, with df = 1, is significant at p = .046, a not very likely outcome if in the 
pllpulation there were no preference for either candidate. The degrees of freedom for 
IlIIe-sample chi-square tests are simply the number of columns (k) minus 1. 

Using racetrack data made famous by Siegel (1956), we illustrate another one­
\IIInpie chi-square, computed on eight starting-gate positions, in which the working 
hypothesis was that horses closer to the "inside" of the track (at lower numbered 
1lIlles) would win more races than horses that were closer to the "outside" of the track 
lUi higher numbered gates). Part A of Table 19.36 shows both the number of races 
WI In from each of eight starting gates and the number of races expected to be won 
1144/8 = 18 wins in each starting position) if the null hypothesis of no relationship 
1",'lween starting position and number of wins were true. Part B shows the partial 
"hi-square values, which sum to Xt7) = 16.333, P = .022. 

That omnibus chi-square might be of some interest, but it does not directly 
"Ildress the working hypothesis that lower numbered starting gates would be associated 
wilh more than their fair ~are of wins. We use Equation 19.15 to address this specific 
I'r('diction, that is, 

?dontrast = r~lerting X X~mnibus, 

where the "alerting r" in this example is the correlation between post position and 
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TABLE 19.36 

The racetrack study (Siegel, 1956) 

A. Observed (0) and expected (E) wins 

Starting positions 

1 2 3 4 5 6 7 8 1: 

Wins 29 19 18 25 17 10 15 11 144 

Expected 18 18 18 18 18 18 18 18 144 

B. Table of (0 - E)2/E values (or ''partial'' chi-square values) 

Starting positions 

1 2 3 4 5 6 7 8 

6.722 0.056 0.000 2.722 0.056 3.556 0.500 2.722 16.333 

the number of wins, and we find ralerting = - .80, so rilerting = .64. Substituting in 
Equation 19.15, we find X~ontrast = .64 X 16.33 = 10.48, with p = .0012. OUf 

effect-size estimate can be obtained from Equation 4.15 or Equation 11.16: 

rcontrast = ftj = ~ = ~ = .27, 

which we think of as - .27 because of the inverse relationship between post position and 
~umber of wins. However, because the meta-analytic convention is to report the effect 
size as negative only when the observed effect is opposite what was predicted (whereas in 
this situation the working hypothesis actually predicted an inverse relationship), we need 
to specify the reporting practice that we are using if we report the effect size as - .27. 

A final point is that, in this example, our alerting r was based on a large enough 
sample of conditions (eight starting-gate positions) that it seems natural to examine 
the r alerting more closely. Although our rcontrast was - .27 (based on a sample of 144 
races), our ralerting was -.80 (based on a "sample" of eight post positions) and is 
associated with t(6) = 3.27, P = .0086. This example reflects the common (but not 
inevitable) occurrence that ralerting is substantially greater than rContrash an occurrence 
discussed in some detail in chapter 15. 

MULTIPLE-CHOICE-TYPE DATA AND 
THE PROPORTION INDEX 

Much of the research on human abilities, skills, learning, and judgment uses multiple­
choice-type measuring instruments. For example, in the area of sensitivity to nonver­
bal cues, participants may be given a multiple-choice test in which they guess one of 
four affects that the stimulus person has experienced. The proportion of correct 
answers given by each participant can then be compared to the proportion expected 
under the null hypothesis that participants can perform no better than chance (Ekman, 
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1973; Rosenthal, 1979b). In the area of parapsychological inquiry known as ganzfeld 
/'.Iperiments, participants are asked to guess which of four (or, in other experiments, 
live or six) stimuli has been transmitted by a "sender"; the guesses are made under 
~'onditions of sensory restriction. In the area of survey research, opinion polling, or 
voting behavior, the investigator may want to know whether a certain position on the 
hallot draws more endorsements or votes than would be expected under the null 
hypothesis. In a classroom, the teacher may want to know whether a particular student 
has performed better than chance on a multiple-choice test or on a true-false test. In 
all of these cases the investigator may be interested in a test of significance and almost 
surely will benefit from a standard, easy-to-interpret effect-size estimate. In the past 
Ihe primary effect-size indicator has been h, the difference between the obtained 
proportion and the proportion expected under the null hypothesis after both propor­
lions have been arcsin-transformed (Cohen, 1988). Although such an effect size indi­
rator is very valuable in power calculations, it has no intuitive interpretation that helps 
liS 10 evaluate the practical significance of the effect. Accordingly, the following index, 
II. was proposed (Rosenthal & Rubin, 1989, 1991; Shaffer, 1991) and discussed 
hriefly in chapter 12. 

The Proportion Index 

II may be recalled that the proportion index shows the hit rate, or proportion correct, 
1111 a scale on which .50 is always the null value. Thus, when only two choices are 
l'qually likely under the null hypothesis (e.g., as in a true-false test), Pi, or IT, is 
,imply the proportion of correct responses. When there are more than two equally 
likely choices, the index IT converts the proportion of hits to the proportion of hits 
Ihat would have been made if there had been only two equally likely choices. Thus, 
It Ihere were three choices, choosing the correct alternative .60 of the time would 
hc e4uivalent to choosing the correct alternative .75 of the time, given only two 
dlllices. The value of IT, the proportion correct transformed to a two-choice standard, 
Ikpends simply on k, the number of alternative choices available, and P, the raw 
proportion of hits: 

IT = P(k - 1) 
P(k - 1) + (1 - p) 

P(k - 1) 

1 + P(k - 2)' 
(19.22) 

where we recognize that the right side of the equation was previously given in chapter 
12 as Equation 12.lO. Table 19.37 shows IT as a function of selected levels of P and 
III k (from 2 to lO). For any given level of k, a larger P yields a larger IT, and for 
lilly given level of P, IT increases as k increases. Table 19.38 has been prepared to 
\hllw more readily how the proportion of correct choices or hits required to reach any 
IiIIVCIl level of IT decreases as k increases. 

I~sign of One-Sample Research 

I\~ noted in chapter 12, the primary purpose of IT is to provide an effect size estimate 
IIdiusted for the number of alternatives in a multiple-choice context. However, IT can also 
I,lny a valuable role in the design of one-sample research. In studies of this type, the 
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TABLE 19.37 

Values of n for selected values of P and k 

Number of choices, k 

p 2 3 4 5 10 

.10 .10 .18 .25 .31 .50 

.20 .20 .33 .43 .50 .69 

.30 .30 .46 .56 .63 .79 

.40 .40 .57 .67 .73 .86 

.50 .50 .67 .75 .80 .90 

.60 .60 .75 .82 .86 .93 

.70 .70 .82 .88 .90 .95 

.80 .80 .89 .92 .94 .97 

.90 .90 .95 .96 .97 .99 

TABLE 19.38 

Values of P for selected values of nand k 

Number of levels, k 

II 2 3 4 5 10 

.10 .10 .05 .04 .03 .01 

.20 .20 .11 .08 .06 .03 

.30 .30 .18 .12 .10 .05 

.40 .40 .25 .18 .14 .07 

.50 .50 .33 .25 .20 .10 

.60 .60 .43 .33 .27 .14 

.70 .70 .54 .44 .37 .21 

.80 .80 .67 .57 .50 .31 

.90 .90 .82 .75 .69 .50 

TABLE 19.39 

Besta choice of k for varying levels of n 

II Best choice of k II Best choice of k 

.50 2 .88 8 

.67 3 .89 9 

.75 4 .90 10 

.80 5 .95 20 

.83 6 .98 50 

.86 7 .99 100 

, In the sense of a smallest confidence interval for II. 
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investigator often has a choice of k, for example, the number of categories, the number 
III' alternatives in a multiple-choice test, and the number of alternative affects from which 
Ihe correct one is to be selected. The best choice of k (in the sense of the most precisely 
estimated effect-size IT) can be obtained from the following equation: 

(19.23) 

for any value of IT greater than .5 and less than 1.00. Values of IT less than .5 are less 
likely to be of interest, but we can use them in Equation 19.23 by substituting (1 - IT) 
lilr IT. 

Table 19.39 shows that for most levels of IT likely to be encountered in psy­
dl010gical and educational research, the best choice of k tends to be small. In general, 
Ihc smaller the effect size is expected to be, the smaller should be the value of k that 
is selected. Another simple way to decide on the optimal k is to ask the following 
'ilicstion: For the anticipated effect, how large a k can be chosen and still be expected 
III yield a 50% hit rate? The answer to this question is the same as the answer in 
Tahle 19.39. 
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The purpose of this chapter is to provide an overview of the statistical procedures 
generally called multivariate, though several of the procedures described in detail in 
earlier parts of this book were in some sense also multivariate. Before the advent of the 
computer and the availability of packaged statistical programs, the procedures described 
here were not as widely used as they are currently. This chapter is by no means an 
exhaustive introduction to this topic; it is instead a survey of major procedures within 
the framework of a system of classification that should make it easier to conceptualize 
and think about them. 

Whereas in preceding chapters we provided computational details for all of the 
methods presented, we shall not do so here for several reasons. First, it would take 
more space than just a single chapter to cover this topic. Second, the computations 
are often complex and wearying even with the help of a programmable calculator. 
Third, the computations can be easily done by a computer. Fourth, there are 
authoritative books currently available, including general sources such as Cohen. 
Cohen, West, and Aiken (2003); Cooley and Lohnes (1985); Hair, Anderson, Tatham. 
and Black (1998); Harris (2001); Judd and McClelland (1989); Morrison (2005); 
Stevens (2002); and Tabachnick and Fidell (2001). There are also more specialized 
sources such as Marcoulides and Schumacker (1996). 

Though we cannot describe, even briefly, all the various multivariate procedures 
covered in detail in other sources, the classification and overview provided here 
should be sufficient that most omitted procedures may be perceived as close relatives. 
special cases, or combinations of those described. It simplifies our thinking about 
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multivariate procedures if we conceive of one or more sets of independent or 
predictor variables and one or more sets of dependent or criterion variables. Then 
lIur first classificatory principle is whether the procedure is concerned with either 
the independent (predictor) or the dependent (criterion) variable(s), or whether it 
is concerned with both the independent (predictor) and the dependent (criterion) 
variables. 

REDESCRIBING RELATIONSHIPS WITHIN 
sins OF VARIABLES 

The first class of procedures has in common that a set of variables-either independent 
Ipredictor) variables or dependent (criterion) variables-is to be "redescribed" in such 
II way as to meet one or more of the following goals: 

I. Reduce the number of variables required to describe, predict, or explain the 
phenomenon (or phenomena) of interest. 

2. Assess the psychometric properties of standardized measures or measures under 
construction . 

• 1. Improve the psychometric properties of measures under construction by suggesting 
(a) how test and subtest reliability might be improved by the addition of relatively 
homogeneous items or variables, (b) how subtests are related to each other, and 
(c) what new subtests might be usefully constructed. 

4. Test hypotheses derived from theories implying certain types of patterns of 
descriptors emerging from the analyses. 

~. Generate hypotheses in the spirit of exploratory data analysis on the basis of 
unexpected descriptors emerging from the analyses. 

Of the many specific procedures falling into this class, we focus on one (called 
I"'jllcipal components analysis) to give a flavor of redescriptors. Afterward, we 
lil'scribe, though more briefly, some other procedures also falling into this general 
duss, However, we begin by giving an example of a related procedure that conveys 
the spirit of forming composites. The procedure we describe, known as cluster 
/lilt/lysis, is used to reduce a set of variables to a smaller number of composites (or 
IIII11{Jonents, or clusters) that can be meaningfully defined in some way. This procedure 
I~ useful when there are only a few variables and we can eyeball the similarities and 
llifferences that seem to comprise and differentiate clusters. When there are many 
\'1Ir1ables, we might prefer a more formal procedure (such as principal components 
1Il1l1lysis) as an aid to the naked eye. In either case the variables may be individuals, 
Illtings on particular dimensions, objects, or any other entities. 

('I.USTER ANALYSIS FOR REDESCRIPTION 

'nIl' term cluster analysis actually describes not a single method but a family of methods 
I whllse names may vary from one discipline to another) for identifying and classifying 
~lIrillhles. We have more to say about clustering later in this chapter, but the nature of 
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TABLE 20.1 

Forming clusters (or composites) by simple grouping 

A. The correlation matrix 

Variables A B C D E 

A (Warm) 1.00 

B (Friendly) .85 1.00 

C (Likable) .65 .90 1.00 

D (Professional) .15 .20 .10 1.00 

E (Competent) .15 .10 .20 .85 1.00 

B. Decomposition of 10 intercorrelations among five variables 

Intra-Cluster I Intercluster Intra-Cluster II 

A B 

A B C 

B .85 D .15 .20 .10 D 

C .65 .90 E .15 .10 .20 E 0 
C. Average (median) intercorrelations 

Intra-Cluster I Intercluster Intra-Cluster II 

.85--------------------------------------------- .15 -------------------------------.85 

cluster analysis is illustrated by the hypothetical case in Table 20.1. Cluster analysis, 
like principal components analysis (and related procedures), begins with a matrix 
of intercorrelations, such as that shown in Part A. The variables might, for example, 
refer to five rating scales on which a sample of patients rate the demeanor of their 
family physicians, or graduate students rate their mentors, or judges rate the videotaped 
behavior of experimenters running research subjects, or any other situation of inter­
est. The variables that correlate most highly with one another are listed closest to one 
another in the table (i.e., A, B, and C, and then D and E). 

We simply decompose the large triangle of Part A (made up of the 10 correlations 
beneath the diagonal of five correlations of 1.00) into three smaller geometric shapes: 
a triangle of three correlations, a rectangle of six correlations, and a tiny "square" of 
a single correlation (in this example), as shown in Part B. The first geometric shape, 
the smaller triangle on the left, consisting of three correlations (.85, .65., .90), repre­
sents all of the intercorrelations of Variables A, B, and C, where the median intercor­
relation is .85. The small "square" rectangle on the right contains only the correlation 
of .85 between Variables D and E. The larger rectangle in the middle contains the 
correlations of Variables A, B, and C with Variables D and E, where the median 
intercorrelation is .15. 

We think of the triangle in Part B as constituting a cluster or composite, which we 
might decide to call the warmth cluster or composite because it consists of the variables 
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labeled "warm," "friendly," and "likable." We think of the small "square" consisting of 
Ilnly one correlation-that between the variables labeled "professional" and "competent"­
liS representing a second cluster or composite cluster that we might decide to call the 
mmpetence cluster. The six correlations in the middle rectangle, the intercluster correla­
lions, represent the variable-by-variable similarity of Cluster I with Cluster ll. 

The diagram in Part C of Table 20.1 gives the average intercorrelation within a 
j:roup of variables constituting a cluster and also the average intercorrelation between 
Ihe variables constituting a cluster. The differences between the median of all within 
lind the median of all between correlations (.85 vs .. 15) provides information on the 
darity, strength, and "purity" of the clusters. In this example the two clusters are 
relatively independent of each other and highly consistent internally. (See the section 
"Quantifying the Clarity of Composites" in chapter 5.) 

I'RINCIPAL COMPONENTS ANALYSIS 
"'OR REDESCRIPTION 

Instead of working with just 5 variables, suppose we have 11 variables and the subjects 
III" judges of our study comprise a large total sample. Our variables might, for example, 
he I I personality characteristics, or 11 different commodities in a market research study, 
III" II stimuli in a perception experiment, and so forth. We could be gathering the data 
in a questionnaire study, a field observation study, or a laboratory experiment or using 
\llIne combination of these or other procedures. Suppose further that what we want to 
~nllw is whether we can do an adequate job of describing the total variation in the data 
lin all 11 variables using a much smaller number of supervariables or components. 

Principal components analysis would "rewrite" the original set of 11 variables into 
" new set of 11 components (usually) that have several recognizable properties. One of 
Ihllse properties is that the first principal component rewrites the original variables into 
Ihe linear combination of variables that does the best job of discriminating among the 
\lIhjects of the sample. (In a linear combination, each of the original values is multiplied 
hy a mathematically determined weight, and the products of those original values and 
Iheir weights are summed for each subject to form that person's new score on the 
\'lllllpOnent.) This first principal component is the single supervariable that accounts for 
Ihl' maximum possible variance in all the original variables. 

Another typical property of principal components analysis is that the second 
l'I'incipal component is essentially the same type of supervariable as the first component, 
")f,cept that the second operates on the variation in the data remaining after removal 
Ill' Ihe variation attributable to the first component. The first and second components 
11I't' orthogonal, because there is no overlap between them (Le., the second principal 
ftllllponent operates only on the leftovers of the first component). After the second 
l'I'incipal component has been extracted, the third component is computed, and so on, 
IIlIliI as many components have been extracted as there are variables. (If one or more 
III' Ihe original variables is comp~etely predictable from the other original variables, 
Ihe lotal number of components computed is reduced accordingly.) 

How might it help us in our search for supervariables to rewrite the 11 variables 
ft" II components? The logic of this method is that the first few components computed 
Itnd to account for much more of the total variation among the subjects on the full 
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set of variables than would be the case for an equal number of the original variables 
chosen at random. For example, the first principal component alone might account 
for 30%, 40%, or 50% of the total variation among the subjects on the 11 variables. 
In contrast, only 9.1% would be expected if the early components were no more 
supervariables than any variable chosen randomly from the original set of 11. 

IMPROVING INTERPRETATION 
BY ROTATION 

To illustrate with a more concrete (but smaller) example, suppose we have six variables 
and want to rewrite them into their principal components. The process of principal com­
ponents analysis begins with the intercorrelations of our six variables. Then we compute 
the components and the loading (also called a component loading or factor loading) 
of each variable on each component. These loadings are the correlations between each 
variable (usually the rows) and the newly computed components (usually the columns). 
Each component is then understood or interpreted in terms of the pattern of its loadings. 
Typically, the components as first extracted from the correlations among the variables 
are not very interpretable (except perhaps for the first component), but usually they are 
made more interpretable by a process called rotation. 

Part A of Table 20.2 shows the correlations of our six variables with the first two 
components before rotation. Notice that all the variables load highly on Component I, 

TABLE 20.2 

Lo~dings of six variables on two principal 
components before and after rotation 

A. Loadings before rotation 

Variables Component I Component II 

Variable I .60 .55 

Variable 2 .50 .50 

Variable 3 .70 .60 

Variable 4 .50 -.50 

Variable 5 .60 -.55 

Variable 6 .70 -.60 

B. Loadings after rotation 

Variables Component I Component II 

Variable I .04 .82 

Variable 2 .00 .70 

Variable 3 .06 .92 

Variable 4 .70 .00 

Variable 5 .82 .04 

Variable 6 .92 .06 



Component II 
unrotated 

.80 

.60 

.40 

.20 

.XO -.60 -.40 -.20 0 

-.20 

-.40 

-.60 

-.80 
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MULTIVARIATEDATAANALYSIS 643 

Component II 
rotated 

.40 .60 .80 

unrotated )
COIDPonent I 

Component I 
rotated 

I ""dings of the six variables of Table 20.2 on two rotated and unrotated components (or factors). 

IIl1d half the variables show a strong positive and half show a strong negative loading 
1111 Component n. Shown in Part B of the table are the loadings after the axes are 
IIItaled 45 degrees clockwise in this particular case. We see that three of the variables 
Illud highly only on one rotated component, and the other three load highly only on 
Ih~ other rotated component. Figure 20.1 provides a visual plot of the loadings in 
'l'nhle 20.2 both before and after rotation. 

Let us suppose we are now told that Variables 1, 2, and 3 are alternative mea­
'IIrcs of sociability, and Variables 4, 5, and 6 are alternative measures of intellectual 
uhility. Clearly the rotated components will be far more useful than the unrotated. The 
IIlIl'Iltated would be very difficult to interpret, but the rotated suggest that our six 
\'lIriahles can be reduced to two supervariables, or composite variables (sociability 
IIlId intellectual ability), that are independent of each other (orthogonal). That is, when 
Wl' rotate the axes of Components I and II, we keep them orthogonal (at right angles 
III line another). 

The most commonly used method of orthogonal rotation is called varimax 
rethalloo, This method tries to maximize the variation of the squared loadings for 
rill'll component by making the loadings go to 0 or to 1.00 to the extent possible. 
",illg varimax rotation usually helps to make the components easier to interpret. 
SlIlIIctimes, however, it is useful to allow the rotations to be nonorthogonal, such 
1111 when the hypothesized underlying supervariables are thought to be somewhat 
mrrcluted in the real world. Such non orthogonal rotations are described as 
"Mit/I/('. . 
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PSYCHOMETRIC APPLICATIONS OF 
PRINCIPAL COMPONENTS ANALYSIS 

As a further illustration of the utility of principal components analysis, we tum next 
to three particular applications that were part of a program of research to develop a 
measure of sensitivity to nonverbal cues (Rosenthal, Hall, DiMatteo, Rogers, & Archer, 
1979), called the PONS test (for Profile of Nonverbal Sensitivity). The three applica­
tions we describe involved its construct validation, subtest construction, and reliability 
analysis. 

Construct Validation 

As part of the construct validation of the PONS, it was important to assess its 
independence from measures of intellectual functioning. Scores on the PONS on items 
reflecting sensitivity to nonverbal cues that were positive and submissive in content, 
positive and dominant, negative and submissive, and negative and dominant were 
available for a convenience sample of 110 high school students. Also available were the 
students' scores on the verbal SAT, the math SAT, and the Otis IQ test. The researchers 
hypothesized that the PONS was independent of intellectual ability and expected that, 
after varimax rotation, two orthogonal principal components would be found reflecting 
(a) intelligence and (b) nonverbal sensitivity. 

The actual loadings after rotation are shown in Table 20.3, and we see that 
those results are in good agreement with the researchers' hypothesis. That is, the first 
fotated component is essentially a PONS component; the second is an intellectual 
component. Before varimax rotation, the first principal component showed positive 
loadings by all the variables, and the second principal component showed positive 
loadings by the three intellectual variables and negative loadings by the four variables 
of sensitivity to nonverbal cues. By making the loadings within each component as 
close to 0 or to 1.0 as possible, the varimax rotation improved the clarity and 
specificity of the loadings. 

TABLE 20.3 

llIustration of principal components in construct validation 

Otis IQ 

Verbal SAT 

Math SAT 

PONS 

Positive-submissive 

Positive-dominant 

Negative-submissive 

Negative-dominant 

Loadings after rotation 

Component I Component n 

.19 .64 

-.02 .89 

-.07 .84 

.66 .02 

.82 -.00 

.77 .06 

.78 .06 



MULTIVARIATE DATA ANALYSIS 645 

TABLE 20.4 

Visual and auditory channels of PONS test of sensitivity to nonverbal cues 

Auditory channels 

None 

( 'ontent-filtered 

I(nndom-spliced 

Subtest Construction 

Visual channels 

Another psychometric application in this investigation involved the formation of subtests, 
liS the PONS consisted of 220 items, 20 in each of 11 nonverbal channels, Those channels 
were constructed in either the visual or the auditory domain or in both, as denoted more 
specifically by the cells numbered from 1 to 11 in Table 20.4. The face channel items in 
('ells 1,5, and 9 showed only facial cues. The body channel items in Cells 2, 6, and 10 
showed only body cues. The face-plus-body-channel items in Cells 3, 7, and 11 showed 
hlllh types of cues. The content-filtered items in Cells 4-7 preserved tone, but not con­
lenl, by removing high frequencies. The random-spliced items in Cells 8-11 preserved 
Iliffcrent aspects of tone, but not content, by random scrambling of speech. 

The analytic process started with intercorrelating the 11 channels and channel 
~'lImbinations shown in Table 20.4. Table 20.5 shows the four orthogonal principal 
nllnponents obtained after varimax rotation. Interpretation of those results is that the 
lirsl component is characterized by face presence, reflecting ability to decode nonverbal 
nics from any combination of channels as long as the face is included as a source of 
information. The second and third principal components are interpreted as reflecting 
II specific skill, namely, the decoding of random-spliced and content-filtered cues, 
Il'spectively, in the absence of visual cues. The fourth principal component is inter­
preted as reflecting the ability to decode body cues in the absence of facial cues. 

The first row of summary data at the bottom of Table 20.5 gives the sums of 
the squared loadings-the amount of variance accounted for by that factor. Alternative 
lel'lns for the sum of the squared loadings, before rotation, are eigenvalue, latent root, 
dltll'llcteristic root, and just root (Armor, 1974). The next row of summary data gives 
the percentage of variance accounted for by each component. It is computed by 
division of the sum of the squared loadings for that component by the total number 
III' variables, or 11 in this illustration. For the present analysis these first two rows 
"how that the first and fourth components are more important in the sense of account-
11111 for more variance than the second and third components. Note that this result can 
I"-',,'ur only after rotation. Before rotation, no succeeding component can be larger than 
.. preceding component. The reason is that each succeeding component is extracted 
,,"ly from the residuals of the preceding one. The third row of summary data lists the 
",,,uher of variables serving; to define each component. The last row lists the number 
n" fIIW test items contributiI1g to the variables defining each component. 

A variety of techniques are available for forming subscales from principal 
~ulllponents analyses. Many of these techniques generate scores for each subject for 
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TABLE 20.5 

Loadings of 11 PONS subtests on four components 

Loadings on components 

Variables 1 2 3 4 

Face .62 .12 .10 .15 

Face + body .68 .07 .11 .24 

Face + random-spliced .70 .02 .06 .22 

Face + content-filtered .65 -.03 .09 .20 

Face + body + random-spliced .67 .30 .09 .05 

Face + body + content-filtered .70 .06 .10 .32 

Random-spliced .14 .95 I .03 .12 

Content-filtered .20 .04 I .96 .14 

Body .47 -.04 .02 .59 

Body + random-spliced .33 .07 .12 .57 

Body + content-filtered .11 .13 .08 .82 

Sum of squared loadings 3.11 1.04 1.01 1.66 

Percentage of variance 28 9 9 15 

Number of variables defining components 6 3 

Number of items defining components 120 20 20 60 
r' 

each component in such a way as to keep the scores on the various components 
uncorrelated with one another. In our own research, however, we have used a simple 
procedure that often leads to psychologically more interpretable scales, subtests, or 
composite variables, although the composite variables may no longer be entirely 
uncorrelated with each other. We simply combine the variables serving to define each 
component, giving equal weight to each variable, a method that is recommended for 
both theoretical and statistical reasons (Dawes & Corrigan, 1974). How we actually 
combine variables depends on their form, however. If all the variables were measured 
on similar scales and have similar standard deviations, then we simply add or average 
the variables. This method also assumes that all the variables have loadings of the 
same sign or are positively correlated with each other. A variable negatively correlated 
with the others can be used only after its scale is changed into the proper direction 
(e.g., by multiplying each observation by -1). 

In the study shown in Table 20.5, scores of each variable could range from 
o to 20, and the standard deviations were similar, so the researchers summed the 
subjects' scores on the variables serving to define each component. Thus, each 
subject could have a score of 0 to 120 on the composite variable based on the first 
rotated component, then a score of 0 to 20 on the second and third rotated com­
ponents, and finally scores of 0 to 60 on the fourth rotated component. Had the 
variables not been on the same scale or metric, the researchers would have 
transformed all variables to standard scores before adding or averaging. When there 
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(Ire no missing data, it may not matter whether one adds or averages the scores on 
the variables defining each component. But when data may be missing, it is safer 
to use the mean of the variables rather than their sum as the new composite or 
supervariable. 

Rarely are we interested in seeing the loadings of as many principal compo­
nents (either unrotated or rotated) as there are variables. A number of quantitative 
criteria are available to help researchers decide how many components they may 
need to examine. In the case of subtest or composite variable construction, we 
recommend a step-up approach, examining in turn the rotated first two components, 
then the first three, then the first four, and so on. The solution we choose should 
he the one that makes the most substantive sense. Experience has taught us that 
looking only at the rotated end result (i.e., the loadings of all variables on all 
the components extracted based on any of several quantitative rules for stopping 
the extraction process) typically yields more components than are needed to 
l'Onstruct useful, meaningful subtests or composite variables, as well as fewer com­
ponents that are interpretable. It should be noted that at each step-up, the definition 
of each component changes. Thus, the first component after the rotation of two 
l'Omponents will not be the same as the first component after the rotation of three 
or four or more components. 

Reliability Analysis 

Earlier in this book we discussed the internal-consistency reliability of a test, which 
tells us the degree of relatedness of the individual items when we wantto use those items 
to obtain a single score (chapter 4). We described three approaches: the Spearman­
Brown equation, Kuder and Richardson's Formula 20, and Cronbach's alpha. Another 
IIpproach, suggested by David Armor (1974), is particularly useful in the context of 
principal components analysis. Because the first unrotated principal component is the 
hest single summarizer of the linear relationships among all the variables; it can be 
used as the basis for an estimate of the internal-consistency reliability of a test. We 
would probably use such an estimate only where it made substantive sense to envision 
1111 overall construct that had been tapped to some degree by all of the variables; 
this might be the case for many measures of ability, adjustment, achievement, and 
the like. 

In the case of the PONS, the researchers theorized that there might be a general 
IIhility to decode nonverbal cues. Therefore, they reasoned, it should be possible to 
estimate the internal consistency of the PONS from the first principal component 
h,:flJre rotation. After rotation, the first principal component would no longer be the 
hest single summarizer, but it would probably give a far better structure to the data 
working in concert with other rotated components. Armor's index of reliability, theta 
(II), computes a maximum possible reliability as follows: 

8=~(~) 
V-I L ' 

(20.1) 

where V is the number of variables, and L is the latent root (eigenvalue, or the sum of 
Ihe squared loadings). For the 220 items of the PONS, with each item regarded as a 
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variable, the researchers computed 

8 = 220(13.217 - 1) = .929. 
219 13.217 

The analogous reliability based on the 11 channels in Table 20.4, rather than the 220 
items, was 

8 = ..!l( 4.266 - 1) = .842. 
10 4.266 

It should be noted that the latent root of 4.266 for the II-variable analysis is substantially 
(37%) larger than the latent root of 3.11 (shown in Table 20.5) for the first principal 
component after rotation. 

Armor's theta is a very convenient index of internal-consistency reliability that 
can be used routinely as long as there are also reasons to use principal components 
analysis. However, because 8 is an index of maximum possible reliability, we generally 
recommend using it along with the more conservative reliability procedures discussed 
in chapter 4 (e.g., those based on analysis of variance or intercorrelations adjusted by 
the Spearman-Brown equation). 

Before we leave this illustration of reliability analysis, it may be useful to think 
about how it is possible to make up a test of several orthogonal principal components 
that still has high internal-consistency reliability. By their very definition, we know 
that orthogonal components cannot make any contribution of correlation to each other. 
Ho~ever, given the way that internal-consistency reliability for a total test score is 
defined, this reliability increases as the mean of the intercorrelations increases and as 
the number of items increases. Thus, a mean intercorrelation lowered by the presence 
of orthogonal components can be compensated for by an increase in the number of 
items that correlate positively with some other items. Longer tests, therefore, can have 
high internal-consistency reliability even when they comprise orthogonal components 
or factors. 

ALTERNATIVES FOR THE REDESCRIPTION 
OF VARIABLES 

Factor Analysis 

The most commonly used alternative method to principal components analysis for the 
redescription of variables is actually an entire family of alternatives known as factor 
analysis. Sometimes principal components analysis is viewed as a special type of factor 
analysis, but there are subtle, yet sometimes important, differences between principal 
components and factor analysis. 

Principal components analysis and factor analysis both operate on a matrix 
of correlations similar to that for the cluster analysis example in Part A of Table 20.1. 
The two methods differ, however, in their entries on the diagonal of the correlation 
matrix. In principal components analysis, the value of 1.00 is entered on the 
diagonal that shows the correlation between a variable and itself. In factor analysis, 
the value entered on that diagonal is usually less than 1.00 and is an estimate of 
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the shared or common variance that sets aside error variance and variance unique 
to a particular variable. Principal components analysis is a mathematically simpler 
procedure that can be exactly duplicated by other researchers from the same 
correlation matrix. Factor analyses are more complex mathematically and yield 
different results for the various methods of extracting factors, so that different 
investigators exercising different options will obtain different factor structures from 
the same data. More detailed discussions of factor analysis can be found in Comrey 
and Lee (1992); Hair, Anderson, and Tatham (1987); Harman (1976, 2003); 1.-0. 
Kim and Mueller (1978); Loehlin (2004); Mulaik (1972); Rummel (1970); Stevens 
(2(02); Tabachnick and Fidell (2001); and Thompson (2004). Beginners would 
do well to use principal components with varimax rotation as their standard 
I'edescriptor. 

Cluster Analysis 

Earlier we mentioned that cluster analysis is a family of methods for identifying and 
J:roupingvariables. These methods range from some very simple to some very complicated 
procedures. In our initial example (Table 20.1), we illustrated a simple form of cluster 
IInalysis in which we used as the criterion of cluster tightness the difference between 
the average within-cluster intercorrelations and the average between-cluster correlations. 
( )verviews and discussions of cluster analysis can be found in Bailey (1974), K. H. Kim 
lind Roush (1980), and Hair, Anderson, and Tatham (1987). 

In clustering, it is not necessary that it be variables that are grouped together. 
We can instead cluster the subjects or other sampling units for whom measurements 
have been obtained. Then, instead of grouping variables together that correlate 
hiJ:hly over a list of persons, we can group persons together that correlate highly 
liver a list of variables. A typology of persons or other sampling units can thereby 
Iw constructed. We should note, however, that factor analysis and principal com­
Jlonents analysis can also be used to the same end. We illustrate with a small 
"\lImple. These procedures involve what amounts to an exchange of rows with 
\'lIlumns, assuming that we always intercorrelate columns with an eye to their 
rt'description. 

Part A of Table 20.6 shows two data matrices: The one on the left (IA) has each 
1lt'l'son's scores on all variables in one row, and the one on the right (IIA) has each 
\-nriaole's scores for each person in one row. From these data matrices we compute 
Iht' correlation matrices shown in Part B by correlating each column's scores with 
t'Vl'I'Y other column's scores. Clustering or factoring the correlation matrices in Part 
It results in a redescription of the five variables in terms of some (usually smaller) 
IIlIllIoer of groupings of the variables in the case of the matrix on the left (IB). For 
Iht' matrix on the right (lIB), that clustering or factoring leads to a redescription of 
Iht' six persons in terms of some (usually smaller) number of groupings. This exam-

,I 

rlt' of six persons measured on five variables is convenient as an illustration, but we 
,hllUld note that, in general, factors are more reliable when the N on which each cor­
",llIlion is based is much larger than the number of variables or persons being 

llQlrrCOrrelated and factor-analyzed. 
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TABLE 20.6 

Redescribing data and correlation matrices 

A. Data matrices 

IA. Redescribing variables" llA. Redescribing personsb 

Variable Person 

1 2 3 4 5 1 2 3 4 5 6 

Person I Variable I 

Person 2 Variable 2 

Person 3 Variable 3 

Person 4 Variable 4 

Person 5 Variable 5 

Person 6 

, Redescribing the variables as clusters, factors, or types. 

b Redescribing the persons as clusters, factors, or types. 

B. Correlation matrices 

IB" 1mb 

Variable Person 

i' 
1 2 3 4 5 1 2 3 4 5 6 

Variable I Person I 

Variable 2 Person 2 

Variable 3 Person 3 

Variable 4 Person 4 

Variable 5 Person 5 

Person 6 

, In Matrix IB, each correlation is based on six pairs of observations (Le., from the six persons). 

b In Matrix lIB, each correlation is based on five pairs of observations (Le., from the five variables). 

Other Alternatives 

Many other procedures and techniques have been developed to serve as redescriptors. 
They have in common that they examine the relationships among the objects, stimuli. 
or other entities in terms of some measure of similarity-dissimilarity. On the basis of 
the results we then try to infer some number of dimensions that will meaningfully 
account for the obtained pattern of similarities and/or dissimilarities among the ob­
jects, stimuli, or other entities. The methods have been called dimensional analysis (a 

term referring to distance analysis), multidimensional scaling, multidimensional un­
folding, proximity analysis, similarity analysis, smallest space analysis, and some oth­
er procedures summarized by various authors (e.g., Coombs, Dawes, & Tversky, 1970; 
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Rummel, 1970; and the more detailed discussions by Guttman, 1966; Lazarsfeld & 
Henry, 1968; Torgerson, 1958; Young & Hamer, 1987; and especially by Shepard, 
Romney, & Nerlove, 1972). To give a flavor of similarity-dissimilarity judgments and 
a concrete example of multidimensional scaling, we turn next to an application in the 
social psychology of psychological research. 

MULTIDIMENSIONAL SCALING 
ILLUSTRATION 

In chapter 7 we discussed the notion of the "good subject" as put forward by Orne 
(1962, 1969) in his research on demand characteristics and quasi controls. Orne's idea 
was that typical subjects in psychological experiments were altruistically motivated 
to "further the cause of science," and he demonstrated empirically the remarkable 
lengths to which volunteer subjects would frequently go to comply with demand char­
acteristics. Thus, we noted that the volunteer subject frequently serves as a proxy for 
the "good subject" (Rosenthal & Rosnow, 1975). We also discussed an alternative 
role enactment that was proposed by Rosenberg (1965, 1969), who argued that typi­
cal subjects in psychological experiments more often worry about how they will be 
evaluated (evaluation apprehension, he called it) than about whether the experiment 
will turn out to be beneficial to science. A third type of role enactment, not discussed 
previously, is attributed to Stanley Milgram's work on obedience, the idea being that 
typical subjects are simply obedient to authority (e.g., the authority of the experiment­
er). A question that has been frequently debated in the literature concerns which of these 
three interpretations best defines the predominant role expectation of typical research 
subjects in psychology: the altruism hypothesis, the evaluation hypothesis, or the obedi­
ence hypothesis. Another question of interest has been whether there are differences in 
the salient role expectations of volunteers and nonvolunteers for psychological research. 
Both questions were explored in a study using similarity-dissimilarity judgments and a 
multidimensional scaling (MDS) procedure (L. S. Aiken & Rosnow, 1973). 

The subjects were drawn from sections of an introductory psychology class and 
identified as "verbal volunteers" or "verbal nonvolunteers" by a procedure in which 
all of the students had previously been given an opportunity by another experimenter 
to volunteer for another psychological study. The names of those who had signed 
up were compared with the current class roster to identify verbal volunteers and 
nonvolunteers. All of the subjects in the class were given questionnaires during a 
regular class meeting and asked to judge each of 55 unique pairs of k = 11 different 
stimuli that were presented in a complete paired-comparison schedule. One stimulus, 
the "target situation," was simply "being a subject in a psychology experiment." The 
other 10 stimuli were designed either to represent proxy experiences related to the 
three ro1e expectations or to serve as control items for tapping positive or negative affect. 
The 10 comparison stimuli are shown in Table 20.7, and the subjects were instructed 
to rate each paired set of stimuli op how similar the experiences were in the expectations 
they had about them. A 15-point scale was provided, ranging from "very similar 
expectations" (15) to "very dissimilar expectations" (1). After the subjects had 
practiced on some sample pairs, they rated the similarity of their personal expectations 
for the 55 unique pair members. 
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TABLE 20.7 

Ten comparison stimuli and the five conditions 
they represented 

Altruism hypothesis 

I. Giving anonymously to charity 
2. Working free as a laboratory assistant 

Evaluation hypothesis 

3. Taking a final exam 
4. Being interviewed for a job 

Obedience-to-authority hypothesis 

5. Obeying a no-smoking sign 
6. Not arguing with the professor 

Positive control 

7. Spending the evening with a good friend 
8. Taking a walk in the woods 

Negative control 

9. Going to school on the subway 
10. Having to work on a weekend or holiday 

For the assessment of the consistency or test-retest reliability of the judgments, 
the subjects were given a second questionnaire containing 15 pairs that had been 
chosen from across the pair sequence and were asked once again to make similarity­
dissimilarity judgments. For each subject, a correlation was computed on the original 
versus the second set of judgments of the 15 reliability pairs. The median reliability 
among verbal volunteers was .68, and among verbal nonvolunteers it was .48. 
Reasoning that the inclusion of unreliable protocols would tend to obscure or con­
found differences between groups, the researchers used an arbitrary cutoff of r = .51, 
thereby upping the median reliability coefficients of the remaining 40 verbal volun­
teers and 48 verbal nonvolunteers to .77 and .79, respectively. In passing, we should 
note that the original difference in reliabilities was consistent with some previous 
results, for which one interpretation was that volunteers may have a tendency to show 
greater care in responding or in answering questions (i.e., consistent with the good 
subject hypothesis). 

Of the 55 total judgments that each subject made, 10 were direct assessments 
of the target stimulus ("being a subject in a psychology experiment") with the 
comparison stimuli. From these judgments five scores were computed for each 
subject, the scores representing the similarity of each of the five comparison 
categories (i.e., altruism, evaluation, obedience, positive control, and negative 
control) to the target stimulus. Within each of those categories this score was the 
sum of the judged similarities of the paired situations in that category to the target 
stimulus. The results, which are shown in Table 20.8, revealed that the category 
with the highest similarity to the target stimulus among both the verbal volunteers 
and nonvolunteers was that corresponding to Orne's altruism hypothesis. Notice also 
that the positive control stimuli were judged to be closer to the target stimulus by 
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TABLE 20.8 

.Iudged similarity of the target stimulus ("being a subject in a psychology 
experiment") to five categories of paired experiences 

Experiential categories 

Altruism Evaluation Obedience Positive Negative 
Stlltus of subjects hypothesis hypothesis hypothesis control control 

Vulunteers 20.3 14.5 12.8 15.1 12.7 

(7.1) (6.8) (7.2) (8.8) (5.8) 

Nunvolunteers 16.9 14.5 9.4 10.0 9.4 

(7.4) (6.5) (6.9) (6.9) (6.1) 

.Vo',·: The maximum possible similarity score was 30; the higher the score, the greater was the judged similarity in role 
e"l'cctations between the target stimulus and the combined category stimuli (numbers in parentheses are standard 
cle·viutions). 

the verbal volunteers than by the nonvolunteers, and evidently there are a few other 
differences as well between those two groups that invite further exploration. 

Next, a multidimensional scaling procedure (MDS) was used to explore the 
structure underlying the sUbjective similarity judgments between all situations. 
MDS is similar in spirit to both factor analysis and principal components analysis 
in that the purpose of MDS is to extract dimensions (analogous to factors or 
components) underlying sets of inter stimulus similarities (analogous to intervariable 
l·orrelations). MDS gives for each stimulus its projections on the dimensions of 
Ihe underlying configuration (analogous to factor or component loadings). How 
lIlany dimensions are chosen to represent the structure of a set of judgments 
tmditionally depends on the goodness-of-fit of a solution to the original judgments 
liS well as on the interpretability of the dimensions of the solution. In this particular 
~tudy, the mean judged similarity to each category pair was computed separately for 
verbal volunteers and nonvolunteers. These mean judgments were then analyzed by 
1\ method called TORSCA (Young, 1968). Four-, three-, two-, and one-dimensional 
kolutions were derived for verbal volunteers and nonvolunteers separately so that 
lIoodness-of-fit could be examined as a function of solution dimensionality. The 
results indicated that two dimensions were appropriate for representing the original 
IUllgments of both groups. 

The raw judgments of the 88 individual subjects were next rescaled by a proce­
dUl'c called INDSCAL (Carroll & Chang, 1970), which treats subjects and stimuli 
lIilllultaneously. In this procedure, a single stimulus configuration is recovered. The 
\'onliguration is that unique solution that best represents the judgments of all individual 
IIuh.iccts. The two-dimensional stimulus configuration derived for the INDSCAL pro­
~cdure can be seen in Figure 20,2. The researchers interpreted the first dimension as 
"work orientation," with the nonwork experiences of "taking a walk in the woods" and 
""pending the evening with a good friend" located at one extreme and with the highly 
work-oriented experiences at the other extreme. The second dimension was interpreted 
"Ii IIffective, with "giving anonymously to charity" at one extreme and "taking a final 
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7 Spending the evening with a good friend 

8 Taking a walk in the woods 

1 Giving anonymously to charity 

/ 3 Obeying a no-smoking sign 

4 Not arguing with the professor 

2 Working free as a 
.<f~ laboratory assistant 

fJQi8l1} 
11 Being a 

subject in 
a psychology 
experiment 

§ 
~ 9 Going to school on 10 Having to work on a weekend 

,.!,l the subway / h l'd :§ or 01 ay 
L-_________________ 5 Taking a final exam ----------1 
Non-work-oriented ~.-------- Dimension 1----------. Work-oriented 

FIGURE 20.2 
Two-dimensional INDSCAL solution based on individual judgments of 88 SUbjects. Lines labeled 
"Altruism," "Evaluation," and "Obedience" reflect the relative distances between these three categories 
and the target stimulus ("Being a subject in a psychology experiment"). The proximity between any pair 
of situations reflects the perceived similarity in role expectations for the pair members. 

exam" at the other extreme. In the scaling solution the ordering of distances of the 
altruism, evaluation, and obedience categories from the target stimulus is plotted, as 
shown in the figure. Altruism stimuli were closest to the target stimulus, followed by 
the evaluation and obedience stimuli. Among the verbal volunteers, the median cor­
relation of the individual subjects' original judgments and weighted distances was .67 
with a semi-interquartile range of .10. Among the verbal nonvolunteers, the median 
correlation was .65 with a .06 semi-interquartile range. On the basis of these results, 
the researchers concluded that the judgments of all individual subjects could be prop­
erly represented in the common stimulus configuration given in Figure 20.2. 

Last, the researchers turned to the question of whether the verbal volunteers and 
verbal nonvolunteers could be differentiated on the basis of the weight placed on each 
dimension in making their judgments. For this purpose the dimension weights of 
individual subjects derived from the INnSCAL procedure were examined for a 
differentiation of the groups on the basis of dimension salience. That analysis revealed 
that the nonvolunteers placed more weight on the work orientation dimension than 
did the volunteers (mean weights of .36 and .28, respectively), with F(l, 86) = 9.3, 
p = .003, r = .31. Volunteers placed somewhat more weight on the pleasant-unpleasant 
dimension than did the nonvolunteers (mean weights of .55 and .49, respectively), 
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with F(1, 86) = 3.3, p = .073, r = .19. Further analysis showed that the work 
orientation dimension contributed to the distinction between groups more than the 
affective dimension. 

The researchers interpreted these collective results as being consistent with the 
idea that all three conceptions (altruism, evaluation, and obedience) operate in the role 
expectations that subjects associate with research participation. No single hypothesis 
was exclusively valid or invalid, but there was an indication that Orne's altruistic 
situations bore the closest resemblance to the target stimulus. Regarding differences 
hetween verbal volunteers and nonvolunteers, the results were viewed as suggesting 
Ihat nonvo1unteers put heavier emphasis on a work-oriented dimension than do verbal 
volunteers, whereas volunteers place more weight on an affective dimension. That 
verbal nonvolunteers tended to amplify the distinction between situations involving 
work and nonwork activities and judged participation in research more as a work­
oriented experience seemed consistent with some other findings (Straits & Wuebben, 
1973) suggesting that the negative aspects of experimental participation are likely to 
he more salient for captive (or coerced) subjects. The collective findings were also 
interpreted as possibly helping to explain why nonvolunteers can be very unenthusi­
IIstic about being research subjects, as well as why their behavior is generally sluggish 
when they are unpaid, captive subjects; that is, being compelled to work when there 
is no personal monetary gain attached to the effort could be seen as promoting 
uncooperative behavior in subjects who are perhaps already attuned to the negative 
aspects of the "work" situation. 

As we noted earlier, this particular study is meant to give only a flavor of MDS 
lind the related techniques described, where the subjective similarity judgments were 
used as a kind of projective measure. That is, the judgments the subjects made were 
presumably projections of their underlying states of mind, experiences, expectations, 
lind so on. Various MDS procedures are quite commonly used in marketing research 
10 provide a visual perceptual map of the key dimensions underlying customer 
evaluations of products, services, and companies (see, e.g., discussion and further 
illustration in Hair, Anderson, & Tatham, 1987). However, we have seen that it is also 
II complex method and, as Hair et al. noted, one that is often misused in marketing 
research. Thus, they wisely recommended that, before deciding to use a packaged 
I,rogram to run MDS, researchers familiarize themselves with the nuances of the 
procedure and "view the output as only the first step in the determination of perceptual 
information" (p. 369). 

RELATIONSHIPS AMONG SETS 
Of<' VARIABLES 

'111e remaining multivariate procedures summarized here only briefly pertain to the 
relationship between two or more sets of variables heuristically classified as independent 
(predictor) and dependent (criterion) variables. Table 20.9 provides a structure for the 
lIurvey of these procedures. The left half of the table lists the procedures in which a set of 
Independent or predictor variabl~s is assessed for its relationship to a single dependent 
IIr criterion variable. The right half of the table lists the analogous procedure, but for 
more than one dependent or critt:1rion value. Thus, in each of the six method pairs of the 
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TABLE 20.9 

Multivariate procedures for examining relationships among sets of variables 

Traditionally labeled 

Correlational 

Analysis of variance 

Metbod pair 

Method pair 1 

Method pair 2 

Method pair 3 

Method pair 4 

Method pair 5 

Method pair 6 

Dependent-variable status 

Single 

Multiple correlation 

Discriminant function 

Path analysis 

Multiple partial correlation 

Multilevel analysis of variance 

Analysis of covariance 

Multiples 

Canonical correlation 

Multiple discriminant 
function 

Multiple path analysis 

Complex multiple 
partial correlation 

Multivariate multilevel 
analysis of variance 

Multivariate analysis 
of covariance 

• Interpretation of the results of these procedures is almost always ambiguous, and special caution should be exercised 
before any of these procedures are used in anything but the most exploratory spirit. 

table, one member of the pair is based on a single dependent variable and one is based 
on multiple dependent variables. 

The first four method pairs are labeled "correlational," and the last two method 
pairs are labeled "analysis of variance." Although this traditional distinction is useful 
in helping us find our way to the various packaged computer programs, it is also 
useful for conceptual purposes to view the ANOV A procedures as special cases of the 
correlational. That is, both are subsumed under the same fundamental model for the 
analysis of data, the general linear model (Cohen, Cohen, West, & Aiken, 2003). In 
what follows we describe briefly each of the method pairs in tum. 

Method Pair 1: Multiple (Canonical) Correlation 

Multiple correlation (briefly discussed in chapter 11) is the correlation between two 
or more predictor variables and a single dependent variable. The multiple correlation 
coefficient, R, is a product-moment r between the dependent variable and a composite 
independent variable. That composite variable is made up, to varying degrees, of the 
individual independent variables in proportion to their importance in helping to maxi­
mize the value of R. Thus, we can learn from the procedures of multiple correlation 
and regression both (a) the absolute value as a predictor of the entire set of predic­
tors and (b) the relative value as a predictor of each independent variable compared 
with the others. By dummy-coding the various factors of an ANOV A and using those 
dummy-coded factors as independent variables, we can readily approach many (bul 
not all, i.e., fixed but not random factor designs) models of the ANOV A by way of 
multiple correlation or regression. (It should be noted that we are using the terms 
correlation and regression interchangeably, whereas a more technical usage would 
have us refer to regression in contexts where we want to relate changes in the level of 
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X to changes in the level of Y, whereas we would refer to correlation as a more global 
index of closeness of relationship.) 

Because multiple correlation or multiple regression can be viewed as having a 
structure that is basic to all the multivariate procedures shown in Table 20.9, we will 
spend a little more time describing its virtues (well known) and its problems (too 
infrequently recognized). Our discussion draws heavily on the authoritative work of 
Lincoln E. Moses (1986). 

In multiple regression the value of the predicted or outcome variable, Y, is 
viewed as depending on a, the intercept on the Y axis, and the values of the predictor 
variables, Xl, X2, X3, ... , Xk, each multiplied by a coefficient ~ chosen in practice 
so as to minimize the sum of the squared discrepancies between the predicted and 
obtained values of Y. A term, e, is added to describe the discrepancy between a 
particular value of Yand the predicted value of that Y. Thus, for two predictor variables, 
X I and X2, the equation, formula, or model is 

(20.2) 

As the number of predictor variables increases, we become increasingly 
grateful for the availability of computers to help us calculate the changing values 
of a and S. As the computer brings any new predictor variable into the equation, 
nil the betas (and the alpha) change so that the magnitude, sign, and statistical 
significance of each regression coefficient depend entirely on exactly which other 
predictor variables are in the regression equation. Thus, in describing the results 
I)f a regression analysis, statements about which predictors are most important, 
least important, second-most important, and so on will depend not only on the 
peculiarities of the particular sample being studied, but also on the precise battery 
I)f predictors that has been used. 

A word of caution is also required about the interpretation of significance levels 
provided by mUltiple-regression statistical packages. The standard output of p values 
provided by programs for the overall R and for the regression coefficients of each 
prcdictor variable are the same whether the particular battery of predictors was planned 
liS the only battery of predictors to be used (almost never the case) or whether some 
IIlgorithm was used to pick out the best set of k predictors from a larger set of possible 
prcdictors (almost always the case). The p values will be accurate only in the former 
(unlikely) case; they are not accurate in the latter (common) case. Indeed, it is not a 
Irivial matter how one would even go about obtaining an accurate p value (Moses, 
Il)X6). 

There are special problems of replicability in multiple regression. Particularly 
whcn the k predictors of the first study were selected from a larger set of possible 
I,rcdictors, it is very likely that the multiple-R2 will decrease substantially in a 
replication study. Such predictable decreases in the cross-validation of a battery of 
predictors are called shrinkage in the context of multiple regression. 

A special problem of multiple regression is collinearity, or high correlations, 
IlIlIong predictor variables. Collinearity makes it hard to interpret the substantive 
mcaning of regression coefficients. For example, how should we think of the 
re~rcssion coefficient for the variable of having made Phi Beta Kappa in the context 
III" II regression equation with college grades and SAT scores as fellow predictor 
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variables? One consequence of collinearity is that we may have a large R2 and yet 
find none of the regressors to be significant (Moses, 1986). Because of collinearity, 
the work of anyone predictor is not very important to the overall prediction enter­
prise. The analogy given by Moses (1986) was 10 people carrying a load that could 
be carried by 8. The group is doing its job, but any 1 or 2 people could be omitted 
and never be missed. 

In the preceding paragraphs we have tried to create a cautious attitude toward 
the use of multiple regression in its generic application as a procedure for predicting 
an outcome variable from a battery of predictor variables. When using multiple­
regression procedures to draw causal inferences in the absence of the randomized 
assignment of subjects, we want to create an attitude of caution greater still! Some 
years ago, Donald Campbell and Robert Boruch (1975), Thomas Cook and Campbell 
(1979), and others (e.g., Director, 1979) argued quite convincingly that multiple­
regression approaches to inferring causality can yield very misleading results (for a 
recent update and discussion, see also Shadish, Cook, & Campbell, 2002). In particular, 
evidence from multiple-regression analyses of the effects of societal intervention 
programs frequently underestimates the benefits of those programs. Their effects are 
likely to be seen (erroneously) as ostensibly harmful when the pretest differences 
favor the control group over the intervention group. 

Canonical correlation is the correlation between two or more predictor 
variables and two or more dependent variables. The canonical correlation coefficient. 
CR, is a product-moment r between a composite independent variable and a com­
posite dependent variable. We construct these composite variables by weighting 
each constituent variable in proportion to the importance of its contribution to 
maximizing the value of CR. Multiple-R can be seen as a special case of CR when 
there is only one dependent variable. When there are multiple dependent variables, 
we can compute more CR values-in fact, as many as there are dependent variables 
(or independent variables if there are fewer of them than of dependent variables). 
Each successively computed CR is again a correlation between a composite 
independent variable and a composite dependent variable, but with each computed 
so as to be independent of the preceding composites computed. Because each CR 
operates on the residuals from the preceding CR, successive CR values will diminish 
just as successive principal components do. 

From a practical point of view, we would not often recommend the canonical 
correlation, as the results obtained are usually difficult to interpret. In particular, the 
statistical significance level associated with a canonical correlation is likely to have 
little substantive meaning. When canonical correlations do apply, we have found it 
more useful to generate several reasonably uncorrelated independent composite vari­
ables (with the help of principal components or cluster analysis) and several reason­
ably uncorrelated dependent composite variables (again with the help of principal 
components or cluster analysis). We would then use ordinary correlation, and some­
times multiple correlation, separately for each of the relatively orthogonal dependent 
variables. Although we do not recommend canonical correlation for hypothesis testing 
or for confirmatory analysis, we have found the procedure useful from time to time 
as a hypothesis-generating method in the spirit of exploratory data analysis (see, e.g., 
Rosenthal, Blanck, & Vannicelli, 1984). 



MULTIVARIATEDATAANALYSIS 659 

Method Pair 2: (Multiple) Discriminant Function 

The discriminant function is the set of optimal weights (given the predictor variables) 
that does the best job of discriminating whether subjects or other sampling units are 
members of one or another group. Because we can dummy-code group membership 
as 0 and 1, we can regard discriminant function analysis as a special case of multiple 
correlation or regression in which we have a dichotomous (0 vs. 1) dependent variable. 

The multiple discriminant function is the set of optimal weights given each pre­
dictor variable that does the best job of discriminating among subjects' memberships 
in three or more groups. Inasmuch as multiple groups can be turned into multiple 
dependent variables by dummy coding (so that we have one less variable than we had 
groups), we can regard multiple discriminant function analysis as a special case of 
canonical correlation in which each dependent variable is dichotomous. (It should be 
noted that we obtain the same result whether we regard the dummy-coded group 
membership variables as the dependent variables or as the independent variables.) 

The same note of caution on practical usage that we offered in the case of 
multiple and canonical correlation applies to these special cases. 

Method Pair 3: (Multiple) Path Analysis 

"ath analysis is a special case of multiple regression in which the goal is usually the 
,h'awing of causal inference, and in which there is presumably a strong basis for or­
,Icring causal priorities. For example, if our predictor variables include gender, social 
\'lass, and education, we can order these three variables on a dimension of time, with 
J:cnder being determined first, then social class (defined, say, as parental income and 
IIl'cupation when the subject began formal education), and finally education of subject 
hlclined as number of years). Multiple regression is then used in a repeated way, each 
\'lIl'iable contributing to the prediction of every other variable coming later in time. If 
thc dependent variable is income, then all three predictors are relevant to income, with 
!lcnder contributing directly to income and also by way of influencing social class and 
r,lucation, which in tum also affect the dependent variable. Social class, being partially 
IIffccted by gender, can then affect income directly and also by way of education. Edu­
"!ltion, being affected by gender and social class, can then also affect income directly. 
Thc diagram in Figure 20.3 summarizes the lines of influence. In chapter 9 we discussed 
thc problem of missing data; James L. Arbuckle (1996), who created the structural equa­
lion modeling program called AMOS, has written an informative article dealing with 
missing data in the context of path analysis. 

Multiple path analysis is a logically implied special case of canonical correlation 
"!luin involving the repeated application of multiple correlational methods to time­
Ilnlcred variables, but with two or more ultimate dependent variables. A composite 
,It'llCndent variable is created with weights maximizing the predictive relationships 
""tween the time-ordered predictor variables and the composite dependent variable. 
All many sets of predictive relationships can be computed as there are dependent 
vllriubles. Figure 20.4 illustrates the procedure. 

All of the cautions we have raised in connection with multiple regression and 
~· .. "()nical correlation apply as well to path-analytic procedures (some others are 
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FIGURE 20.3 
Path analysis showing the prediction of income from three time-ordered variables. 

also raised in chapter 8 on nonrandomized research and functional relationships}. 
As path-analytic procedures are so often employed in the service of drawing causal 
inference, we urge special caution in their use. The short version of this caution 
is that no statistical procedures are guaranteed to permit drawing strong causal 
inference from nonexperimental research-not path analysis, not structural equation 
modeling, not anything. The longer version of this caution can be found in part in 
D. A.. Freedman's cautionary work (1987a, 1987b, 1997) and in that of his respon­
dents (e.g., Bentler, 1987; Rogosa, 1987, and others who contributed to a special 
issue of the Journal of Educational Statistics, 1987, Vol. 12, No.2), as well as in 
McKim and Turner (1997). Other useful discussions can be found in Kenny's 
(1979) book and in Shadish, Cook, and Campbell's (2002) thorough update of 
classic works by Campbell and Stanley (1963, 1966) and T. D. Cook and Campbell 
(1979). 

Income 

Occupation 

FIGURE 20.4 
Multiple path analysis showing the prediction of income and occupation from three time-ordered variables. 
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Multiple partial correlation is ordinary multiple correlation or regression performed 
on a set of variables from which the effects of one or more other variables have been 
removed. The effects of those third-party variables (also called covariates or control 
\'ariables) can be removed from either the independent or the dependent variable set 
(multiple part correlations) or from both (multiple partial correlations); for details see, 
for example, Cooley and Lohnes (1971). 

Complex multiple partial correlation is ordinary canonical correlation performed 
Oil a set of variables from which the effects of one or more other variables have been 
removed. Effects of the third-party variables can be removed from either the 
independent or the dependent variable set (complex multiple part correlation) or from 
hoth (complex multiple partial correlation). For details see Jacob Cohen's paper on 
.ft" correlation (1982), and the book by Cohen, Cohen, West, and Aiken (2003). 

Method Pair 5: (Multivariate) Multilevel 
Analysis of Variance 

The multilevel analysis of variance has been discussed in detail in earlier chapters. We 
list it here only to be consistent, as the procedure does involve more than one independent 
variable. Even a one-way ANOV A, if there are more than two levels, can be viewed 
liS made up of a series of (dummy-coded) independent variables. Given a series of 
illdependent variables and a single dependent variable, we can readily approach many 
Iypes of analysis by means of multiple correlation or regression. Fixed-effects analyses 
l"llll be handled very easily, for example, but random-effects analyses can be handled 
IIlIly with considerably greater difficulty. 

Multivariate multilevel analysis of variance is the generalization of ANOV A to 
more than a single dependent variable. As such, it can be seen as closely akin to 
~·llIlonical correlation, especially the type of canonical correlation in which one set of 
vllriables is dichotomous (multiple discriminant function). Many types of multivariate 
IIl1ulysis-of-variance problems can be approached readily through canonical correlation 
if Ihe independent variables are fixed rather than random. (For a discussion of fixed 
IIl1d random factors, see chapter 18.) 

Method Pair 6: (Multivariate) Analysis 
or Covariance 

The analysis of covariance can be understood as an analysis of variance performed 
1111 a dependent variable that has been corrected or adjusted for a subject's score 
1111 some other variable (a covariate) that correlates (usually substantially) with the 
dependent variable. Analysis of cl;>variance (ANCOV A) procedures are used successfully 
III increase the precision ofthe analysis and, with far more dubious success, to reduce 
hillS in nonexperimental studies (Judd & Kenny, 1981). These procedures are closely 
rdllted to those of the multiple partial correlation and other multiple-regression 
IJfocedures. Covariates are usually chosen for their high degree of correlation with 
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the dependent variable within the various conditions of the design of the study. In a 
before-after (i.e., pretest-posttest) design, for example, one can perform a repeated­
measures analysis, or use several levels of blocking, or do an analysis only on the 
posttest but with the pretest used as a covariate. Some comparisons among these 
procedures were given in chapter 16 in our discussion of the use of blocking and the 
analysis of covariance. When ANCOV A is used to reduce bias in nonexperimental 
studies, the same cautions apply as were offered in our discussion of the use of mul­
tiple regression to draw causal inferences. 

Multivariate analysis of covariance is ANCOV A used with multiple depen­
dent variables. It is closely related to complex multiple partial correlation. As a 
practical matter we would only rarely recommend the use of either the multivariate 
analysis of variance or covariance. With correlated dependent variables we have 
found it more useful to generate several fairly orthogonal composite variables 
(usually by means of principal components analysis or clustering methods) to serve 
as our dependent variables and then to use ANOV A or ANCOV A separately for 
each dependent variable. 

A final word about multivariate procedures: It is just about as easy to have the 
computer produce a multiple discriminant function analysis as a t test, and we have seen 
eager researchers call for them by the dozen. But as we have argued against the 
diffuse, unfocused F test (or effect size estimators) based on more than a single df in 
the numerator, we want to argue against the diffuse, unfocused tests of significance 
and effect size estimates that typically emerge from many of the multivariate 
procedures. We encourage their use, however, in exploratory contexts and as 
preliminary tests analogous to the omnibus F of the analysis of variance when they are 
to be followed up by focused, precise tests of significance and effect size estimates. 
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II has become almost obligatory to end research reports with the clarion call for further 
I'esearch. Yet it seems fair to say that, traditionally, behavioral and social scientists 
hllve been better at issuing such calls than at knowing what to do with the answers. 
In many areas we do have the results of numerous studies all addressing essentially 
Ihe same question. Summaries of those collective sets of studies, however, have not 
heen nearly so informative as one would like them to be. The most insightful narrative 
reviews of research by the most sophisticated workers have rarely told us more about 
(,lIch study of a set of studies than (a) that it did or did not reach a given significance 
I('vel and (b) what was the direction of the observed relationship between the variables 
investigated. Fortunately, this state of affairs has begun to change very noticeably. An 
increasing number of literature reviews have moved from the more literary, narrative 
Itlrlnat to more quantitative: summaries of research domains. Such reviews, using 
procedures known collectively as meta-analytic, usually describe (a) the typical 
mllgnitude of the effects or phenomena, (b) their variability, (c) their level of statistical 
lIitlnificance (or p value), and (d) the nature of the moderator variables from which 
une can predict the relative magnitude of observed effects. 

663 
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The term meta-analysis was coined by Gene Glass in 1976 to refer to the 
"statistical analysis of a large collection of analysis results from individual studies for 
the purpose of integrating the findings" (p. 3). Morton Hunt's How Science Takes 
Stock (1997) tells the story of the development of meta-analysis and its use in various 
research areas. However, although many are inclined to think of meta-analysis as a 
recent development, it is actually older than the t test, which (as we mentioned in 
chapter 13) dates back to Gosset (1908). Four years earlier, Karl Pearson (1904) had 
collected six correlation coefficients (.58, .58, .60, .63, .66, .77) because he wanted 
to know the degree to which inoculation against smallpox saved lives. The weighted 
mean of the correlations was .64, the unweighted mean was .63, and the median 
correlation was .61. Pearson's prescient meta-analytic summary was that there was a 
.6 correlation between inoculation and survival. From our discussion in chapter 11 of 
effect sizes in biomedical research, particularly Table 11.8, it would appear that 
Pearson's median r was extraordinarily huge for a biomedical effect. 

In Pearson's day, approaching studies from a meta-analytic orientation was 
unusual. A few decades later, there were other prophetic examples in other research 
areas. For instance, in the area of agricultural science, Lush (1931) investigated the 
relationship between the initial weight of steers and their subsequent gain in weight. 
Lush had six samples of steers available, and he was interested in computing the aver­
age of the six correlations he had available (Mdn = .39). What made those six samples 
famous, however, was not Lush's averaging of correlations, but the statistician George 
Snedecor's (1946) using the six correlations in his classic statistics text as an example 
o~ how to combine correlation coefficients. Subsequent editions have retained that 
famous example (e.g., Snedecor & Cochran, 1967, 1980, 1989). Snedecor's longtime 
coauthor, William G. Cochran, had himself been a pioneer in the development of meta­
analytic thinking. He had addressed himself early to the statistical issues involved in 
comparing and combining the results of series of studies (Cochran, 1937, 1943). 

Recently, there has been an explosion of meta-analytic reviews. However, like 
any increasingly popular innovation or technology, meta-analysis is not emerging 
without controversy and criticism. We examine those criticisms in the next section; 
but here we can point out several fairly obvious advantages of meta-analysis. For 
example, our quantitative summaries of research domains using meta-analytic 
procedures are likely to be more complete, more explicit, and more powerful (in the 
sense of decreasing Type II errors) than typical narrative reviews and, for all these 
reasons, conducive to a more cumulative view of behavioral and social science. 
Moderator variables are more easily spotted and evaluated in the context of quantitative 
syntheses and thereby are advantageous to theory development and increased empirical 
richness. Meta-analysis also, of course, has less obvious benefits, such as the idea of 
thinking about science not simply as an individual enterprise but more as a collective 
effort in which we build on one another's discoveries and insights. It also focuses our 
attention more on the implications of ranges of effect sizes and their contextual 
moderators rather than on dichotomous decision making based on some arbitrary 
significance level. 

In chapter 12 we described effect size estimators in the correlational family (r and 
r-type indices) and in the difference family (Cohen's d, Hedges's g, etc.), and in chapter 19 
we discussed indices in the ratio family (such as relative risk, the BESD-based relative 
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risk, etc.). As we first discussed in chapter 2, when we need to make a decision about 
how to convert effect sizes to one particular index (as in meta-analytic work), we generally 
prefer r-type indices because of their utility, flexibility, and interpretability in a wide range 
of circumstances. That preference, however, certainly does not preclude the use of 
difference-type indices, and in fact they are commonly and usefully employed in many 
meta-analytic reviews of clinical trials in biomedical research in which a single treatment 
condition is compared with a single control group (e.g., discussions in Dawson & Trapp, 
2004; Hasselblad & McCrory, 1995). For behavioral and social scientists, a detailed 
examination of meta-analytic procedures can be found in a handbook edited by Harris 
Cooper and Larry V. Hedges (1994). As is the case in the analysis of data of any individual 
study, the analysis of a set of studies can vary greatly in complexity and completeness. 
Among the various texts that are currently available on meta-analysis, those by G. Glass, 
McGaw, and Smith (1981), Hedges and Olkin (1985), and Hunter and Schmidt (2004) 
tend to be more detailed and more quantitatively demanding than the books by Cooper (1989, 
1998), Light and Pillemer (1984), Lipsey and Wilson (2001), and Rosenthal (1991a). 

An overall emphasis in this chapter is the observation that the level of quantitative 
skill and training needed to use basic meta-analytic procedures is so modest that any 
researchers capable of analyzing the results of their own research can perform the 
small number of calculations required to address standard meta-analytic questions. 
Later in this chapter we give some examples based on comparing and combining the 
results of just two studies, and then we expand our discussion to three or more studies. 
Meta-analytic reviews of the literature often involve many studies, but the simple 
procedures we describe for comparing and summarizing the results of just a pair of 
studies can be directly applied by researchers who are reporting a study and its 
replication in the same journal article. 

The most important aspect of a meta-analysis is the descriptive part in which 
the effect sizes are reported or displayed and their distribution and central tendency 
are summarized. Guidelines are available in the textbooks cited above and in other 
sources (e.g., Rosenthal, 1995c; Rosenthal & DiMatteo, 2001, 2(02). Good meta­
analytic practice, like good data-analytic practice more generally, typically adopts an 
exploratory orientation toward these displays and summaries (Tukey, 1977). The 
computations required for the most basic meta-analytic work are so trivial that, in 
much of our own meta-analytic work, going back many years, we have never felt 
the need to use a software package that "does meta-analysis." Good software can be 
II timesaver when the data set is quite large, but a drawback is that some researchers 
who feel less expert than they might like believe the software will "do the analysis." 
Alas, that is not the case. The software will do the calculations, and it will do them 
lluickly. But for any given application, those calculations may be wise or they may 
he foolish. Keeping it simple, staying close to the data, and emphasizing description 
prevents most serious errors. 

CRITICISMS OF META-ANALYSIS 

Does the increase in the number of meta-analytic reviews of the literature represent 
II giant stride forward in the development of the behavioral and social sciences 
~cnerally, or does it instead signal a lemming-like flight to disaster? Some three dozen 
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scholars were invited to respond to a meta-analysis of studies of interpersonal 
expectancy effects (Rosenthal & Rubin, 1978). Though much of the commentary 
dealt with the substantive topic at hand, a good deal of it was directed at 
methodological issues having to do with the use of meta-analysis. The criticisms can 
be grouped into a half-dozen conceptual categories, some of which were accurately 
anticipated by Glass (1978), who had earlier received commentary on his own meta­
analytic work (Glass, 1976) and that of his colleagues (Glass et aI., 1981; M. L. 
Smith & Glass, 1977). 

1. Sampling bias and the file drawer problem. This criticism holds that there is a 
retrievability bias because studies retrieved do not reflect the population of studies 
conducted. One version of this criticism is that the probability of publication is 
increased by the statistical significance of the results, so published studies are not 
representative of the studies conducted. This criticism is well taken, but it applies 
equally to traditional narrative reviews of the literature. Procedures that can be 
used to address this problem are described in the texts cited earlier, including 
ways of retrieving hard-to-find studies (M. C. Rosenthal, 1994; 2006). Later in 
this chapter we discuss a particular procedure that addresses the concern that 
researchers file away their statistically nonsignificant studies, making them 
unavailable for meta-analysis. The procedure we describe involves estimating the 
number of such studies it would take to nudge an obtained overall p level down 
to a "barely significant" level. 

2.r Loss of information. One version of this criticism holds that summarizing a 
research domain by a single value (such as a mean effect size) loses valuable 
information. However, comparing a set of studies, which means trying to 
understand differences in their results, is as much a part of meta-analytic 
procedures as summarizing the overall results of the set. Even within a single 
study, experimenters have historically found it quite helpful to compute the means 
of the experimental and control groups, even though computing a mean always 
involves a "loss of information." Furthermore, there is nothing to prevent the 
meta-analyst from reading each study as carefully and assessing it as creatively 
as might be done by a more traditional reviewer of the literature. We have 
something of an operational check on reading articles carefully in the case of 
meta-analysis: If we do not read the results carefully, we cannot compute accurate 
effect sizes. In traditional reviews, results may have been read carefully, or not 
read at all, or with only the abstract or the discussion section providing "the 
results" to the reviewer. 

Another version of this criticism is that, by emphasizing average values, 
meta-analysts overlook negative instances. There are several ways that "negative" 
instances might be defined by researchers, for example, p > .05, or r = 0, or ,. 
negative, or r significantly negative, and so on. However negative instances are 
defined, when we divide the sample of studies into negative and positive cases, 
we have dichotomized an underlying continuum of effect sizes (or significance 
levels). Accounting for the "negative" instances is, therefore, simply a special 
case of finding moderator variables. 
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3. Heterogeneity of method and quality. One version of this criticism is that meta­
analysts summarize studies with quite different operationalizations of independent 
and dependent variables, as well as different types of sampling units, and therefore, 
the results are muddied because the data are not uniform. This was called the 
"apples and oranges issue" by Glass (1978). They are good things to mix, he 
wrote, when we are trying to generalize to fruit. Indeed, if we are willing to 
generalize over subjects within studies (as most experimenters routinely do), why 
should we not be willing to generalize across studies? If subjects behave very 
differently within studies, we can simply block on subject characteristics to help 
us understand why. If studies yield very different results from each other, we can 
block on study characteristics to help us figure out why. It is very useful to be 
able to make general statements about fruit. If, in addition, it is also useful to 
make general statements about apples, about oranges, and about the differences 
between them, there is nothing in meta-analytic procedures to prevent us from 
doing so. 

Another version of the heterogeneity criticism is that bad studies are thrown 
in with good studies. This criticism might be broken down into two questions: 
What is a bad study? and What shall we do about bad studies? Regarding the 
first question, too often it seems that deciding what is a bad study is a procedure 
unusually susceptible to bias or to claims of bias (Fiske, 1978). Bad studies are 
too often those whose "results" the critic finds uncongenial or, as Glass et al. 
(1981) put it, the studies of our "enemies." Therefore, when reviewers of research 
tell us they have omitted the bad studies, we should satisfy ourselves that the 
elimination has been by criteria we find acceptable. Regarding the second question, 
the distribution of studies on a dimension of quality is, of course, not really 
dichotomous (good vs. bad) but continuous, with all possible degrees of qUality. 
The fundamental method of coping with bad studies or, more accurately, variations 
in the quality of research is by differential weighting of studies (described in this 
chapter). Dropping studies is merely the special case of zero weighting. However, 
the most important question to ask about the quality of studies was that raised 
by Glass (1976), who wondered whether there is a relationship between quality 
of research and effect size obtained. If there is not, the inclusion of poorer quality 
studies will have no effect on the estimate of the average effect size, though it 
will help to decrease the size of the confidence interval around that mean. If there 
is a relationship between the quality of research and the effect size obtained, we 
can use whatever weighting system that we find reasonable (and that we can 
persuade our colleagues and critics also to find reasonable). 

4. Problems of independence. There are also two parts of this criticism. One is that 
several effect-size estimates and several tests of significance may be generated 
hy the same subjects within each study. This can be a very apt criticism under 
some conditions, and technical procedures are available for adjusting for 
nonindependence (Rosenthal, 1991a; Rosenthal & Rubin, 1986). Another part of 
the criticism is perhaps more subtle, however. It is that possible nonindependence 
arises when different studies conducted in one lab yield results that are more cor­
related with each other than with the results of different studies in another lab. 
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In other words, there may be "laboratory effects" (lung, 1978; Rosenthal, 1966, 
1969, 1976). We can handle such effects by treating them as moderator variables 
and then by analyzing domains by laboratory as well as by study (Rosenthal. 
1969, 1991a). 

5. Exaggeration of significance levels. This is perhaps the only criticism of meta­
analysis that is based entirely on a misunderstanding of the fundamental equation 
of data analysis (Equation 11.10): Significance test = Size of effect X Size of 
study. The criticism is that as further studies are added to a meta-analysis, the 
results are more and more significant. That is certainly true, but difficult to 
perceive as a "negative feature" or as anything other than a mathematical fact. 
When the null hypothesis is false and therefore ought to be rejected, it is indeed 
true that adding observations (either sampling units within studies or new 
studies) will increase statistical power. However, it is hard to accept, as a 
legitimate criticism of a procedure, a characteristic that increases its accuracy 
and decreases its error rate. If the null hypothesis of zero effect were really true, 
adding studies could not lead to an increased probability of rejecting the null 
hypothesis. Interestingly, a related feature of meta-analysis is that it may, in 
general, lead to decreases in Type II errors even when the number of studies is 
modest. Procedures requiring the research reviewer to be more systematic and 
to use more of the information in the data seem to be associated with increases 
in power, and therefore with decreases in the Type II error rate (H. Cooper & 
Rosenthal, 1980). 

~. Small effects. This final criticism is that the results of substantively important meta­
analyses show only "small effects" because the r2 values obtained are small. This 
criticism was addressed in chapter 11, where we showed that r2 values of nearly 
zero sometimes have profound substantive implications in biomedical and other 
types of research. The problem with squaring the effect size r is that it may make 
small, but conceivably quite meaningful, effects seem virtually to disappear. That 
was given as one reason we prefer to work with the raw product-moment rand 
then to view its implications within the framework of the binomial effect-size 
display. 

INTERPRETING TWO 
OR MORE STUDIES 

We turn now to some examples of meta-analytic procedures. Our goal is not to 
enumerate the many quantitative procedures used in meta-analytic reviews, because 
they are discussed in detail in the various texts cited at the beginning of this 
chapter. Many were also illustrated in our earlier chapters, such as stem-and-leaf 
plots, box plots (if several types of studies are to be compared), measures of 
central tendency and variability, and, of course, contrasts. For example, in chapter 15 
we illustrated a procedure for making meta-analytic comparisons and combina­
tions of competing contrasts (see also Rosenthal, Rosnow, & Rubin, 2000). In the 
remainder of this chapter we describe a few additional procedures that may be of 
interest not only to those contemplating a meta-analytic review, but also to researchers 
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who are interested in summarizing the results of only a pair of studies in reports 
of original research. Regardless of how complex the particular procedures become 
in a given report, providing certain basic information will make it easier for 
research consumers to independently assess the tenability of specific conclusions. 
Without implying that all good meta-analyses will look alike, suggestions for the 
kind of basic information that might be reported, as well as criteria for the inclusion 
of studies, for the recording of variables, and other tips and suggested guidelines 
for preparing different sections of a meta-analytic review can be found elsewhere 
(Rosenthal, 1995c). 

Even when researchers have been rigorous and sophisticated in their interpre­
lation of the results of a single study, they are often apt to err in the interpretation 
of two or more studies. In chapter 2 we gave an example of such error involving 
a report by a researcher (Jones) who expressed skepticism after having failed to 
replicate an experiment by another researcher (Smith) that had shown one type of 
leadership style to be better than another. The results of both Jones's and Smith's 
experiments were clearly in the same direction, but Jones reported a "failure to 
replicate" because his t test was not statistically significant. We noted, however, 
Ihat Jones's effect size (which he neglected to report) was exactly the size of the 
effect in Smith's study (which Smith also neglected to report, but we could easily 
calculate). In other words, Jones had replicated the same relationship that Smith 
had found but had not replicated Smith's p value. Upon closer inspection of the 
rcsults of those two studies, we concluded that the power of Jones's t test was less 
Ihan a third the power of Smith's t test because Jones's total sample size (N) was 
so much smaller than Smith's sample size. Furthermore, a comparison of their 
rcspective significance levels (by procedures described in the next section) would 
have revealed to Jones the futility of his argument, as the p levels of the two 
sludies were not significantly different. As a guide to the various cases that 
follow, Table 21.1 lists each example number and the meta-analytic procedure it 
illustrates. 

TABLE 21.1 

(;ulde to 20 examples of meta-analytic procedures 

Example numbers 

Significance testing Effect size estimation 

( '11m paring: 

Two studies 1,2,3 4,5,6 

Three or more studies 

DiIl'use tests 13 14 

I ;ocused tests 15 16 

('Ilmhining: 

Two studies 7,8,9 10, 11, 12 

Three or more studies 17, 18 19,20 
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COMPARING TWO SIGNIFICANCE LEVELS 

Ordinarily, when we compare the results of two studies, we are more interested in 
comparing their effect sizes than their test statistics or p values. In fact, it is hard to 
imagine why anyone would realistically be interested in comparing two p values. 
Nonetheless, the question of how to do so does occasionally arise in research methods 
classes, and it would seem to be relevant to the Jones-versus-Smith controversy noted 
above. Of course, even when all we have is a p value and the sample size, we can 
do better by estimating requivaJent (described in chapter 12) and then concentrating on 
effect sizes rather than on p levels (Rosenthal & Rubin, 2003). Nonetheless, if we 
feel we really must compare the p values of two reported test statistics, it is simple 
enough to do. 

For each of the two test statistics we obtain an accurate p level-accurate, 
say, to two meaningful digits (i.e., not counting zeros before the first nonzero value), 
such as p = .43 or .024, or .0012. That is, if t(30) = 3.03, we give p as .0025, not 
as "< .05." Extended tables of the t distribution are helpful here (e.g., Federighi, 
1959, which is reproduced in Table B.3, Appendix B), as are scientific calculators 
with built-in distributions of Z, t, F, and x2, and there are also reliable Web sites 
with links to this information. For each p we find Z, the standard normal deviate 
corresponding to the p value. The last row of Table B.3 and the table of Z values 
of Appendix B are both useful in finding the accurate Z. Both p values should be 
one-tailed, and the corresponding Z values will have the same sign if both studies 
slibw effects in the same direction, but different signs if the results are in the 
opposite direction. It is customary to assign positive signs to Z values falling in the 
predicted direction, and negative signs to Z values falling in the unpredicted 
direction. The difference between the two Z values when divided by /2 yields a 
new Z that corresponds to the p value that the difference between the Z values could 
be so large, or larger, if the two Z values did not really differ. 

Recapping, to compare the p values of two independent tests, we compare the 
corresponding Z values by 

Zl-Z2 
Z of difference = 12 ' (21.1 ) 

where the result is distributed as the standard normal deviate, Z, so we can enter this 
newly calculated Z in Table B.l (Appendix B) to identify the p value associated with 
finding a Z of the size obtained or larger. 

Example 1 

Studies A and B yield results in opposite directions, and neither is "significant." One 
p is .06 one-tailed; the other is .12 one-tailed, but in the opposite tail. The Z values 
corresponding to the two p values are found in a table of the normal curve to be 
+ 1.56 and -1.18 (note the opposite signs to indicate results in opposite directions). 
Then, from Equation 21.1 we have 

(1.56) - (-1.18) 
Z = 1.41 = 1.94 
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liS the Z of the difference between the two p values of their corresponding Z values. 
The p value associated with Z = 1.94 is .026 one-tailed, or .052 two-tailed. The two 
I' values of Studies A and B may be seen to differ significantly, or nearly so, a finding 
suggesting that the "results" of the two studies are not consistent with respect to 
significance levels even allowing for normal sampling fluctuation. 

I':xample 2 

Studies C and D yield results in the same direction, and both are significant. One 
I' is .04, and the other is 2.5-5 (i.e., p = .000025). The Z values corresponding to 
these p values are 1.75 and 4.06, respectively (both have the same sign because 
they are in the same tail). From Equation 21.1 we have 

(4.06) - (1.75) 
Z = 1.41 = 1.64 

liS our obtained Z of the difference. The p associated with this Z is .05 one-tailed, or .10 
two-tailed, so we may want to conclude that the two p values of Studies C and D 
tliffer significantly, or nearly so. It should be emphasized, however, that finding one 
Z greater than another does not tell us whether the Z is greater because the size of 
the etfect is greater, the size of the study is greater, or both. 

I':xample 3 

Studies E and F yield results in the same direction, but one is "significant" (p = .05) 
IIl1d the other is p = .06. This example illustrates the worst case scenario for inferential 
errors, where investigators might conclude that the two results are "inconsistent" 
merely because one is "significant" and the other is not. Regrettably, this example is 
IIl1t merely theoretical. Just such errors have been made and documented (Nelson, 
I(llsenthal, & Rosnow, 1986; Rosenthal & Gaito, 1963, 1964). The Z values corresponding 
til the p values are 1.64 and 1.55. Therefore, 

0.64) - (1.55) 
Z= 1.41 = .06 

1_ lIur obtained Z of the difference between p values of .05 and .06. The p associated 
with this difference is .476 one-tailed, or .952 two-tailed. This example illustrates 
dt'lIrly just how trivial the difference between "significant" and "nonsignificant" results 
nlll he. 

('()MPARING TWO EFFECT-SIZE 
( '() R RELATIONS 

When we ask whether two studies are telling the same story, what we should mean is 
whether the independent (and dependent) variables are fairly similar, and whether the 

~
' ",timuted effect sizes are reasonably consistent with each other. Our discussion is 

f\'"tncted to r as the effect-size indicator, but analogous procedures are available for 
""Illpuring other effect-size indicators (see, e.g., Cooper & Hedges, 1994). For these 
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calculations we work with the Fisher Zr transfonnation of r (defined in Equation 11.2). 
(In this chapter, as in earlier discussions, we use the lowercase Z for the Fisher 
transfonnation and the capital Z for the standard nonnal deviate.) As mentioned earlier, 
the advantage of the Zr transfonnation is that equal differences between any pair of Fisher 
Zr values are equally detectable, a situation that does not hold for untransfonned r values. 
For raw r values, the difference between .00 and .86, for example (a difference of .86 
units of r but a difference of about 1.3 units of Zr), is no more detectable than the 
difference between .86 and .99 (a difference of .13 units of r but a difference of about 
1.3 units of Zr). In addition, significance tests of differences between r values are more 
accurate when this transfonnation is used (R. A. Alexander, Scozzaro, & Borodkin, 
1989). 

For each of the two studies to be compared, we compute the effect size r and 
find for each of those r values the associated Fisher Zr. A table that converts our 
obtained r values to Fisher Zr values is available in Appendix B (Table B.7). Then, 
when Nl and N2 represent the number of sampling units (e.g., subjects) in each of our 
two studies, the quantity 

Z of difference = Zrl - Zr2 

/ 1 + 1 M-3 N2-3 

(21.2) 

is distributed as the standard normal deviate Z, and the quantity N - 3 corresponds 
to the dffor each of the Fisher Zr values (Snedecor & Cochran, 1989). 

Example 4 

Studies G and H yield results in opposite directions with effect sizes of r = .60 (N = 15) 
and r = - .20 (N = 100), respectively. The Fisher Zr values corresponding to these r 
values are Zrl = .69 and Zr2 = - .20, respectively (the opposite signs correspond to the 
opposite signs of the raw r values). Then, from Equation 21.2 we have 

Z = (.69) ; (-.~O) = 2.91 

/12 + 97 

as the Z of the difference between the two effect sizes. The p value associated with 
Z = 2.91 is .002 one-tailed, or .004 two-tailed. The two effect sizes of Studies G and H, 
then, differ significantly. 

Example 5 

Studies I and J yield results in the same direction with effect sizes of r = .70 (N = 20) 
and r = .25 (N = 95), respectively. The Fisher Zr values corresponding to these raw 
r values are Zrl = .87 and Zr2 = .26, respectively. From Equation 21.2 we have 

Z = (.87) - (.26) = 231 /1 1 . 
17+ 92 
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us our obtained Z of the difference. The p associated with this Z is .01 one-tailed, or 
.02 two-tailed. Here is an example of two studies that agree on a significant positive 
relationship between variables X and Y, but disagree significantly in their estimates 
of the magnitude of the relationship. 

Example 6 

Studies K and L yield effect size estimates of r = .00 (N = 17) and r = .30 (N = 45), 
respectively. The Fisher Zr values corresponding to the r values are Zrl = .00 and 
~,2 = .31, respectively. Therefore, 

is our obtained Z of the difference between the two effect-size estimates of Studies 
K and L. The p value associated with the Z is .16 one-tailed, or .32 two-tailed. Here 
we have an example of two effect sizes, one zero (r = .00), the other (r = .30), 
significantly different from zero (t(43) = 2.06, P < .025 one-tailed), that do not differ 
significantly from one another. This example illustrates how careful we must be in 
I:oncluding that the results of two studies are heterogeneous just because one is 
significant and the other is not, or because one has a zero estimated effect size and 
the other does not. 

COMBINING TWO SIGNIFICANCE 
I.":VELS 

After we compare the results of any two independent studies, it is an easy matter 
"Iso to combine the p levels of the two studies. In this way we obtain an overall 
l'stimate of the probability that the two p levels might have been obtained if the 
null hypothesis of no relationship between X and Y were true. Many methods for 
\'IlInbining the results of two or more studies are available and have been described 
dsewhere (Rosenthal, 1978a, 1983, 1991a). Here it is necessary to give only the 
~illlplest and most versatile of the procedures, the method of adding Z values called 
Ihe Stouffer method by Mosteller and Bush (1954). We begin by illustrating the 
unweighted method of adding Z values and then illustrate the weighted method of 
lidding Z values. 

The unweighted method of adding Z values, just like the method of comparing 
" vulues, asks us first to obtain accurate p levels for each of our two studies and 
then to find the Z corresponding to each of those p values. Both p values must be 
lIiven in one-tailed form, and the corresponding Z values will have the same sign 
II hoth studies show effects in the same direction. They will have different signs if 
Ihe results are in the opposite direction. The sum of the two Z values when divided 
hy 12 yields a new Z. This new Z value corresponds to the p value that the results 
,,!, Ihe two studies combined, or results even further out in the same tail, could have 
'lI:curred if the null hypothesis of no relationship between X and Y were true. 
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Recapping, 

(21.3) 

is distributed as the standard normal deviate Z. 

Example 7 

Studies M and N yield results in opposite directions, and both are significant. One p 
is .05 one-tailed; the other is 1.0-7 one-tailed, but in the opposite tail. Z values 
corresponding to these p values are found in a table of normal deviates (such 
as Table B.I in Appendix B) to be ZI = -1.64 and Z2 = 5.20, respectively (note the 
opposite signs to indicate results in opposite directions). Then, from Equation 21.3 
we have 

( -1.64) + (5.20) 
Z = 1.41 = 2.52 

as the Z of the combined results of Studies M and N. The p value associated with 
Z = 2.52 is .006 one-tailed, or .012 two-tailed. Thus, the combined p supports the 
more significant of the two research results. If these were actual studies, we would 
~ant to be very cautious in interpreting our combined p because the two p values we 
combined were so significantly different from each other. We would try to discover 
what differences between Studies M and N might have led to results so significantly 
different. 

Example 8 

Studies 0 and P yield results in the same direction, but neither is significant. One p 
is .11, the other is .09, and their associated Z values are 1.23 and 1.34, respectively. 
From Equation 21.3 we have 

(1.23) + (1.34) 
Z = 1.41 = 1.82 

as our combined Z. The p associated with this Z is .034 one-tailed, or .068 two-tailed. 
Should we want to do so, we could weight each Z by its df, its estimated quality, 

or any other desired weights (Mosteller & Bush, 1954; Rosenthal, 1978a, 1980, 
1991a). The general procedure for weighting Z values is to (a) multiply each Z by 
any desired weight (symbolized by omega, w, and assigned before inspection of the 
data), (b) add the weighted Z values, and (c) divide the sum of the weighted Z values 
by the square root of the sum of the squared weights as follows: 

Z - «ljZI + W2Z2 
weighted - / 2 2' 

"WI + W2 
(21.4) 

which is illustrated in the following example. 
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Example 9 

Studies M and N are those of Example 7, but suppose now we have found from a 
panel of experts that Study M earns a quality weight (WI) of 3.4 on assessed internal 
validity, whereas Study N earns only a weight of .09. The Z values for Studies M and 
N were -1.64 and 5.20, respectively. Therefore, using Equation 21.4 we have 

Z = [(3.4)(-1.64)] + [(0.9)(5.20)] = -0.896 = -025 
/(3.4)2+ (0.9)2 3.517' 

as the Z of the weighted combined results of Studies M and N. The p value associated 
with this Z is .40 one-tailed, or .80 two-tailed. The weighting has led to a nonsignificant 
result in this example. In Example 7, where there was no weighting (or, more accurately, 
equal weighting with WI = W2 = 1), the p value was significant at .012 two-tailed. 

As a further illustration of weighting the combined Z, suppose we had wanted 
10 weight not by quality of study but by df. If the df for Studies M and N had been 
.~6 and 144, respectively, the weighted Z using Equation 21.4 would have been 

Z = [(36)(-1.64)] + [(144)(5.20)] = 689.76 = 465 
/(36)2 + (144)2 148.43' . 

This result shows the combined Z (p < .000002 one-tailed) to have moved strongly 
in the direction of the Z with the larger df because of the substantial difference in df 
hetween the two studies. Note that when weighting Z values by df, we have decided 
10 have the size of the study playa large role in determining the combined p. The 
role is particularly large in this case because the size of the study has already entered 
inlo the determination of each Z and is therefore entering a second time into the 
weighting process. 

COMBINING TWO EFFECT-SIZE 
CORRELATIONS 

When we want to combine the results of two studies, we are as interested in the 
wlllbined estimate of the effect size as we are in the combined probability. Just as 
when we compared two effect-size estimates, we consider r as our effect-size estimate 
ill Ihe combining of effect sizes. However, as described earlier (in chapters 12, 15, 
IIml 19), we know that many other effect-size indicators are possible. Here we begin 
hy computing r and the associated Fisher Zr for each of the two studies. Then we 
~'olllpute the mean Fisher Zr (denoted as Zr) as 

Zrl + Zr2 
Zr=---

2 
(21.5) 

We use an r to Fisher Zr table or a Fisher Zr to r table (see Appendix B, Tables B.7 
lind H.8) to look up the r that is associated with Zr. Tables are preferable to finding 
,. 1'1'0111 Zr from the following: 

e2z - 1 
r=--

e2z + l' 
(21.6) 
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where e == 2.71828, the base of the system of natural logarithms. Should we want to 
do so, we could weight each Zr by its df, its rated quality, or any other desired weights 
assigned before inspection of the data. Example 12 will illustrate this procedure, in 
which the weighted mean Fisher Zr is obtained from 

Example 10 

(01 Zrl + (02 Zr2 
Weighted Zr = ----­

(01 + (02 
(21.7) 

Studies Q and R yield results in opposite directions, with one r = .80 and the 
second r = - .30, respectively. The Fisher Zr values corresponding to these r values 
are Zrl = 1.10 and Zr2 = -0.31, respectively. Therefore, the unweighted mean 
Fisher Zr from Equation 21.5 is 

_ (1.10)+(-0.31) 
Zr = 2 = .395. 

From our Zr to r table we find that the Fisher Zr of .395 is associated with r = .38. 

Example 11 

Studies S and T yield results in the same direction, with one r = .95 and the second 
r = .25. The Fisher Zr values corresponding to these r values are Zrl = 1.83 and 
Zr2 = 0.26, respectively. Using Equation 21.5 we have 

Zr = 1.83 + 0.26 = 1.045. 
2 

From our Zr to r table we find the Fisher Zr of 1.045 is associated with r = .78. Note 
that if we had averaged the two r values without first transforming them to Fisher 
Zr values, we would have found the mean r to be (.95 + .25)/2 = .60, substantially 
smaller than .78. This difference illustrates that the use of Fisher's Zr gives heavier 
weight to r values that are further from zero in either direction. 

Example 12 

Studies K and L are again those of Example 6, but now we have decided to weight 
the studies by their df (i.e., N - 3 in this application; Snedecor & Cochran, 1989). 
Therefore, we replace the general weight indicators WI and W2 in Equation 21.7 by 
dfl and d/2 to find the weighted mean Zr from 

. _ dfi Zrl + dfi, Zr2 
WeIghted Zr = dfi + dfi, . (21.8) 

In Example 6 we had r values of .00 and .30, based on N = 17 and 45, respectively. 
The Fisher Zr values corresponding to these two r values are Zrl = .00 and Zr2 = .3l. 
Therefore, from Equation 21.8 we find our weighted average Zr to be 

- = [(17 - 3).00] + [(45 - 3).31] = 13.02 = 232 
Zr .. (17-3)+(45-3) 56" 

which corresponds to an r of .23. 
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Finally, it should be noted that before combining effect size estimates, it can be 
useful first to test the significance of the difference between the two effect sizes. If 
the results of the studies do differ, it is a signal that we need to be cautious about 
combining the effect sizes without giving further thought to the matter, especially 
when the results are in opposite directions. 

OVERALL COMPARISONS OF THREE 
OR MORE STUDIES 

Although we can do quite a lot in comparing and combining the results of sets of studies 
with just the procedures given so far, we often have three or more studies of the same 
relationship that we want to compare, combine, or both. In this section we present 
generalizations of the procedures given in the preceding sections so that we can compare 
lind combine the results of any number of studies. We begin with an overall comparison 
of three or more p levels, not because we can imagine often wanting to make such a 
comparison, but to follow the line of illustrations in our previous discussion. First, we 
tind the standard normal deviate, Z, corresponding to each p level. All p levels must be 
one-tailed, and the corresponding Z values will be given the same sign if all studies 
show effects in the same direction and will have different signs if the results are not in 
the same direction. The statistical significance of the heterogeneity of the Z values can 
he obtained from a chi-square test (Rosenthal & Rubin, 1979a), where 

2 (-)2 X(K-l) = L Zj - Z , (21.9) 

and K equals the number of independent p values being tested for heterogeneity as a 
set, and df = K - 1. In this equation Zj is the standard normal deviate value for any 
one study, and Z is the mean of all the Z values. A significant xlK-l) tells us that the 
set of Z values tested for heterogeneity (or the set of p values associated with that set 
of Z values) shows significant differences. 

Example 13 

Suppose we have four studies, which we have numbered 1 through 4, and their one­
Illiled p levels are .15, .05, .01, .001, respectively. Study 3, however, shows results 
opposite in direction from those of Studies 1,2, and 4. From our normal deviate table 
we find the Z values corresponding to the four p levels to be 1.04, 1.64, -2.33, 3.09. 
I Note the negative sign for the Z associated with the result in the opposite direction.) 
Then, from Equation 21.9 we have 

X/I) = [(1.04) - (0.86)]2 + [(1.64) - (0.86)]2 + [(-2.33) - (0.86)]2 + [(3.09) - (0.86)]2 

= 15.79, 

which, with df = K - 1 = 3; is significant at p = .0013. Clearly the four p levels 
'-'ull1pared are significantly heterogeneous. Beyond the question of whether a set of 
I' levels differ significantly among themselves, we sometimes want to test a specific 
hypothesis about which studies will show the more significant p levels (Rosenthal & 
Ruhin, 1979a). These computations are presented in the next section, dealing with 
,-'ontrasts. 
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Presumably of more interest than whether a bunch of p levels differ is whether a 
set of effect sizes is heterogeneous. We again restrict our discussion to r as the effect size 
index, but analogous procedures are available for comparing other effect-size estimators 
(Rosenthal & Rubin, 1982b). For each of the three or more studies to be compared, we 
compute the effect size r, its associated Fisher Zr, and N - 3, where N is the number of 
sampling units on which each r is based. The statistical significance of the heterogeneity of 
the r values can be obtained from chi-square (Snedecor & Cochran, 1989), computed as 

X[K-l) = L[(Nj - 3)(zrj - Zrf], (21.10) 

where df = K - 1, and K is the number of independent effect sizes that we are testing 
for heterogeneity as a set. In this equation the Zr with subscript j is the Fisher Zr 

corresponding to any r, and z;. is the weighted mean Fisher Zr, that is, 

(21.11) 

Example 14 

We have four studies, numbered 1 through 4. For study 1 the effect size r = .70, and the 
sample size is N = 30. For Study 2 we have r = .45, and N = 45. For Study 3 we have 
r = .10, and N = 20. For Study 4 we have r = - .15, and N = 25. The Fisher Zr values 
corresponding to these r values are found from our table of Fisher Zr to be .87, .48, .10. 
and -.15, respectively. The weighted mean Zr is found from Equation 21.11 to be 

_ [27(.87)] + [42(.48)] + [17(.10)] + [22( -.15)] 
Zr = 

27 + 42 + 17 + 22 

= 42.05 = .39. 
108 

Then, from Equation 21.10 we have 

X[3) = [27(.87 - .39)2] + [42(.48 - .39)2] + [17(.10 - .39)2] + [22(-.15 -.39)2] 

= 14.41, 

which, with df = K - 1 = 3, is significant at p = .0024. The four effect sizes 
we compared are significantly heterogeneous. Just as for a set of p values, procedures 
are available for computing contrasts among the obtained effect-size estimates 
(Rosenthal & Rubin, 1982b), as described in the next section. 

FOCUSED COMPARISONS OF THREE 
OR MORE STUDIES 

Suppose we want to know whether, given a set of p values for younger and older 
subjects, the results from the younger subjects are more statistically significant than 
the results from the older subjects. Normally, our curiosity would not be aroused by 
questions like these about a set of p values, but we would be very interested in the 
relationship between weights derived from theory and the obtained effect sizes. 
However, let us assume that we want to make a focused comparison of significance 
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levels. We begin just as we did for the diffuse tests. That is, first we find the standard 
normal deviate, Z, corresponding to each p level. All p levels must be one-tailed, and 
Ihe corresponding Z values will have the same sign if all studies have effects in the 
same direction but different signs if the results are not in the same direction. Statisti­
cal significance of the contrast testing any specific hypothesis about the set of p 
levels can be obtained from a Z computed as follows (Rosenthal & Rubin, 1979a): 

Z = LAjZj (21.12) 
/LAr· 

In this equation Aj is the theoretically derived prediction or contrast weight for any 
one study, chosen so that the sum of the Aj values will be zero, and Zj is the Z for 
IIny one study. 

":xample 15 

Our four studies yield one-tailedp values of 1/107, .0001, .21, and .007, all with results 
in the same direction. From a standard normal deviate table we find Z values corre­
sponding to the four p levels to be 5.20, 3.72, 0.81, and 2.45. Suppose the studies 
used differing amounts of peer tutor contact of 8, 6, 4, and 2 hours per month, 
respectively, and we are interested in whether there is a significant linear relationship 
hetween the number of hours of contact and the statistical significance of the result 
I"lIvoring peer tutoring. The Aj weights of a linear contrast involving four studies are 
t 3, + 1, -1, -3. From Equation 21.12 we have 

Z = [(3)5.20] + [(1)3.72] + [( -1)0.81] + [( -3)2.45] 
/(3)2 + (1)2 + (_1)2 + (-3)2 

= 11.16 = 2.50 
/20 ' 

which is significant at p = .006 one-tailed. The four p values, then, tend to grow 
linearly more significant as the number of hours of contact time increases. 

Of greater interest would be a focused question on a set of effect sizes. Given 
/I set of effect sizes for independent studies of peer tutoring, we might ask whether 
.he effects increased or decreased linearly with the number of hours of contact per 
llIonth. We again emphasize r as the effect size estimator, but analogous procedures 
/Ire available for comparing other effect-size estimators (Rosenthal & Rubin, 1982a). 
We begin by computing the effect size r, its associated Fisher Zr, and N - 3, where 
N is the number of sampling units on which each r is based. The statistical significance 
III" Ihe contrast, testing any specific hypothesis about the set of effect sizes, can be 
IIhlained from a Z computed as follows (Rosenthal & Rubin, 1982b): 

Z = LAjZr; 

/L.~ 
(21.13) 

In Ihis equation, Aj is the contrast weight determined from some theory for anyone 
_Iudy, chosen so that the sum of the lambda weights will be zero. The Fisher Zr with 
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the subscript j refers to anyone study, and Wj is the inverse of the variance of the 
effect size for each study. For Fisher Zr transformations of the effect size r, the variance 
is 1/(Nj - 3), so Wj = Nj - 3. 

Example 16 

Studies 1 through 4 yield effect sizes of r = .89, .76, .23, and .59, respectively, all with 
N = 12. The Fisher Zr values corresponding to these r values are found from tables of Fisher 
Zr to be 1.42, 1.00, 0.23, and 0.68, respectively. Assuming again that the four studies used 
differing amounts of peer tutor contact of 8, 6, 4, and 2 hours per month, respectively, we 
might be interested in whether there is a significant linear relationship between the number 
of hours of contact and the size of the effect favoring peer tutoring. As in Example 15. 
the linear weights are +3, +1, -1, and -3. Therefore, from Equation 21.13 we have 

Z = [(3) 1.42] + [(1) 1.00] + [( -1) 0.23] + [( -3) 0.68] 
/(3)2 + (1)2 + (_1)2 + (- 3)2 

V 9 9 9 9 

2.99 = 2.01 
/2.222 ' 

which is significant at p = .022 one-tailed. In sum, the four effect sizes tend to grow 
linearly larger as the number of hours of contact time increases. Interpretation of this 
relationship must be very cautious. After all, the studies were not assigned at random to 
the four conditions of contact hours. Generally, variables moderating the magnitude of 
effects found should not be interpreted as giving strong evidence for any causal 
relationships. Moderator variables can, however, be very valuable in raising the possibility 
of causal relationships, which might then be studied experimentally (or as nearly so as 
ethically and practically feasible). 

COMBINING THREE OR MORE P LEVELS 

After comparing the results of any set of three or more studies, it is easy to combine the 
p values of the set of studies to obtain an overall estimate of the probability that the set 
of p levels might have been obtained if the null hypothesis of no relationship between 
X and Y were true. Of the various methods available, we discuss here only the generalized 
version of the method presented earlier in our discussion of combining the results of two 
groups. This method requires only that we obtain Z for each of our p levels, all of which 
should be given as one-tailed. The Z values disagreeing in direction from the bulk of the 
findings are given negative signs. Then the sum of the Z values, divided by the square 
root of the number (K) of studies, yields a new statistic distributed as Z: 

Example 17 

Z - l:Zj 
-.,fK (21.14) 

Four independent studies have associated one-tailed p values of .15, .05, .01, and .001. 
Study 3 shows results opposite in direction from the results of the other three studies. 
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The Z values associated with the four p values are 1.04, 1.64, -2.33, and 3.09, 
respectively. From Equation 21.14 we have 

Z - (1.04) + (1.64) + (-2.33) + (3.09) 
- /4 

= 1.72, 

which has an associated p value of .043 one-tailed, or .086 two-tailed. We would 
normally use the one-tailed p value if we correctly predicted the net direction of 
Ihe findings, but we would use the two-tailed p value if we did not. The combined 
fI that we obtain in this example supports the results of the majority of the indi­
vidual studies. However, even if those p values (.043 and .086) were more 
significant, we would want to be very cautious about drawing any simple overall 
conclusion because of the very great heterogeneity of the four p values being 
combined. Example 13, using the same p values, showed that the heterogeneity 
was significant at p = .0013. It should be emphasized again, however, that this 
~reat heterogeneity of p values could be due to heterogeneity of effect sizes, 
heterogeneity of sample sizes, or both. To find out about the sources of heteroge­
neity, we need to look very carefully at the effect sizes and sample sizes of each 
of the studies involved. 

Should we want to do so, we could weight each of the Z values by its df, its 
judged quality, or any other desired weights, as long as they are assigned before 
inspection of the results (Mosteller & Bush, 1954; Rosenthal, 1978a, 1991a). The 
~eneral procedure for weighting Z values is to (a) multiply each Z by the desired 
weight, (b) sum the weighted Z values, and (c) divide that sum by the square root of 
Ihe sum of the squared weights: 

~U)'Z' Z - J J 
weighted - /~U)r (21.15) 

.. :xample 18 

()ur studies are the same as those of Example 17, but now we have decided to weight 
cuch study by the mean rating of internal validity assigned it by a panel of methodologists. 
These weights (00) are 2.4, 2.2, 3.1, and 3.8 for Studies 1 through 4, respectively. From 
Etluation 21.15 we have 

Z = [(2.4)(1.04)] + [(2.2)(1.64)] + [(3.1)( -2.33)] + [(3.8)(3.09)] 

J<2.4)2 + (2.2)2 + (3.1) 2 + (3.8) 2 

10.623 
= J34.65 = 1.80, 

which is significant at p = .036 on,e-tailed, or .072 two-tailed. In this example, weighting 
hy lJuality of study did not lead to a very different result from that obtained without 
weighting (Example 17). In both cases the p value was approximately .04 one-tailed. 
AClually, it might be more accurate to say for Example 17 that weighting was equal, 
wilh all values of 00 = 1, than to say that no weighting was used. 
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COMBINING THREE OR MORE 
EFFECT-SIZE CORRELATIONS 

When we combine the results of three or more studies, we are at least as interested in 
the combined estimate of the effect size as we are in the combined probability. In fact. 
in most cases, we are even more interested in this estimate than in the probability. We 
follow here our earlier procedure of considering r our primary effect size estimator. 
while knowing that many other estimates are possible. For each of the three or more 
independent effect-size r values to be combined, we compute the associated Fisher Zr 

and have 

_ LZr 
Zr=[( (21.16) 

as the Fisher Zr corresponding to our mean r, where K = the number of studies 
combined. We use a table of Fisher Zr to find the r associated with our Z; 

Example 19 

Four studies yield effect sizes of r = .70, .45, .10, and -.15. The Fisher Zr values 
corresponding to these r values are .87, .48, .10, and -.15, respectively. Therefore. 
from Equation 21.16 we find 

_ (.87) + (.48) + (.10) + (-.15) 
Zr = 4 = .32 

as our mean Fisher Zr. From our table of Fisher Zr values, we find that Zr = .32 
corresponds to an r of .31. As in our earlier example of combined p levels, however. 
we want to be cautious in interpreting this combined effect size. If the r values we 
have just averaged were based on substantial sample sizes, as in Example 14, they 
would be significantly heterogeneous. Therefore, averaging without special thought 
and comment would be inappropriate. 

Should we want to give greater weight to larger studies or to better studies, we 
could weight each Zr by df = N - 3 (Snedecor & Cochran, 1989), by its estimated 
research quality, or by any other weights that we assigned before inspection of the 
data. The weighted mean Zr is obtained as follows: 

with terms defined as before. 

Example 20 

. _ LWjZrj 
Weighted Zr = -~--, 

~Wj 
(21.17) 

Our four studies are those of Example 19, but we have decided to weight each study 
by a mean rating of ecological validity assigned to it by several experts. The weights 
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lire 1.7, 1.6,3.1, and 2.5, respectively. Therefore, from Equation 21.17 we find 

[(1.7)(0.87)] + [(1.6)(0.48)] + [(3.1)(0.10)] + [(2.5)(-0.15)] 
Zr=---------------------------------------------

= 2.182 = .24 
8.90 

1.7 + 1.6 + 3.1 + 2.5 

liS our mean Fisher Zr, which corresponds to an r of .24. In this example, weighting 
by quality of research led to a somewhat smaller estimate of combined effect size 
Ihan did equal weighting (.24 vs . .31). 

RESULTS THAT ARE NOT INDEPENDENT 

In all the meta-analytic procedures we have described so far, it has been assumed 
Ihat the results being compared or combined are from separate, independent studies. 
That is, we have assumed that different subjects (or other sampling units) were found 
in the studies being compared or summarized. Sometimes, however, the same subjects 
lor other sampling units) contribute data to two or more studies or to two or more 
dependent variables within the same study. In such cases the results of the two or 
lIlore studies or the results based on two or more dependent variables are not 
independent, and the meta-analytic procedures we have described so far cannot be 
upplied without adjustment. General procedures have been suggested for comparing 
lind combining nonindependent significance levels (Strube, 1985) and nonindependent 
effect sizes (Rosenthal & Rubin, 1986). We cannot give the details of all those 
procedures here. However, because comparing nonindependent effect sizes is 
frequently of interest, we will describe two such procedures: (a) Hotelling's t test 
IlInd a modification of it, the Williams t) and (b) another procedure more recently 
pmposed by Meng, Rosenthal, and Rubin (1992). 

Hotelling's Test 

In Ihe situation described, a sample of persons is measured on three variables that are 
denoted as A, B, and C. Variables A and B are conceptualized as predictor variables, 
lind Variable C is conceptualized as an outcome variable. Three correlations are pos­
!lible among the three variables, that is, r AC, rBC, and r AB. We want to compare the 
lIlugnitude of two of those correlations, namely, rAC and rBC. The standard procedure 
I'llf this comparison is Hotelling's t test, which is distributed as t with df = N - 3 
(Walker & Lev, 1953): 

/ 
(N - 3)(1 + rAB) 

tHoteliing = (rAC - rBd 2 2 2 . 
2(1 - r AB - rAC - r BC + 2rABrACrBC> 

(21.18) 

As an illustration using Equation 21.18, suppose that, in a study of the classroom 
hehavior of children, teachers' rati~gs of 347 children were available on three variables. 
Vnriable A is the degree of curiosity of the child (a predictor variable). Variable B is 
Ihe degree to which the child is affectionate (another predictor variable). Variable C 
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is the teacher's estimate of the likelihood that the child will be successful in the future 
(the projected outcome variable). The three correlations among these variables arc 
rAC = .63, TEc = .23, and rAB = .28. We want to know whether ratings of curiosity 
predict ratings of projected future success (rAc = .63) significantly better than ratings 
of affectionateness predict ratings of projected future success (rBC = .23). Substituting 
in Equation 21.18, we have 

t . = ( 63 - 23) / 344(1 + .28) 
Hotellmg . . V 2[1 - (.28)2- (.63)2- (.23)2+ 2(.28)(.63)(.23)] 

= (.40) 440.32 
2(.552944) = 7.98 

and, with df = 344, P = 2.2- 14 two-tailed. Therefore, there is little question that the 
variable of "curiosity" correlates more highly with the variable of "projected future 
success" than does the variable of "affectionateness." Of course, we knew this simply 
from eyeballing the two correlations (.63 vs .. 23), though without information about 
the probability that such a difference, or one even larger, would be found if the null 
hypothesis of zero difference were true. 

Williams's Modification of the Hotelling t Test 

The Hotelling t test for comparing nonindependent correlation coefficients works well 
under most circumstances. However, in special (and probably rare) circumstances, it 
will yield t values that are substantially too large. Steiger (1980) recommended that 
a m.odification of Hotelling's test proposed by E. J. Williams (1959) be used instead 
of Equation 21.18: 

where 

and 

(N - 1)(1 + rAB) 

2X(N-l)+ y 
N-3 

y = (rAc ~ rBCr (1 - rAB)3. 

(21.19) 

In the example above, X = .552944, and Y = .069014. Therefore, substituting 
in Equation 21.19, we find 

tWilliams = (.63 - .23) 
346(1.28) 

( 346) 2(.552944) 344 + .069014 

/ 442.88 
= (.40)1.181332 = 7.74 

and, with df = 344, p < 1.1- 13 . In this example, then, the conservative Equation 
21.19 yielded a value of t only 3% smaller than that from Equation 21.18. 
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Z-Test Procedure 

A still more accurate procedure, using a Z test, has been proposed by Meng, Rosenthal, 
and Rubin (1992), in which 

/ N-3 Z = (Zrl - Zr2) 2(1 _ rAB)h' (21.20) 

where Zrl and ZrZ are Fisher transformations of the r values being compared (rAc and 
rBc), N is the number of sampling units, rAB is the correlation between the two predic­
lor variables, and 

where 

1-f,2 
h=--1- ,2 

1- rAB 
f= 2(1- ,2) 

which must be ~ 1, and ,2 is the mean of ric and r~c. 

lind 

lind 

For the data we have been using as our illustration, then, 

-2 _ (.63)2 + (.23)2 _ 
r - 2 - .2249, 

f = 1 - .28 = 4645 
2(1 - .2249)' , 

h = 1 - (.4645)(.2249) = 1.1554. 
1 - .2249 

Finally, substituting in Equation 21.20, we find 

/ 347 - 3 
Z = (.741 - .234\/ 2(1 _ .28)1.1554 

= (.507) 344 
2(.72) 1.1554 = 7.29, 

lind p = 1.55-13 one-tailed, or 3.1-13 two-tailed. Based on the following relationship 
cl>. L. Wallace, 1959): 

[ ( t2 )]1/2 [ 1 ]1/2 
Z = df loge 1 + df 1 - 2df ' (21.21) 

we lind that a Z value of 7.29 is equivalent to a t of 7.59. Thus, we can compare the 
1l'1Iults of the present t test to those obtained from Equations 21.18 and 21.19 (7.98 and 
7,74). The present result, then, is about 5% smaller than the Hotelling t (Equation 
21.1 K) and about 2% smaller than the Williams t (Equation 21.19). In most cases these 
three tests yield similar results, but it seems best generally to use Equation 21.20. 
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THE FILE DRAWER PROBLEM 

Behavioral researchers and statisticians have long suspected that studies published in 
behavioral and social science journals are a biased sample of the studies that are 
actually carried out (Bakan, 1967; McNemar, 1960; Smart, 1966; Sterling, 1959). The 
extreme view of the file drawer problem is that the journals are filled with the 5% 
of the studies that show Type I errors, whereas the file drawers back at the lab arc 
filled with the 95% of the studies that show nonsignificant (e.g., p > .05) results 
(Rosenthal, 1979a; Rosenthal & Rubin, 1988; Wachter, 1988). Although no definitive 
solution is available, we can establish reasonable boundaries on the problem and 
estimate the possible damage to any research conclusion when researchers tuck away 
studies that did not make the magic .05 level. The fundamental idea in coping with 
the file drawer problem is simply to calculate the number of studies averaging null 
results (Z = 0.00) that must be "filed away" before the overall probability of a Type I 
error can be just brought to any desired level of significance (say, p = .05). This 
number of filed studies, or the tolerance for future null results, is then evaluated for 
whether such a tolerance level is small enough to jeopardize the overall conclusion 
drawn by the reviewer. If the overall level of significance of the research review will 
be brought down to the level of "just significant" by the addition of only a few morc 
null results, the finding is not resistant to the file drawer threat. 

Alternative Computational Procedures 

To find the number (X) of new, filed, or unretrieved studies averaging null results 
required to bring the new overall p for all the studies (i.e., studies already published 
plus those filed away in obscurity) to any desired level (say, significance at p = .05, 
or Z = 1.645), we write 

(21.22) 

where K is the number of studies already included in the meta-analysis, and ZK is 
the arithmetic mean Z obtained for the K studies. Rearrangement of Equation 21.22 
shows that 

X = (~)[K(ZK)2 - 2.706]. 
2.706 

(21.23) 

An alternative formula that may be more convenient when the sum of the Z 
values is given (rather than the mean Z) is 

[ (l;Z)2] 
X= ---K 

2.706 . 
(21.24 ) 

One method, based on counting rather than summing Z values, may be easier 
to compute and can be used when exact p levels are no"t available. However, this 
method is probably less powerful than Equations 21.23 and 21.24. If X is the number 
of new studies required to bring the overall p to .50 (not to .05), then, 

X = 19ns - nns, (21.25) 
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where ns is the number of summarized studies significant at p ~ .05, and nns is the 
number of summarized studies not significant at .05. Another conservative alternative 
(used when exact p levels are not available) sets Z at 0.00 for any nonsignificant result 
and sets Z at 1.645 for any result significant at p < .05. 

The equations above all assume that each of the K studies is independent of 
all other K - 1 studies, at least in the sense of having different sampling units. 
Independence is used in other senses, however. We can, for example, think: of two 
or more studies conducted in a given laboratory as less independent than two or 
more studies conducted in different laboratories. That kind of nonindependence can 
be assessed by such procedures as intraclass correlations. Whether nonindependence 
of that type serves to increase Type I or Type II errors appears to depend in part 
on the relative magnitude of the Z values obtained from the studies that are 
"correlated" or "too similar." If the correlated Z values are, on average, as high as 
(or higher than) the grand mean Z corrected for nonindependence, the combined Z 
we compute treating all studies as independent will be too large. If the correlated Z 
values are, on average, clearly low relative to the grand mean Z corrected for 
Ilonindependence, then the combined Z we compute treating all studies as independent 
will tend to be too small. 

An Illustration 

In 1969, 94 separate experiments examining the effects of interpersonal self-fulfilling 
prophecies (such as those discussed in chapter 7) were summarized (Rosenthal, 1969). 
The mean Z of those 94 independent studies (2K=94) was 1.014, and the Z for the 
studies combined was 94(1.014)/(94)112 = 9.83. How many new, filed, or unretrieved 
studies (X) would it take to bring that very large combined Z down to a barely 
significant Z = 1.645? From Equation 21.23 we have 

X = (94/2.706)[94(1.014)2 - 2.706] = 3,263. 

That is, we find that 3,263 studies averaging null results (2 = .00) must be squirreled 
IIway in obscurity before we can safely conclude that the overall results (from pub­
lished plus filed-away studies) were due to sampling bias in the studies summarized 
hy the reviewer. In a subsequent summary of the same area of research (Rosenthal & 
i{ubin, 1978), the mean Z of 345 studies was estimated to be 1.22; the number of 
Iiled-away studies (averaging a null result) that would be required to move the 
wmbined Z to a barely significant Z was X = 65,123. In a follow-up summary of the 
slime area of research, the mean Z was 1.30, K was 443, and X was 122,778. Thus, 
liver 120,000 unreported studies averaging a null result would have to exist somewhere 
hefore the overall results could reasonably be ascribed to sampling bias. 

The Tolerance Table 

ruble 21.2 is a table of tolerance values with five convenient levels of 2 (the mean Z) 
hellding the columns and various numbers of available studies (K) indexing the rows. 
The intersection of any row and column tells us the number of new studies averaging 
.. null result (X) that would be required to bring the combined p for all studies 
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Table 21.2 

Tolerances for future null results as a function of the mean Z ( Z) and 
the number (K) of studies summarized 

Z 

K +0.50 +1.00 +1.50 +2.00 +2.50 

2 3 7 

3 4 10 17 

4 9 19 32 

5 4 15 31 52 

6 7 23 47 77 

7 11 33 65 106 

8 15 45 86 139 

9 20 58 110 178 

10 26 73 137 220 

15 5 68 172 317 504 

20 16 127 312 571 903 

25 32 205 494 898 1,418 

~o 53 302 718 1,300 2,048 

40 107 551 1,290 2,325 3,655 

50 180 873 2,028 3,645 5,724 

60 272 1,270 2,933 5,261 8,254 

80 511 2,285 5,241 9,380 14,701 

100 823 3,595 8,214 14,681 22,996 

150 1,928 8,164 18,558 33,109 51,817 

200 3,495 14,581 33,059 58,927 92,187 

300 8,014 32,959 74,533 132,737 207,571 

500 22,596 91,887 207,371 369,049 576,920 

Note: The one-tailed p values corresponding to Z (the mean Z) are .309, .159, .067, .023, and .006, 
respectively. Dashes in the table indicate that X < I (where X is the nnmber of new studies required to bring 
the combined p for all studies to the level of being "just significant" at p = .05). 

combined (i.e., old and new together) down to the level of being just significant at 
p = .05 (Z = 1.645). 

There is both a sobering and a cheering lesson to be learned from this table and 
from the equations given earlier in this section on the file drawer problem. The 
sobering lesson is that small numbers of studies, even when the combined p is 
significant, may well be misleading if the combined p is not highly significant. The 
reason is that only a few studies filed away could change the combined significant 
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results to statistically nonsignificant. Suppose we have 15 studies averaging Z = + 0.50, 
with a combined p of .026. If there were only 6 studies tucked away showing a mean 
Z of 0.00, the tolerance level for null results (the table indicates 5) would be exceeded, 
and the significant result would become nonsignificant. Or if there were 2 studies with 
a Z of +2.00, the combined p would be about .002. But uncovering 4 new studies 
that averaged a Z of 0.00 would bring p into the "not significant" region, because 4 
exceeds the tabled tolerance level (indicated as 3 in the table). 

The cheering lesson is that, when the number of studies available is large, or 
the mean directional Z grows large, or both situations are present, the file drawer as 
a plausible rival hypothesis can be safely ruled out. If 300 studies are found averaging 
a Z of 1.00, it would take 32,959 + 1 studies, averaging Z = .00, to bring the 
combined p of the old and new studies pooled together to a nonsignificant level. That 
many file drawers full are simply too improbable. 

In some areas of research, 100 or even 500 unpublished and unretrieved studies 
may be plausible, whereas in other areas even 10 or 20 would seem most unlikely. 
Although we can give no firm guidelines on what constitutes an unlikely number of 
unretrieved or unpublished studies, we can suggest a general guide based partly on K. 
As more studies are known, it becomes more plausible that other studies with null 
results may be in file drawers. Perhaps we could regard as robust to the file drawer 
problem any combined results for which the tolerance level (X) reaches 5K + 10. 
That seems a conservative but reasonable tolerance level. The 5K portion suggests 
that it is unlikely that the file drawers have more than five times as many studies as 
the reviewer, and the + 10 portion sets the minimum number of studies that could be 
filed away at 15 (when K = 1). 

AN EYE TO VARIABILITY 

In this chapter we have primarily emphasized summary measures, including simple 
Xl tests of the heterogeneity of significance levels and effect sizes. One problem in 
the use of such tests is the widespread belief that a test of heterogeneity must be 
found to be significant before contrasts can be computed among the obtained effect 
sizes. That is not the case. Contrasts, particularly planned contrasts, can and should 
he computed among the obtained effect sizes whether the overall test of heterogeneity 
is significant or not. The situation is identical to that in a one-way ANOVA, where 
muny investigators believe it is improper to compute contrasts unless the overall F is 
lIignificant. Actually, planned contrasts should be computed without reference to the 
IIverall F, and even unplanned contrasts can be computed with appropriate adjustments 
III' their levels of significance. If overall tests of heterogeneity are not to serve as 
licenses to pursue contrast analysis, why compute them at all? They do provide some 
useful information. If very significant, they alert us to the likelihood that all our effect 
"i/.es are not cut from the s;pne cloth and that we should try to find the moderator 
vuriables accounting for the 'significant heterogeneity of our effect sizes. Thus, were 
Ec.luation 21.10 to yield a statistically significant X2 , we should feel obligated to search 
for moderator variables. However, a nonsignificant X2 for heterogeneity does not 
preclude our search for moderators. 
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The second common problem in the use of heterogeneity tests is treating them as 
though they are estimates of the magnitude of heterogeneity. They are not. They are tests 
of significance, and like all tests of significance they are a function of the magnitude of 
the effect and the sample sizes (i.e., Equation 11.10). The widely varying (S = .40) effect 
sizes of r = .80, .40, and .00 may be found not to differ significantly if they are based 
on small sample sizes (e.g., n = 10), whereas the homogeneous (S = .05) effect sizes 
of r = .45, .40, and .35 may be found to differ significantly if they are based on large 
sample sizes (e.g., n = 800). The magnitude of the effect size heterogeneity can be 
assessed by various indices of variability, in particular by S, the standard deviation of 
the effect sizes (see also H. Cooper & Hedges, 1994; Rosenthal & DiMatteo, 2002). 

We also recommend that confidence intervals be computed around mean effect 
sizes, preferably by means of a random effects approach. The standard error of the mean 
effect-size estimate (e.g., Zr) should be computed as SIlK, with K being the number 
of independent effects. At least the 95% confidence interval should be recorded, though 
it may be useful to give the 90%, the 99%, or other intervals as well. To illustrate, sup­
pose we have K = 25 independent studies available with an unweighted average Cohen's 
d of .50 and a standard deviation (S) of 1.00 for those 25 d values. Then the standard 
error (SE) of the 25 d values ~s 1.001J25 = .20. Because the 95% confidence interval 
is approximately given by d ± 2(SE), we have .50 ± 2(.20) = an interval from 
d = .10 to .90. We obtain a more accurate interval by replacing the 2 with the critical 
.025 one-tailed value of t for the appropriate df (i.e., K - 1). The critical value of t for 
K = 25 (i.e., df= 24) is 2.064. Therefore, the confidence interval in this example is .50 
± (2.064)(.20), which stretches from d = .09 to .91 (Rosenthal & Rubin, 1978). Our 
interpretation of this confidence interval is that if we claim that the effect size for the 
population (from which the 25 studies must be viewable as a random sample) falls within 
the 95% confidence interval, our claim will be correct 95% of the time. 

There are other useful indices of variability, such as the null-counternull interval 
(first mentioned in chapter 2 and described in more detail in chapter 11). Many different 
visual displays can be useful under particular conditions, such as those described by H. 
Cooper (1989); Glass, McGaw, and Smith (1981); Greenhouse and Iyengar (1994); 
Hedges and Olkin (1985); Hoaglin, Mosteller, and Tukey (1983); Light and Pillemer 
(1984); Light, Singer, and Willett (1994); and Tukey (1977). Sometimes we may need a 
specially created graphic not found in any of these references. It would be instructive in 
that case to consult some of the excellent general texts available on visual displays (e.g .. 
Cleveland, 1985, 1993, 1994; Kosslyn, 1994; Tufte, 1990, 1997, 2001, 2006; Wainer. 
2000). By exploiting the variability, and comparing results across many studies, we can 
frequently achieve deeper insights into the contextual moderators of the observed effects. 
In Wachter and Straf's book on The Future of Meta-Analysis (1990), there is a wonder­
fully perceptive statement by Ingram Olkin (1990) where he likens the meta-analytic 
process to a ride in a helicopter: "On the ground individual trees are visible with high 
resolution. This resolution diminishes as the helicopter rises, and in its place we begin 
to see patterns not visible from the ground" (pp. 6-7). It might seem a lofty vision of 
meta-analysis, but it is one that has already begun to be fulfilled. 
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CHAPTER 5 
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rcomposite = nndividual X m 
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g= 
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95% CI = M ± (t(.it S ) 
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N 
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(1 
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CHAPTER 11 
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e2z, - 1 
r=--
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r12 full = -;=================;;'" 

2 2 ( Sfull )2 1 - R 12 extreme + R 12 extreme -p-­
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Cohen's g = P - .50, or .50 - P (if directional) 
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within 

2 SScontrast 
ralerting = 

SSbetween 

r 2 ___ ~ __ R_c_on_tra_s_t ___ _ 
alerting - j ( ) 

Fcontrast + Fnoncontrast dfnoncontrast 

(SSbetween - MScontrast) / dfnoncontrast 
Fnoncontrast =: US 

within 

(14.15) 

(14.16) 

(14.17) 

(14.18) 

(14.19) 

(14.20) 

(14.21) 

(15.1) 

(15.2) 

(15.3) 

(15.4) 

(15.5) 

(15.6) 

(15.7) 

(15.8) 

(15.9) 

(15.10) 



702 APPENDIXES 

Po _ Fbetween (d!between) - Feontrast 

noncontrast - d/noncontrast 

rcontrast = t~ontrast = teontrast 

t~ontrast + d!witbin .; t~ontrast + d!witbin 
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r. - Zcontrast 
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P(k - 1) IT = P(k - 1) = 
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1 
kbest = 1 - IT 

8=~(~) 
V-I L 

Y = a + B1X1 + B2X2 + C 

Z of difference = Zrl - Zr2 

/ 1 + 1 M - 3 N2- 3 

_ ZI +Z2 
Zunweighted - /2 

Zrl + Zr2 
Zr=---

2 

e2z - 1 
r=--

e2z + 1 

O)IZrl + OhZr2 
Weighted Zr = ----

0)1 + 0)2 

. _ dfiZrl + d/zzr2 
WeIghted Zr = dfi + d/z 

2 (-)2 
X(K-i) = 1: Zj - Z 

X[K-I) = 1:[(Nj - 3)(Zrj - Zr?] 
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K 

LOOjZrj 
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£"OOj 

tHotelling = (rAc - rBd 
(N - 3)(1 + rAB) 

tWilliams = (rAC - rBd 
(N - 1)(1 + rAB) 

2X(Z= ~)+ Y 
~...---,.-----

/ 
N-3 

Z = (ZrI - Zr2) ----
2(1 - rAB)h 

[ ( 
t2 )]1/2 [ 1 ]1/2 

Z = df loge 1 + df 1 - 2df 
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. IK+X 
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Table of Fisher's z Transformation of r 
Table of r Equivalents of Fisher's z 
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Table B.IO. Significance Levels of p, the Spearman Rank-Correlation Coefficienl 

Table B.11. Significance Levels of Fmax = S~ax/S~in in a Set of k Independenl 
Variances, Each Based on n - 1 degrees of freedom 
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TABLE B.1 

Table of standard normal deviates (Z) 

Second digit of Z 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641 

.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247 

.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859 

..l .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483 

.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121 

5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776 
.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451 
.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148 
.X .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 
.1) .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 

1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170 
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 
IJ .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823 
14 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681 

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 
1.1I .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455 
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 
1.11 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 
1.'1 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233 

".11 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 
".1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 
r~ .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110 
rl .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 

,'" .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 

.' ~ .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048 

.'1. .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 

.'1 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 

.. X .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 
] .) .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 

III .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 
II .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007 
, ! .0007 
II .0005 

'" .0003 

, ~ .00023 
, I. .00016 
, I .00011 
I K .00007 

"I .00005 

0111' .00003 .l 

.'i",.. All p values are one-tailed in this table . 

• ", .. Iniullul values of Z are found in the bottom row of Table B.3, as t values for df = 00 are also Z values. 

11I.1",~luced from Nonparametric Statistics (p. 247), by S. Siegel, 1956, New York: McGraw-Hill, with the permission of I'" IM.hlisher.) 
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TABLE B.2 

Summary table of t 

df p=.9 .8 .7 .6 .5 .4 .3 .2 .1 .05 .02 .01 

1 .158 .325 .510 .727 .000 .376 1.963 3.078 6.314 12.706 31.821 63.657 
2 .142 .289 .445 .617 .816 .061 1.386 1.886 2.920 4.303 6.965 9.925 
3 .137 .277 .424 .584 .765 .978 1.250 1.638 2.353 3.182 4.541 5.841 
4 .134 .271 .414 .569 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 
5 .132 .267 .408 .559' .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 
6 .131 .265 .404 .553 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 
7 .130 .263 .402 .549 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 
8 .130 .262 .399 .546 .706 .889 1.108 1.397 1.860 2.306 2.896 3.355 
9 .129 .261 .398 .543 .703 .883 1.100 1.383 1.833 2.262 2.821 3.250 

10 .129 .260 .397 .542 .700 .879 1.093 1.372 1.812 2.228 2.764 3.169 

11 .129 .260 .396 .540 .697 .876 1.088 1.363 1.796 2.201 2.718 3.106 
12 .128 .259 .395 .539 .695 .873 1.083 1.356 1.782 2.179 2.681 3.055 
13 .128 .259 .394 .538 .694 .870 1.079 1.350 1.771 2.160 2.650 3.012 
14 .128 .258 .393 .537 .692 .868 1.076 1.345 1.761 2.145 2.624 2.977 
15 .128 .258 .393 .536 .691 .866 1.074 1.341 1.753 2.131 2.602 2.947 
16 .128 .258 .392 .535 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 
17 .128 .257 .392 .534 .689 .863 1.069 1.333 1.740 2.110 2.567 2.89K 
18 .127 .257 .392 .534 .688 .862 1.067 1.330 1.734 2.101 2.552 2.87K 
19 .127 .257 .391 .533 .688 .861 1.066 1.328 1.729 2.093 2.539 2.861 
20 .127 .257 .391 .533 .687 .860 1.064 1.325 1.725 2.086 2.528 2.845 

21 .U7 .257 .391 .532 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 
22 .127 .256 .390 .532 .686 .858 1.061 1.321 1.717 2.074 2.508 2.819 
23 .127 .256 .390 .532 .685 .858 1.060 1.319 1.714 2.069 2.500 2.807 
24 .127 .256 .390 .531 .685 .857 1.059 1.318 1.711 2.064 2.492 2.797 
25 .127 .256 .390 .531 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 
26 .127 .256 .390 .531 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 
27 .127 .256 .389 .531 .684 .855 1.057 1.314 1.703 2.052 2.473 2.771 
28 .127 .256 .389 .530 .683 .855 1.056 1.313 1.701 2.048 2.467 2.76.1 
29 .127 .256 .389 .530 .683 .854 1.055 1.311 1.699 2.045 2.462 2.75/1 
30 .127 .256 .389 .530 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 

00 .12566 .25335 .38532 .52440 .67449 .84162 1.03643 1.28155 1.64485 1.95996 2.32634 2.575H! 

Note: All P values are two-tailed in this table. Table B.3 presents a more detailed table of t values for one-tailed p :5 .2~ 

(Reproduced from Design and Analysis of Experiments in Psyclwlogy and Education (p. 38), by E. F. Lindquist, Boston: 
Houghton Mifflin, with the permission of the publisher.) 



TABLE B.3 

Extended table of t 

df 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

II 
12 
13 
14 
IS 

p 

16 
17 
III 
19 
20 

21 
22 
B 
24 
2~ 

!/l 
n 
2M 
.>11 

III 

.25 

1.000 
.816 
.765 
.741 
.727 

.718 

.711 

.706 

.703 

.700 

.697 

.695 

.694 

.692 

.691 

.690 

.689 

.688 

.688 

.687 

.686 

.686 

.685 

.685 

.684 

.684 

.684 

.683 

.683 

.683 

.682 

.681 

.680 

.679 

.679 

.679 

.678 

.678 

.677 

.677 

.676 

.675 

.675 

.675 

.675 

.674 

.01 

3.078 
1.886 
1.638 
1.533 
1.476 

1.440 
1.415 
1.397 
1.383 
1.372 

1.363 
1.356 
1.350 
1.345 
1.341 

1.337 
1.333 
1.330 
1.328 
1.325 

1.323 
1.321 
1.319 
1.318 
1.316 

1.315 
1.314 
1.313 
1.311 
1.310 

1.306 
1.303 
1.301 
1.299 
1.297 

1.296 
1.294 
1.292 
1.291 
1.290 

1.286 
1.283 
1.282 
1.282 
1.282 

1.282 

.05 

6.314 
2.920 
2.353 
2.132 
2.015 

1.943 
1.895 
1.860 
1.833 
1.812 

1.796 
1.782 
1.771 
1.761 
1.753 

1.746 
1.740 
1.734 
1.729 
1.725 

1.721 
1.717 
1.714 
1.711 
1.708 

1.706 
1.703 
1.701 
1.699 
1.697 

1.690 
1.684 
1.679 
1.676 
1.673 

1.671 
1.667 
1.664 
1.662 
1.660 

1.652. 
1.648 : 
1.646 
1.645 
1.645 

1.645 

.025 

12.706 
4.303 
3.182 
2.776 
2.571 

2.447 
2.365 
2.306 
2.262 
2.228 

2.201 
2.179 
2.160 
2.145 
2.131 

2.120 
2.110 
2.101 
2.093 
2.086 

2.080 
2.074 
2.069 
2.064 
2.060 

2.056 
2.052 
2.048 
2.045 
2.042 

2.030 
2.021 
2.014 
2.009 
2.004 

2.000 
1.994 
1.990 
1.987 
1.984 

1.972 
1.965 
1.962 
1.961 
1.960 

1.960 

.01 

31.821 
6.965 
4.541 
3.747 
3.365 

3.143 
2.998 
2.896 
2.821 
2.764 

2.718 
2.681 
2.650 
2.624 
2.602 

2.583 
2.567 
2.552 
2.539 
2.528 

2.518 
2.508 
2.500 
2.492 
2.485 

2.479 
2.473 
2.467 
2.462 
2.457 

2.438 
2.423 
2.412 
2.403 
2.396 

2.390 
2.381 
2.374 
2.368 
2.364 

2.345 
2.334 
2.330 
2.328 
2.327 

2.326 

All" villucs are one-tailed in this table. For p values> .25 see Table B.2. 
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.005 

63.657 
9.925 
5.841 
4.604 
4.032 

3.707 
3.499 
3.355 
3.250 
3.169 

3.106 
3.055 
3.012 
2.977 
2.947 

2.921 
2.898 
2.878 
2.861 
2.845 

2.831 
2.819 
2.807 
2.797 
2.787 

2.779 
2.771 
2.763 
2.756 
2.750 

2.724 
2.704 
2.690 
2.678 
2.668 

2.660 
2.648 
2.639 
2.632 
2.626 

2.601 
2.586 
2.581 
2.578 
2.576 

2.576 

.0025 .001 

127.321 318.309 
14.089 22.327 
7.453 10.214 
5.598 7.173 
4.773 5.893 

4.317 5.208 
4.029 4.785 
3.833 4.501 
3.690 4.297 
3.581 4.144 

3.497 4.025 
3.428 3.930 
3.372 3.852 
3.326 3.787 
3.286 3.733 

3.252 3.686 
3.223 3.646 
3.197 3.610 
3.174 3.579 
3.153 3.552 

3.135 3.527 
3.119 3.505 
3.104 3.485 
3.090 3.467 
3.078 3.450 

3.067 3.435 
3.057 3.421 
3.047 3.408 
3.038 3.396 
3.030 3.385 

2.996 3.340 
2.971 3.307 
2.952 3.281 
2.937 3.261 
2.925 3.245 

2.915 
2.899 
2.887 
2.878 
2.871 

2.838 
2.820 
2.813 
2.810 
2.808 

2.807 

3.232 
3.211 
3.195 
3.183 
3.174 

3.131 
3.107 
3.098 
3.094 
3.091 

3.090 
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TABLE B.3 (continued) 

~ .0005 .00025 .0001 .00005 .000025 .00001 

I 636.619 1,273.239 3,183.099 6,366.198 12,732.395 31,830.9HI) 
2 31.598 44.705 70.700 99.992 141.416 223.6().~ 

3 12.924 16.326 22.204 28.000 35.298 47.92K 
4 8.610 10.306 13.034 15.544 18.522 23.3~2 

5 6.869 7.976 9.678 11.178 12.893 15.547 

6 5.959 6.788 8.025 9.082 10.261 12m2 
7 5.408 6.082 7.063 7.885 8.782 10.10.1 
8 5.041 5.618 6.442 7.120 7.851 8.907 
9 4.781 5.291 6.010 6.594 7.215 8.102 

10 4.587 5.049 5.694 6.211 6.757 7.527 

II 4.437 4.863 5.453 5.921 6.412 7.mX 
12 4.318 4.716 5.263 5.694 6.143 6.75(, 
13 4.221 4.597 5.111 5.513 5.928 6.501 
14 4.140 4.499 4.985 5.363 5.753 6.2X7 
15 4.073 4.417 4.880 5.239 5.607 6.1(~) 

16 4.015 4.346 4.791 5.134 5.484 5.960 
17 3.965 4.286 4.714 5.044 5.379 5.R.~2 

18 3.922 4.233 4.648 4.966 5.288 5.722 
19 3.883 4.187 4.590 4.897 5.209 5.627 
20 3.850 4.146 4.539 4.837 5.139 5.54.1 

i.' 21 3.819 4.1 10 4.493 4.784 5.077 5.46'1 
22 3.792 4.077 4.452 4.736 5.022 5.402 
23 3.768 4.048 4.415 4.693 4.972 5034.1 
24 3.745 4.021 4.382 4.654 4.927 5.21)0 
25 3.725 3.997 4.352 4.619 4.887 5.241 

26 3.707 3.974 4.324 4.587 4.850 5.11)7 
27 3.690 3.954 4.299 4.558 4.816 5.157 
28 3.674 3.935 4.275 4.530 4.784 5.120 
29 3.659 3.918 4.254 4.506 4.756 5.()Xh 
30 3.646 3.902 4.234 4.482 4.729 5'()54 

35 3.591 3.836 4.153 4.389 4.622 4.1)27 
40 3.551 3.788 4.094 4.321 4.544 4XI.~ 

45 3.520 3.752 4.049 4.269 4.485 4.711(, 
50 3.496 3.723 4.014 4.228 4.438 4.711 
55 3.476 3.700 3.986 4.196 4.401 4.667 

60 3.460 3.681 3.962 4.169 4.370 4.11.11 
70 3.435 3.651 3.926 4.127 4.323 4.57h 
80 3.416 3.629 3.899 4.096 4.288 4.5.1~ 

90 3.402 3.612 3.878 4.072 4.261 4.50.1 
100 3.390 3.598 3.862 4.053 4.240 4.47K 

200 3.340 3.539 3.789 3.970 4.146 4 .. lh'I 
500 3.310 3.504 3.747 3.922 4.091 4..1{lf. 

1,000 3.300 3.492 3.733 3.906 4.073 4.2X~ 

2,000 3.295 3.486 3.726 3.898 4.064 4.27~ 

10,000 3.292 3.482 3.720 3.892 4.058 4.2h7 

00 3.291 3.481 3.719 3.891 4.056 4.2h~ 

Note: All P values are one-tailed in this table. 



TABLE B.3 (continued) 

X .000005 .0000025 .000001 .0000005 .00000025 .0000001 

1 63,661.977 127,323.954 318,309.886 636,619.772 1,273,239.545 3,183,098.862 
2 316.225 447.212 707.106 999.999 1,414.213 2,236.068 
3 60.397 76.104 103.299 130.155 163.989 222.572 
4 27.771 33.047 41.578 49.459 58.829 73.986 
5 17.807 20.591 24.771 28.477 32.734 39.340 

6 13.555 15.260 17.830 20.047 22.532 26.286 
7 11.215 12.437 14.241 15.764 17.447 19.932 
8 9.782 10.731 12.110 13.257 14.504 16.320 
9 8.827 9.605 10.720 11.637 12.623 14.041 

10 8.150 8.812 9.752 10.516 11.328 12.492 

11 7.648 8.227 9.043 9.702 10.397 11.381 
12 7.261 7.780 8.504 9.085 9.695 10.551 
13 6.955 7.427 8.082 8.604 9.149 9.909 
14 6.706 7.142 7.743 8.218 8.713 9.400 
15 6.502 6.907 7.465 7.903 8.358 8.986 

16 6.330 6.711 7.233 7.642 8.064 8.645 
17 6.184 6.545 7.037 7.421 7.817 8.358 
18 6.059 6.402 6.869 7.232 7.605 8.115 
19 5.949 6.278 6.723 7.069 7.423 7.905 
20 5.854 6.170 6.597 6.927 7.265 7.723 

21 5.769 6.074 6.485 6.802 7.126 7.564 
22 5.694 5.989 6.386 6.692 7.003 7.423 
23 5.627 5.913 6.297 6.593 6.893 7.298 
24 5.566 5.845 6.218 6.504 6.795 7.185 
25 5.511 5.783 6.146 6.424 6.706 7.085 

26 5.461 5.726 6.081 6.352 6.626 6.993 
27 5.415 5.675 6.021 6.286 6.553 6.910 
28 5.373 5.628 5.967 6.225 6.486 6.835 
29 5.335 5.585 5.917 6.170 6.426 6.765 
10 5.299 5.545 5.871 6.119 6.369 6.701 

.15 5.156 5.385 5.687 5.915 6.143 6.447 
40 5.053 5.269 5.554 5.768 5.983 6.266 
45 4.975 5.182 5.454 5.659 5.862 6.130 
50 4.914 5.115 5.377 5.573 5.769 6.025 
~5 4.865 5.060 5.315 5.505 5.694 5.942 

hO 4.825 5.015 5.264 5.449 5.633 5.873 
70 4.763 4.946 5.185 5.363 5.539 5.768 
KO 4.717 4.896 5.128 5.300 5.470 5.691 
'10 4.682 4.857 5.084 5.252 5.417 5.633 

11K) 4.654 4.826 5.049 5.214 5.376 5.587 

11K) 4.533 4.692 4.897 5.048 5.196 5.387 
~IM) 4.463 4.615 4.810 4.953 5.094 5.273 

I,IMM) 4.440 4.590 4.781 4.922 5.060 5.236 
],IMM) 4.428 4.578 4.767 4.907 5.043 5.218 

III,INK) 4.419 4.567 4.756 4.895 5.029 5.203 

... 4.417 4.565 4.753 4.892 5.026 5.199 

It .. " All p values are one-tailed in this table. Standard normal deviates (Z) corresponding to t can be estimated quite 
•• Ufll, .. ly from 

Z = [df log, (1 +!lr )r[l - 2~f r· 
III#tlf •• lllccd from "Extended tables of the percentage points of Student's t-distribution," by E. T. Federighi, 1959, Journal "f 
... """ril'llll Statistical Association, 54, 683-688, with the permission of the publisher.) 



;::! TABLE B.4 

... Table of F 

X db p 

1 .001 
.005 
.01 
.025 
.05 
.10 
.20 

2 .001 
.005 
.01 
.025 
.05 
.10 
.20 

3 .001 
.005 
.01 
.025 
.05 
.10 
.20 

4 .001 
.005 
.01 
.025 
.05 
.10 
.20 

1 

405284 
16211 
4052 

647.79 
161.45 
39.86 
9.47 

998.5 
198.50 
98.49 
38.51 
18.51 
8.53 
3.56 

167.5 
55.55 
34.12 
17.44 
10.13 
5.54 
2.68 

74.14 
31.33 
21.20 
12.22 
7.71 
4.54 
2.35 

2 3 4 

500000 540379 562500 
20000 21615 22500 
4999 5403 5625 

799.50 864.16 899.58 
199.50 215.71 224.58 
49.50 53.59 55.83 
12.00 13.06 13.73 

999.0 999.2 999.2 
199.00 199.17 199.25 
99.00 99.17 99.25 
39.00 39.17 39.25 
19.00 19.16 19.25 
9.00 9.16 9.24 
4.00 4.16 4.24 

148.5 141.1 137.1 
49.80 47.47 46.20 
30.81 29.46 28.71 
16.04 15.44 15.10 
9.55 9.28 9.12 
5.46 5.39 5.34 
2.89 2.94 2.96 

61.25 56.18 53.44 
26.28 24.26 23.16 
18.00 16.69 15.98 
10.65 9.98 9.60 
6.94 6.59 6.39 
4.32 4.19 4.11 
2.47 2.48 2.48 

APPENDIX B 

5 6 8 12 24 co 

576405 585937 598144 610667 623497 636619 
23056 23437 23925 24426 24940 25465 
5764 5859 5981 6106 6234 6366 

921.85 937.11 956.66 976.71 997.25 1018.30 
230.16 233.99 238.88 243.91 249.05 254.32 
57.24 58.20 59.44 60.70 62.00 63.33 
14.01 14.26 14.59 14.90 15.24 15.58 

999.3 999.3 999.4 999.4 999.5 999.5 
199.30 199.33 199.37 199.42 199.46 199.51 
99.30 99.33 99.36 99.42 99.46 99.50 
39.30 39.33 39.37 39.42 39.46 39.50 
19.30 19.33 19.37 19.41 19.45 19.50 
9.29 9.33 9.37 9.41 9.45 9.49 
4.28 4.32 4.36 4.40 4.44 4.48 

134.6 132.8 130.6 128.3 125.9 123.5 
45.39 44.84 44.13 43.39 42.62 41.83 
28.24 27.91 27.49 27.05 26.60 26.12 
14.89 14.74 14.54 14.34 14.12 13.90 
9.01 8.94 8.84 8.74 8.64 8.53 
5.31 5.28 5.25 5.22 5.18 5.13 
2.97 2.97 2.98 2.98 2.98 2.98 

51.71 50.53 49.00 47.41 45.77 44.05 
22.46 21.98 21.35 20.71 20.03 19.33 
15.52 15.21 14.80 14.37 13.93 13.46 
9.36 9.20 8.98 8.75 8.51 8.26 
6.26 6.16 6.04 5.91 5.77 5.63 
4.05 4.01 3.95 3.90 3.83 3.76 
2.48 2.47 2.47 2.46 2.44 2.43 



-...I .... 
U1 

Y~&Aw r. 

>( dfz P 

5 .001 
.005 
.01 
.025 
.05 
.10 
.20 

6 .001 
.005 
.01 
.025 
.05 
.10 
.20 

7 .001 
.005 
.01 
.025 
.05 
.10 
.20 

8 .001 
.005 
.01 
.025 
.05 
.10 
.20 

1 

47.04 
22.79 
16.26 
10.01 
6.61 
4.06 
2.18 

35.51 
18.64 
13.74 
8.81 
5.99 
3.78 
2.07 

29.22 
16.24 
12.25 
8.07 
5.59 
3.59 
2.00 

25.42 
14.69 
11.26 
7.57 
5.32 
3.46 
1.95 

2 3 4 

36.61 33.20 31.09 
18.31 16.53 15.56 
13.27 12.06 11.39 
8.43 7.76 7.39 
5.79 5.41 5.19 
3.78 3.62 3.52 
2.26 2.25 2.24 

27.00 23.70 21.90 
14.54 12.92 12.03 
10.92 9.78 9.15 
7.26 6.60 6.23 
5.14 4.76 4.53 
3.46 3.29 3.18 
2.13 2.11 2.09 

21.69 18.77 17.19 
12.40 10.88 10.05 
9.55 8.45 7.85 
6.54 5.89 5.52 
4.74 4.35 4.12 
3.26 3.07 2.96 
2.04 2.02 1.99 

18.49 15.83 14.39 
11.04 9.60 8.81 
8.65 7.59 7.01 
6.06 5.42 5.05 
4.46 4.07 3.84 
3.11 2.92 2.81 
1.98 1.95 1.92 

5 6 8 12 24 00 

29.75 28.84 27.64 26.42 25.14 23.78 
14.94 14.51 13.96 13.38 12.78 12.14 
10.97 10.67 10.29 9.89 9.47 9.02 
7.15 6.98 6.76 6.52 6.28 6.02 
5.05 4.95 4.82 4.68 4.53 4.36 
3.45 3.40 3.34 3.27 3.19 3.10 
2.23 2.22 2.20 2.18 2.16 2.13 

20.81 20.03 19.03 17.99 16.89 15.75 
11.46 11.07 10.57 10.03 9.47 8.88 
8.75 8.47 8.10 7.72 7.31 6.88 
5.99 5.82 5.60 5.37 5.12 4.85 
4.39 4.28 4.15 4.00 3.84 3.67 
3.11 3.05 2.98 2.90 2.82 2.72 
2.08 2.06 2.04 2.02 1.99 1.95 

16.21 15.52 14.63 13.71 12.73 11.69 
9.52 9.16 8.68 8.18 7.65 7.08 
7.46 7.19 6.84 6.47 6.07 5.65 
5.29 5.12 4.90 4.67 4.42 4.14 
3.97 3.87 3.73 3.57 3.41 3.23 
2.88 2.83 2.75 2.67 2.58 2.47 
1.97 1.96 1.93 1.91 1.87 1.83 

13.49 12.86 12.04 11.19 10.30 9.34 
8.30 7.95 7.50 7.01 6.50 5.95 
6.63 6.37 6.03 5.67 5.28 4.86 
4.82 4.65 4.43 4.20 3.95 3.67 
3.69 3.58 3.44 3.28 3.12 2.93 
2.73 2.67 2.59 2.50 2.40 2.29 
1.90 1.88 1.86 1.83 1.79 1.74 



;::! TABLE B.4 (continuetl) 

X db p 1 

~ 

9 .001 22.86 
.005 13.61 
.01 10.56 
.025 7.21 
.05 5.12 
.10 3.36 
.20 1.91 

10 .001 21.04 
.005 12.83 
.01 10.04 
.025 6.94 
.05 4.96 
.10 3.28 
.20 1.88 

11 .001 19.69 
.005 12.23 
.01 9.65 
.025 6.72 
.05 4.84 
.10 3.23 
.20 1.86 

12 .001 
.005 
.01 
.025 
.05 
10 

~) :~ 

2 

16.39 
10.11 
8.02 
5.71 
4.26 
3.01 
1.94 

14.91 
9.43 
7.56 
5.46 
4.10 
2.92 
1.90 

13.81 
8.91 
7.20 
5.26 
3.98 
2.86 
1.87 

~ ~5 

3 

13.90 
8.72 
6.99 
5.08 
3.86 
2.81 
1.90 

12.55 
8.08 
6.55 
4.83 
3.71 
2.73 
1.86 

11.56 
7.60 
6.22 
4.63 
3.59 
2.66 
1.83 

'SI) 

4 

12.56 
7.96 
6.42 
4.72 
3.63 
2.69 
1.87 

11.28 
7.34 
5.99 
4.47 
3.48 
2.61 
1.83 

10.35 
6.88 
5.67 
4.28 
3.36 
2.54 
1.80 

48 
1 --

-, 

5 

11.71 
7.47 
6.06 
4.48 
3.48 
2.61 
1.85 

10.48 
6.87 
5.64 
4.24 
3.33 
2.52 
1.80 

9.58 
6.42 
5.32 
4.04 
3.20 
2.45 
1.77 

39 
1 -.1 

6 8 

11.13 10.37 
7.13 6.69 
5.80 5.47 
4.32 4.10 
3.37 3.23 
2.55 2.47 
1.83 1.80 

9.92 9.20 
6.54 6.12 
5.39 5.06 
4.07 3.85 
3.22 3.07 
2.46 2.38 
1.78 1.75 

9.05 8.35 
6.10 5.68 
5.07 4.74 
3.88 3.66 
3.09 2.95 
2.39 2.30 
1.75 1.72 

33 
I"":: 169 

12 

9.57 
6.23 
5.11 
3.87 
3.07 
2.38 
1.76 

8.45 
5.66 
4.71 
3.62 
2.91 
2.28 
1.72 

7.63 
5.24 
4.40 
3.43 
2.79 
2.21 
1.68 

2.15 
165 

24 

8.72 
5.73 
4.73 
3.61 
2.90 
2.28 
1.72 

7.64 
5.17 
4.33 
3.37 
2.74 
2.18 
1.67 

6.85 
4.76 
4.02 
3.17 
2.61 
2.10 
1.63 

2.04 
1.60 

APPENDIX B 

00 

7.81 
5.19 
4.31 
3.33 
2.71 
2.16 
1.67 

6.76 
4.64 
3.91 
3.08 
2.54 
2.06 
1.62 

6.00 
4.23 
3.60 
2.88 
2.40 
1.97 
1.57 

1.90 
L~ 



-..l .... 
-..l 

~...... " 

~ dfz p 

13 .001 
.005 
.01 
.025 
.05 
.10 
.20 

14 .001 
.005 
.01 
.025 
.05 
.10 
.20 

15 .001 
.005 
.01 
.025 
.05 
.10 
.20 

16 .001 
.005 
.01 
.025 
.05 
.10 
.20 

1 

17.81 
11.37 
9.07 
6.41 
4.67 
3.14 
1.82 

17.14 
11.06 
8.86 
6.30 
4.60 
3.10 
1.81 

16.59 
10.80 
8.68 
6.20 
4.54 
3.07 
1.80 

16.12 
10.58 
8.53 
6.12 
4.49 
3.05 
1.79 

2 3 4 

12.31 10.21 9.07 
8.19 6.93 6.23 
6.70 5.74 5.20 
4.97 4.35 4.00 
3.80 3.41 3.18 
2.76 2.56 2.43 
1.83 1.78 1.75 

11.78 9.73 8.62 
7.92 6.68 6.00 
6.51 5.56 5.03 
4.86 4.24 3.89 
3.74 3.34 3.11 
2.73 2.52 2.39 
1.81 1.76 1.73 

11.34 9.34 8.25 
7.70 6.48 5.80 
6.36 5.42 4.89 
4.77 4.15 3.80 
3.68 3.29 3.06 
2.70 2.49 2.36 
1.79 1.75 1.71 

10.97 9.00 7.94 
7.51 6.30 5.64 
6.23 5.29 4.77 
4.69 4.08 3.73 
3.63 3.24 3.01 
2.67 2.46 2.33 
1.78 1.74 1.70 

5 6 8 12 24 00 

8.35 7.86 7.21 6.52 5.78 4.97 
5.79 5.48 5.08 4.64 4.17 3.65 
4.86 4.62 4.30 3.96 3.59 3.16 
3.77 3.60 3.39 3.15 2.89 2.60 
3.02 2.92 2.77 2.60 2.42 2.21 
2.35 2.28 2.20 2.10 1.98 1.85 
1.72 1.69 1.66 1.62 1.57 1.51 

7.92 7.43 6.80 6.13 5.41 4.60 
5.56 5.26 4.86 4.43 3.96 3.44 
4.69 4.46 4.14 3.80 3.43 3.00 
3.66 3.50 3.29 3.05 2.79 2.49 
2.96 2.85 2.70 2.53 2.35 2.13 
2.31 2.24 2.15 2.05 1.94 1.80 
1.70 1.67 1.64 1.60 1.55 1.48 

7.57 7.09 6.47 5.81 5.10 4.31 
5.37 5.07 4.67 4.25 3.79 3.26 
4.56 4.32 4.00 3.67 3.29 2.87 
3.58 3.41 3.20 2.96 2.70 2.40 
2.90 2.79 2.64 2.48 2.29 2.07 
2.27 2.21 2.12 2.02 1.90 1.76 
1.68 1.66 1.62 1.58 1.53 1.46 

7.27 6.81 6.19 5.55 4.85 4.06 
5.21 4.91 4.52 4.10 3.64 3.11 
4.44 4.20 3.89 3.55 3.18 2.75 
3.50 3.34 3.12 2.89 2.63 2.32 
2.85 2.74 2.59 2.42 2.24 2.01 
2.24 2.18 2.09 1.99 1.87 1.72 
1.67 1.64 1.61 1.56 1.51 1.43 



APPENDIX B 

~ TABLE B.4 (continue(/) 
O' 

X dfz p 1 2 3 4 5 6 8 12 24 <Xl 

QO 

17 .001 15.72 10.66 8.73 7.68 7.02 6.56 5.96 5.32 4.63 3.85 
.005 10.38 7.35 6.16 5.50 5.07 4.78 4.39 3.97 3.51 2.98 
.01 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65 
.025 6.04 4.62 4.01 3.66 3.44 3.28 3.06 2.82 2.56 2.25 
.05 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96 
.10 3.03 2.64 2.44 2.31 2.22 2.15 2.06 1.96 1.84 1.69 
.20 1.78 1.77 1.72 1.68 1.65 1.63 1.59 1.55 1.49 1.42 

18 .001 15.38 10.39 8.49 7.46 6.81 6.35 5.76 5.13 4.45 3.67 
.005 10.22 7.21 6.03 5.37 4.96 4.66 4.28 3.86 3.40 2.87 
.01 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57 
.025 5.98 4.56 3.95 3.61 3.38 3.22 3.01 2.77 2.50 2.19 
.05 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92 
.10 3.01 2.62 2.42 2.29 2.20 2.13 2.04 1.93 1.81 1.66 
.20 1.77 1.76 1.71 1.67 1.64 1.62 1.58 1.53 1.48 1.40 

19 .001 15.08 10.16 8.28 7.26 6.61 6.18 5.59 4.97 4.29 3.52 
.005 10.07 7.09 5.92 5.27 4.85 4.56 4.18 3.76 3.31 2.78 
.01 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49 
.025 5.92 4.51 3.90 3.56 3.33 3.17 2.96 2.72 2.45 2.13 
.05 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88 
.10 2.99 2.61 2.40 2.27 2.18 2.11 2.02 1.91 1.79 1.63 
.20 1.76 1.75 1.70 1.66 1.63 1.61 1.57 1.52 1.46 1.39 

20 .001 
.005 
.01 
.025 
.05 
.10 .,., 
~ 1.'6 1.75 1.70 1.65 1.6_ 1.60 1.56 1.51 1.-+5 137 



'I 
~ 
IoC 

T.~"".. 'I 

~ d/2 P 

21 .001 
.005 
.01 
.025 
.05 
.10 
.20 

22 .001 
.005 
.01 
.025 
.05 
.10 
.20 

23 .001 
.005 
.01 
.025 
.05 
.10 
.20 

24 .001 
.005 
.01 
.025 
.05 
.10 
.20 

1 

14.59 
9.83 
8.02 
5.83 
4.32 
2.96 
1.75 

14.38 
9.73 
7.94 
5.79 
4.30 
2.95 
1.75 

14.19 
9.63 
7.88 
5.75 
4.28 
2.94 
1.74 

14.03 
9.55 
7.82 
5.72 
4.26 
2.93 
1.74 

2 3 4 

9.77 7.94 6.95 
6.89 5.73 5.09 
5.78 4.87 4.37 
4.42 3.82 3.48 
3.47 3.07 2.84 
2.57 2.36 2.23 
1.74 1.69 1.65 

9.61 7.80 6.81 
6.81 5.65 5.02 
5.72 4.82 4.31 
4.38 3.78 3.44 
3.44 3.05 2.82 
2.56 2.35 2.22 
1.73 1.68 1.64 

9.47 7.67 6.69 
6.73 5.58 4.95 
5.66 4.76 4.26 
4.35 3.75 3.41 
3.42 3.03 2.80 
2.55 2.34 2.21 
1.73 1.68 1.63 

9.34 7.55 6.59 
6.66 5.52 4.89 
5.61 4.72 4.22 
4.32 3.72 3.38 
3.40 3.01 2.78 
2.54 2.33 2.19 
1.72 1.67 1.63 

5 6 8 12 24 00 

6.32 5.88 5.31 4.70 4.03 3.26 
4.68 4.39 4.01 4.60 3.15 2.61 
4.04 3.81 3.51 3.17 2.80 2.36 
3.25 3.09 2.87 2.64 2.37 2.04 
2.68 2.57 2.42 2.25 2.05 1.81 
2.14 2.08 1.98 1.88 1.75 1.59 
1.61 1.59 1.55 1.50 1.44 1.36 

6.19 5.76 5.19 4.58 3.92 3.15 
4.61 4.32 3.94 3.54 3.08 2.55 
3.99 3.76 3.45 3.12 2.75 2.31 
3.22 3.05 2.84 2.60 2.33 2.00 
2.66 2.55 2.40 2.23 2.03 1.78 
2.13 2.06 1.97 1.86 1.73 1.57 
1.61 1.58 1.54 1.49 1.43 1.35 

6.08 5.65 5.09 4.48 3.82 3.05 
4.54 4.26 3.88 3.47 3.02 2.48 
3.94 3.71 3.41 3.07 2.70 2.26 
3.18 3.02 2.81 2.57 2.30 1.97 
2.64 2.53 2.38 2.20 2.00 1.76 
2.11 2.05 1.95 1.84 1.72 1.55 
1.60 1.57 1.53 1.49 1.42 1.34 

5.98 5.55 4.99 4.39 3.74 2.97 
4.49 4.20 3.83 3.42 2.97 2.43 
3.90 3.67 3.36 3.03 2.66 2.21 
3.15 2.99 2.78 2.54 2.27 1.94 
2.62 2.51 2.36 2.18 1.98 1.73 
2.10 2.04 1.94 1.83 1.70 1.53 
1.59 1.57 1.53 1.48 1.42 1.33 

g XION3ddV 



APPENDIX B 

g TABLE B.4 (continued) 

~ df2 P 1 2 3 4 5 6 8 12 24 00 

25 .001 13.88 9.22 7.45 6.49 5.88 5.46 4.91 4.31 3.66 2.89 
.005 9.48 6.60 5.46 4.84 4.43 4.15 3.78 3.37 2.92 2.38 
.01 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17 
.025 5.69 4.29 3.69 3.35 3.l3 2.97 2.75 2.51 2.24 1.91 
.05 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71 
.10 2.92 2.53 2.32 2.18 2.09 2.02 1.93 1.82 1.69 1.52 
.20 1.73 1.72 1.66 1.62 1.59 1.56 1.52 1.47 1.41 l.32 

26 .001 l3.74 9.12 7.36 6.41 5.80 5.38 4.83 4.24 3.59 2.82 
.005 9.41 6.54 5.41 4.79 4.38 4.10 3.73 3.33 2.87 2.33 
.01 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13 
.025 5.66 4.27 3.67 3.33 3.10 2.94 2.73 2.49 2.22 1.88 
.05 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69 
.10 2.91 2.52 2.31 2.17 2.08 2.01 1.92 1.81 1.68 1.50 
.20 1.73 1.71 1.66 1.62 1.58 1.56 1.52 1.47 1.40 1.31 

27 .001 l3.61 9.02 7.27 6.33 5.73 5.31 4.76 4.17 3.52 2.75 
.005 9.34 6.49 5.36 4.74 4.34 4.06 3.69 3.28 2.83 2.29 
.01 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10 
.025 5.63 4.24 3.65 3.31 3.08 2.92 2.71 2.47 2.19 1.85 
.05 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.l3 1.93 1.67 
.10 2.90 2.51 2.30 2.17 2.07 2.00 1.91 1.80 1.67 1.49 
.20 1.73 1.71 1.66 1.61 1.58 1.55 1.51 1.46 1.40 1.30 

28 .001 l3.50 8.93 7.19 6.25 5.66 5.24 4.69 4.11 3.46 2.70 
.005 9.28 6.44 5.32 4.70 4.30 4.02 3.65 3.25 2.79 2.25 
.01 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06 
.025 5.61 4.22 3.63 3.29 3.06 2.90 2.69 2.45 2.17 1.83 
.05 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65 
.10 2.89 2.50 2.29 2.16 2.06 2.00 1.90 1.79 1.66 1.48 
.10 1.72 1.71 1.65 1.61 1.57 1.55 1.51 1.46 1.39 1.30 



-...J 
N 
~ 

~ dfz 

29 

30 

40 

60 

p 

.001 

.005 

.01 

.025 

.05 

.10 

.20 

.001 

.005 

.01 

.025 

.05 

.10 

.20 

.001 

.005 

.01 

.025 

.05 

.10 

.20 

.001 

.005 

.01 

.025 

.05 

.10 

.20 

1 

13.39 
9.23 
7.60 
5.59 
4.18 
2.89 
1.72 

13.29 
9.18 
7.56 
5.57 
4.17 
2.88 
1.72 

12.61 
8.83 
7.31 
5.42 
4.08 
2.84 
1.70 

11.97 
8.49 
7.08 
5.29 
4.00 
2.79 
1.68 

2 3 4 

8.85 7.12 6.19 
6.40 5.28 4.66 
5.42 4.54 4.04 
4.20 3.61 3.27 
3.33 2.93 2.70 
2.50 2.28 2.15 
1.70 1.65 1.60 

8.77 7.05 6.12 
6.35 5.24 4.62 
5.39 4.51 4.02 
4.18 3.59 3.25 
3.32 2.92 2.69 
2.49 2.28 2.14 
1.70 1.64 1.60 

8.25 6.60 5.70 
6.07 4.98 4.37 
5.18 4.31 3.83 
4.05 3.46 3.13 
3.23 2.84 2.61 
2.44 2.23 2.09 
1.68 1.62 1.57 

7.76 6.17 5.31 
5.80 4.73 4.14 
4.98 4.13 3.65 
3.93 3.34 3.01 
3.15 2.76 2.52 
2.39 2.18 2.04 
1.65 1.59 1.55 

5 6 8 12 24 00 

5.59 5.18 4.64 4.05 3.41 2.64 
4.26 3.98 3.61 3.21 2.76 2.21 
3.73 3.50 3.20 2.87 2.49 2.03 
3.04 2.88 2.67 2.43 2.15 1.81 
2.54 2.43 2.28 2.10 1.90 1.64 
2.06 1.99 1.89 1.78 1.65 1.47 
1.57 1.54 1.50 1.45 1.39 1.29 

5.53 5.12 4.58 4.00 3.36 2.59 
4.23 3.95 3.58 3.18 2.73 2.18 
3.70 3.47 3.17 2.84 2.47 2.01 
3.03 2.87 2.65 2.41 2.14 1.79 
2.53 2.42 2.27 2.09 1.89 1.62 
2.05 1.98 1.88 1.77 1.64 1.46 
1.57 1.54 1.50 1.45 1.38 1.28 

5.13 4.73 4.21 3.64 3.01 2.23 
3.99 3.71 3.35 2.95 2.50 1.93 
3.51 3.29 2.99 2.66 2.29 1.80 
2.90 2.74 2.53 2.29 2.01 1.64 
2.45 2.34 2.18 2.00 1.79 1.51 
2.00 1.93 1.83 1.71 1.57 1.38 
1.54 1.51 1.47 1.41 1.34 1.24 

4.76 4.37 3.87 3.31 2.69 1.90 
3.76 3.49 3.13 2.74 2.29 1.69 
3.34 3.12 2.82 2.50 2.12 1.60 
2.79 2.63 2.41 2.17 1.88 1.48 
2.37 2.25 2.10 1.92 1.70 1.39 
1.95 1.87 1.77 1.66 1.51 1.29 
1.51 1.48 1.44 1.38 1.31 1.18 



APPENDIX B 

-..l TABLE B.4 (continued) 
N 
N 

dfz p 1 2 3 4 5 6 8 12 24 00 

120 .001 11.38 7.31 5.79 4.95 4.42 4.04 3.55 3.02 2.40 1.56 
.005 8.18 5.54 4.50 3.92 3.55 3.28 2.93 2.54 2.09 1.43 
.01 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38 
.025 5.15 3.80 3.23 2.89 2.67 2.52 2.30 2.05 1.76 1.31 
.05 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25 
.10 2.75 2.35 2.13 1.99 1.90 1.82 1.72 1.60 1.45 1.19 
.20 1.66 1.63 1.57 1.52 1.48 1.45 1.41 1.35 1.27 1.12 

00 1.001 10.83 6.91 5.42 4.62 4.10 3.74 3.27 2.74 2.13 1.00 
.005 7.88 5.30 4.28 3.72 3.35 3.09 2.74 2.36 1.90 1.00 
.01 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00 
.025 5.02 3.69 3.12 2.79 2.57 2.41 2.19 1.94 1.64 1.00 
.05 3.84 2.99 2.60 2.37 2.21 2.09 1.94 1.75 1.52 1.00 
.10 2.71 2.30 2.08 1.94 1.85 1.77 1.67 1.55 1.38 1.00 
.20 1.64 1.61 1.55 1.50 1.46 1.43 1.38 1.32 1.23 1.00 

Note: Reproduced from Design and Analysis of Experiments in Psychology and Education (pp. 41-44), by E. F. Lindquist, 1953, Boston: Houghton Mifflin, with the pennission of the publisher. 



Probability 

df .99 .98 .95 .90 .80 .70 .50 .30 .20 .10 .05 .02 .01 .001 

1 .00016 .00063 .00393 .0158 .0642 .148 .455 1.074 1.642 2.706 3.841 5.412 6.635 10.827 
2 .0201 .0404 .103 .211 .446 .713 1.386 2.408 3.219 4.605 5.991 7.824 9.210 13.815 
3 .115 .185 .352 .584 1.005 1.424 2.366 3.665 4.642 6.251 7.815 9.837 11.345 16.268 
4 .297 .429 .711 1.064 1.649 2.195 3.357 4.878 5.989 7.779 9.488 11.668 13.277 18.465 
5 .554 .752 1.145 1.610 2.343 3.000 4.351 6.064 7.289 9.236 11.070 13.388 15.086 20.517 

6 .872 1.134 1.635 2.204 3.070 3.828 5.348 7.231 8.558 10.645 12.592 15.033 16.812 22.457 
7 1.239 1.564 2.167 2.833 3.822 4.671 6.346 8.383 9.803 12.017 14.067 16.622 18.475 24.322 
8 1.646 2.032 2.733 3.490 4.594 5.527 7.344 9.524 11.030 13.362 15.507 18.168 20.090 26.125 
9 2.088 2.532 3.325 4.168 5.380 6.393 8.343 10.656 12.242 14.684 16.919 19.679 21.666 27.877 

10 2.558 3.059 3.940 4.865 6.179 7.267 9.342 11.781 13.442 15.987 18.307 21.161 23.209 29.588 

11 3.053 3.609 4.575 5.578 6.989 8.148 10.341 12.899 14.631 17.275 19.675 22.618 24.725 31.264 
12 3.571 4.178 5.226 6.304 7.807 9.034 11.340 14.011 15.812 18.549 21.026 24.054 26.217 32.909 
13 4.107 4.765 5.892 7.042 8.634 9.926 12.340 15.119 16.985 19.812 22.362 25.472 27.688 34.528 
14 4.660 5.368 6.571 7.790 9.467 10.821 13.339 16.222 18.151 21.064 23.685 26.873 29.141 36.123 
15 5.229 5.985 7.261 8.547 10.307 11.721 14.339 17.322 19.311 22.307 24.996 28.259 30.578 37.697 

16 5.812 6.614 7.962 9.312 11.152 12.624 15.338 18.418 20.465 23.542 26.296 29.633 32.000 39.252 
17 6.408 7.255 8.672 10.085 12.002 13.531 16.338 19.511 21.615 24.769 27.587 30.995 33.409 40.790 
18 7.015 7.906 9.390 10.865 12.857 14.440 17.338 20.601 22.760 25.989 28.869 32.346 34.805 42.315 
19 7.633 8.567 10.117 11.651 13.716 15.352 18.338 21.689 23.900 27.204 30.144 33.687 36.191 43.820 
20 8.260 9.237 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 35.020 37.566 45.315 

21 8.897 9.915 11.591 13.240 15.445 17.182 20.337 23.858 26.171 29.615 32.671 36.343 38.932 46.797 
22 9.542 10.600 12.338 13.041 16.314 18.101 21.337 24.939 27.301 30.813 33.924 37.659 40.289 48.268 
23 10.196 11.293 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 35.172 38.968 41.638 49.728 
24 10.856 11.992 13.848 15.659 18.062 19.943 23.337 27.096 29.553 33.196 36.415 40.270 42.980 51.179 
25 11.524 12.697 14.611 16.473 18.940 20.867 24.337 28.172 30.675 34.382 37.652 41.566 44.314 52.620 

26 12.198 13.409 15.379 17.292 19.820 21.792 25.336 29.246 31.795 35.563 38.885 42.856 45.642 54.052 
27 12.879 14.125 16.151 18.114 20.703 22.719 26.336 30.319 32.912 36.741 40.113 44.140 46.963 55.476 
28 13.565 14.847 16.928 18.939 21.588 23.647 27.336 31.391 34.027 37.916 41.337 45.419 48.278 56.893 
29 14.256 15.574 17.708 19.768 22.475 24.577 28.336 32.461 35.139 39.087 42.557 46.693 49.588 58.308 
30 14.953 16.306 18.493 20.599 23.364 25.508 29.336 33.530 36.250 40.256 43.773 47.962 50.892 59.703 

t:j Note: For larger values of df, the expression .fiX! - .j2df - 1 may be used as a normal deviate with unit variance, remembering that the probability for X' corresponds with that of a single tail of the 
~ normal curve. 

(Reproduced from Design and Analysis of Experiments in Psychology and Education (p. 29), by E. F. Lindguist, 1953, Boston: Houghton Mifflin, with the permission of the publisher.) 
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TABLE B.6 

Significance levels of r [from t = r/<N - 2)/(1 - r2)] 

Probability level 

(N - 2) .20 .10 .05 .02 .01 .001 .0001 

1 .951 .988 .997 .9995 .9999 1.000 1.0000 
2 .800 .900 .950 .980 .990 .999 .9991) 
3 .687 .805 .878 .934 .959 .991 .998 
4 .608 .729 .811 .882 .917 .974 .992 
5 .551 .669 .754 .833 .874 .951 .981 

6 .507 .622 .707 .789 .834 .925 .966 
7 .472 .582 .666 .750 .798 .898 .948 
8 .443 .550 .632 .716 .765 .872 .929 
9 .419 .521 .602 .685 .735 .847 .910 

10 .398 .497 .576 .658 .708 .823 .891 

11 .380 .476 .553 .634 .684 .801 .873 
12 .365 .458 .532 .612 .661 .780 .854 
13 .351 .441 .514 .592 .641 .760 .837 
14 .338 .426 .497 .574 .623 .742 .820 
15 .327 .412 .482 .558 .606 .725 .804 

16 .317 .400 .468 .542 .590 .708 .781) 
17 .308 .389 .456 .528 .575 .693 .774 
18 .299 .378 .444 .516 .561 .679 .760 
19 .291 .369 .433 .503 .549 .665 .747 
20 .284 .360 .423 .492 .537 .652 .734 

22 .271 .344 .404 .472 .515 .629 .711 
24 .260 .330 .388 .453 .496 .607 .681) 
25 ;' .255 .323 .381 .445 .487 .597 .671) 
30 .233 .296 .349 .409 .449 .554 .633 
35 .216 .275 .325 .381 .418 .519 .51)6 

40 .202 .257 .304 .358 .393 .490 .564 
45 .190 .243 .288 .338 .372 .465 .537 
50 .181 .231 .273 .322 .354 .443 .513 
55 .172 .220 .261 .307 .338 .424 .41)2 
60 .165 .211 .250 .295 .325 .408 .474 

65 .159 .203 .240 .284 .312 .393 .457 
70 .153 .195 .232 .274 .302 .380 .442 
75 .148 .189 .224 .264 .292 .368 .429 
80 .143 .183 .217 .256 .283 .357 .4lh 
85 .139 .178 .211 .249 .275 .347 .405 

90 .135 .173 .205 .242 .267 .338 .395 
95 .131 .168 .200 .236 .260 .329 .3K5 

100 .128 .164 .195 .230 .254 .321 .37(, 
125 .115 .147 .174 .206 .228 .228 .33K 
150 .105 .134 .159 .189 .208 .264 .310 

175 .097 .124 .148 .174 .194 .248 .2KK 
200 .091 .116 .138 .164 .181 .235 .270 
300 .074 .095 .113 .134 .148 .188 .222 
500 .057 .074 .088 .104 .115 .148 .17.1 

1000 .041 .052 .062 .073 .081 .104 .12.1 
2000 .029 .037 .044 .052 .058 .074 .OK7 
5000 .018 .023 .028 .033 .037 .047 .055 

Note: All P values are two-tailed in this table. (Reproduced, in part, from Statistical Inference (p. 470), by H. M. W"I~rl 
and J. Lev, 1953, New York: Holt, with the permission of the author and publisher; and from Some Extension of Stud,.,,, .. 
t and Pearson~ r Central Distributions, by A. L. Sockloff and J. N. Edney, May 1972, Temple University Measurc",,·,,1 
and Research Center, Technical Report 72-5, with the permission of the first author.) 
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TABLE B.7 

Table of Fisher's z transformation of r 

Second digit of r 

r .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .000 .010 .020 .030 .040 .050 .060 .070 .080 .090 

.1 .100 .110 .121 .131 .141 .151 .161 .172 .182 .192 

.2 .203 .213 .224 .234 .245 .255 .266 .277 .288 .299 
J .310 .321 .332 .343 .354 .365 .377 .388 .400 .412 
.4 .424 .436 .448 .460 .472 .485 .497 .510 .523 .536 
.5 .549 .563 .576 .590 .604 .618 .633 .648 .662 .678 
.11 .693 .709 .725 .741 .758 .775 .793 .811 .829 .848 
.7 .867 .887 .908 .929 .950 .973 .996 1.020 1.045 1.071 
.K 1.099 1.127 1.157 1.188 1.221 1.256 1.293 1.333 1.376 1.422 

Third digit of r 

r .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 

'10 1.472 1.478 1.483 1.488 1.494 1.499 1.505 1.510 1.516 1.522 
'II 1.528 1.533 1.539 1.545 1.551 1.557 1.564 1.570 1.576 1.583 
'12 1.589 1.596 1.602 1.609 1.616 1.623 1.630 1.637 1.644 1.651 
'1.1 1.658 1.666 1.673 1.681 1.689 1.697 1.705 1.713 1.721 1.730 
"·1 1.738 1.747 1.756 1.764 1.774 1.783 1.792 1.802 1.812 1.822 

"~ 1.832 1.842 1.853 1.863 1.874 1.886 1.897 1.909 1.921 1.933 
'/(, 1.946 1.959 1.972 1.986 2.000 2.014 2.029 2.044 2.060 2.076 
'17 2.092 2.109 2.127 2.146 2.165 2.185 2.205 2.227 2.249 2.273 
"K 2.298 2.323 2.351 2.380 2.410 2.443 2.477 2.515 2.555 2.599 

'''' 2.646 2.700 2.759 2.826 2.903 2.994 3.106 3.250 3.453 3.800 

.... '",,.: . b' d 11 (I +r) 
: IS 0 tame as., og, (J _ r)' 

,1C"I,rintcd by permission from Statistical Methods (7th ed.), by George W. Snedecor and William G. Cochran, © 1980, by 
".' IIIwu State University Press, Ames, Iowa 50010.) 
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TABLE B.8 

Table of r equivalents of Fisher's z 

z 

.0 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

Note: 

.00 

.000 

.100 

.197 

.291 

.380 

.462 

.537 

.604 

.664 

.716 

.762 

.800 

.834 

.862 

.885 

.905 

.922 

.935 

.947 

.956 

.964 

.970 

.976 

.980 

.984 

.987 

.989 

.991 

.993 

.994 

.01 

.010 

.110 

.207 

.300 

.389 

.470 

.544 

.611 

.670 

.721 

.766 

.804 

.837 

.864 

.888 

.907 

.923 

.937 

.948 

.957 

.965 

.971 

.976 

.980 

.984 

.987 

.989 

.991 

.993 

.994 

. . e2z -1 
r IS obtamed as e2,+ 1 . 

.02 

.020 

.119 

.216 

.310 

.397 

.478 

.551 

.617 

.685 

.726 

.770 

.808 

.840 

.867 

.890 

.909 

.925 

.938 

.949 

.958 

.965 

.972 

.977 

.981 

.984 

.987 

.989 

.991 

.993 

.994 

.03 

.030 

.129 

.226 

.319 

.405 

.485 

.558 

.623 

.680 

.731 

.774 

.811 

.843 

.869 

.892 

.910 

.926 

.939 

.950 

.959 

.966 

.972 

.977 

.981 

.985 

.987 

.990 

.992 

.993 

.994 

.040 

.139 

.236 

.327 

.414 

.493 

.565 

.629 

.686 

.735 

.778 

.814 

.846 

.872 

.894 

.912 

.928 

.940 

.951 

.960 

.967 

.973 

.978 

.982 

.985 

.988 

.990 

.992 

.993 

.994 

.05 

.050 

.149 

.245 

.336 

.422 

.500 

.572 

.635 

.691 

.740 

.782 

.818 

.848 

.874 

.896 

.914 

.929 

.941 

.952 

.960 

.967 

.973 

.978 

.982 

.985 

.988 

.990 

.992 

.993 

.995 

.06 

.060 

.159 

.254 

.345 

.430 

.508 

.578 

.641 

.696 

.744 

.786 

.821 

.851 

.876 

.898 

.915 

.930 

.942 

.953 

.961 

.968 

.974 

.978 

.982 

.986 

.988 

.990 

.992 

.993 

.995 

.07 

.070 

.168 

.264 

.354 

.438 

.515 

.585 

.647 

.701 

.749 

.790 

.824 

.854 

.879 

.900 

.917 

.932 

.944 

.954 

.962 

.969 

.974 

.979 

.983 

.986 

.988 

.990 

.992 

.994 

.995 

.08 

.080 

.178 

.273 

.363 

.446 

.523 

.592 

.653 

.706 

.753 

.793 

.828 

.856 

.881 

.902 

.919 

.933 

.945 

.954 

.963 

.969 

.975 

.979 

.983 

.986 

.989 

.991 

.992 

.994 

.995 

.09 

.090 

.187 

.282 

.371 

.454 

530 
598 
.658 
.711 
.757 

.797 

.831 

.85') 

.88.1 

.90.1 

.920 

.93·' 

.9411 

.955 

.%.1 

.970 

.975 

.980 

.98.1 

.9811 

.98'1 

.991 

.99~ 

.99·' 

.9'15 

(Reprinted by permission from Statistical Methods (7th ed.), by George W. Snedecor and William G. Cochran, © I'IKO, 
by the Iowa State University Press. Ames, Iowa 50010.) 



TABLE B.9 

Table of random digits 

(K)O 10097 32533 76520 13586 34673 54876 
001 37542 04805 64894 74296 24805 24037 
(Kl2 08422 68953 19645 09303 23209 02560 
(Kl3 99019 02529 09376 70715 38311 31165 
(Kl4 12807 99970 80157 36147 64032 36653 

(KlS 66065 74717 34072 76850 36697 36170 
(Kl6 31060 10805 45571 82406 35303 42614 
(Kl7 85269 77602 02051 65692 68665 74818 
(Klg 63573 32135 05325 47048 90553 57548 
(Kl9 73796 45753 03529 64778 35808 34282 

010 98520 17767 14905 68607 22109 40558 
1111 11805 05431 39808 27732 50725 68248 
012 83452 99634 06288 98083 13746 70078 
lin 88685 40200 86507 58401 36766 67951 
014 99594 67348 87517 64969 91826 08928 

illS 65481 17674 17468 50950 58047 76974 
OIl> 80124 35635 17727 08015 45318 22374 
1117 74350 99817 77402 77214 43236 00210 
IlIH 69916 26803 66252 29148 36936 87203 
019 09893 20505 14225 68514 46427 56788 

1120 91499 14523 68479 27686 46162 83554 
1121 80336 94598 26940 36858 70297 34135 
1122 44104 81949 85157 47954 32979 26575 
112.1 12550 73742 11100 02040 12860 74697 
1124 63606 49329 16505 34484 40219 52563 

112S 61196 90446 26457 47774 51924 33729 
1126 15474 45266 95270 79953 59367 83848 
1127 94557 28573 67897 54387 54622 44431 
112H 42481 16213 97344 08721 16868 48767 
112'1 23523 78317 73208 89837 68935 91416 

cl.\o 04493 52494 75246 33824 45862 51025 
11.11 00549 97654 64051 88159 96119 63896 
11.12 35963 15307 26898 09354 33351 35462 
CI.\.I 59808 08391 45427 26842 83609 49700 
1I.lot 46058 85236 01390 92286 77281 44077 

()I~ 32179 00597 87379 25241 05567 07007 
11.1(, 69234 61406 20117 45204 15956 60000 
11.17 19565 41430 01758 75379 40419 21585 
IIIK 45155 14938 19476 07246 43667 94543 
till) 94864 31994 36168 10851 34888 81553 

(1·111 98086 24826 45240 28404 44999 08896 
c~1I 33185 16232 41941 50949 89435 48581 
CIoI2 g0951 00406 96382 70774 20151 23387 
c~I.1 79752 49140 71961 28296 69861 02591 
c~l.j 18633 32537 98145 06571 31010 24674 
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80959 09117 39292 
20636 10402 00822 
15953 34764 35080 
88676 74397 04436 
98951 16877 12171 

65813 39885 11199 
86799 07439 23403 
73053 85247 18623 
28468 28709 83491 
60935 20344 35273 

60970 93433 50500 
29405 24201 52775 
18475 40610 68711 
90364 76493 29609 
93785 61368 23478 

73039 57186 40218 
21115 78253 14385 
45521 64237 96286 
76621 13990 74400 
96297 78822 54382 

94750 89923 37089 
53140 33340 42050 
57600 40881 22222 
96644 89439 28707 
43651 77082 07207 

65394 59593 42582 
82396 10118 33211 
91190 42592 92927 
03071 12059 25701 
26252 29663 05522 

61962 79335 65337 
54692 82391 23287 
77974 50024 90103 
13021 24892 78565 
93910 83647 70617 

86743 17157 85394 
18743 92423 97118 
66674 36806 84962 
59047 90033 20826 
01540 35456 05014 

39094 73407 35441 
88695 41994 37548 
25016 25298 94624 
74852 20539 00387 
05455 61427 77938 

74945 
91665 
33605 
27659 
76833 

29170 
09732 
88579 
25624 
88435 

73998 
67851 
77817 
11062 
34113 

16544 
53763 
02655 
56418 
14598 

20048 
82341 
06413 
25815 
31790 

60527 
59466 
45973 
46670 
82562 

12472 
29529 
39333 
20106 
42941 

11838 
96338 
85207 
69541 
51176 

31880 
73043 
61171 
59579 
91936 
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TABLE B.9 (continued) 

045 
046 
047 
048 
049 

050 
051 
052 
053 
054 

055 
056 
057 
058 
059 

060 
061 
062 
063 
064 

065 
066 
067 
068 
069 

070 
071 
072 
073 
074 

075 
076 
077 
078 
079 

080 
081 
082 
083 
084 

085 
086 
087 
088 
089 

090 
091 
092 
093 
094 

74029 
54178 
11664 
48324 
69074 

09188 
90045 
73189 
75768 
54016 

08358 
28306 
53840 
91757 
89415 

77513 
19502 
21818 
51474 
99559 

33713 
85274 
84133 
56732 
65138 

38001 
37402 
97125 
21826 
73135 

07638 
60528 
83596 
10850 
39820 

59580 
38508 
30692 
65443 
27267 

91307 
68434 
48908 
06913 
10455 

12883 
21778 
19523 
67245 
60584 

43902 
45611 
49883 
77928 
94138 

20097 
85497 
50207 
76490 
44056 

69910 
03264 
86233 
53741 
92684 

03820 
37174 
59313 
66499 
68331 

48007 
86893 
89640 
16234 
56806 

02176 
96397 
40348 
41134 
42742 

77929 
83441 
35655 
62746 
98952 

06478 
07341 
70668 
95659 
50264 

06991 
94688 
15877 
45197 
16019 

97343 
30976 
59515 
52670 
47377 

77557 
80993 
52079 
31249 
87637 

32825 
51981 
47677 
20971 
66281 

78542 
81333 
81594 
61613 
00397 

86864 
69979 
93278 
68107 
62535 

93584 
11303 
44035 
17395 
87648 

81719 
01304 
87083 
47143 
95719 

03061 
07954 
06958 
99599 
43622 

75569 
23793 
94688 
18288 
13192 

19072 
84473 
54745 
42672 
14210 

65027 
38807 
65122 
35583 
07500 

32270 
37143 
84827 
64710 
91976 

39527 
50654 
26269 
87749 
31003 

42785 
10591 
13628 
62269 
58391 

29901 
20288 
81757 
23621 
24170 

72869 
22970 
52166 
96131 
85261 

11711 
77586 
31417 
34072 
09035 

18072 
19814 
92983 
10507 
63147 

78800 
48763 
16127 
27437 
72294 

24210 
13622 
24591 
78601 
33712 

61184 
36961 
59659 
16563 
37992 

97790 
05335 
59381 
02295 
35584 

04220 
94938 
62290 
90429 
00682 

13661 
40510 
51215 
50263 
12607 

68414 
55210 
05686 
94049 
69777 

51926 
28834 
73852 
10123 
34313 

71602 
56271 
21815 
64638 
85794 

96207 
59175 
05128 
13499 
64421 

88835 
90822 
56196 
49632 
07477 

36699 
62126 
35700 
11883 
91342 

04285 
31649 
86283 
79246 
45134 

17119 
12969 
71539 
36870 
04401 

86304 
81997 
64464 
12272 
27398 

58873 
07893 
90290 
90212 
17646 

82774 
29773 
73156 
91345 
12830 

64721 
34137 
70091 
91622 
65861 

92937 
10086 
39250 
85902 
74296 

44156 
20695 
09719 
06319 
80814 

54486 
97022 
80091 
24041 
44606 

53728 
98408 
04754 
09528 
37821 

01392 
42096 
68258 
86686 
26529 

52527 
56127 
09973 
32307 
10518 

83389 
91870 
27124 
95375 
20714 

04618 
32604 
28466 
55781 
48949 

51908 
74287 
07082 
42836 
74819 

58303 
73515 
61222 
85496 
45875 

74219 
47324 
75237 
49139 
08789 

23821 
05533 
77433 
53075 
43800 

23768 
17719 
82067 
08337 
17985 

28825 
12843 
83824 
63011 
88325 

17974 
63281 
69572 
76463 
26760 

58021 
19255 
33440 
57546 
21615 

87374 
76150 
67018 
05871 
53295 

97553 
60475 
68795 
76514 
72306 

13980 
75251 
85046 
09191 
78142 

29822 
90400 
60561 
57560 
21069 

64049 
62605 
62047 
06441 
88156 

99538 
52139 
53783 
71839 
09351 

06156 
04207 
63400 
65676 
48911 

35793 
82590 
52692 
98901 
80851 

15077 
02023 
13798 
34222 
83637 

80814 
36040 
88461 
15020 
01848 

64278 
68476 
41361 
93823 
07706 

31223 
94119 
77762 
83483 
94541 

72893 
65344 
31853 
08007 
43860 

93174 
71148 
62327 
81604 
85644 

65584 
40030 
15501 
03856 
64691 

04713 
61212 
92301 
06410 
31024 

04111 
95954 
05462 
96299 
97341 

28976 
09815 
54130 
14974 
43667 

90712 
08816 
16435 
26655 
41326 

5174)1 
90324 
2335h 
09994 
7693)1 

58044 
6465'1 
82760 
4317)1 
178l.l 

08420 
01840 
207'11 
4705.~ 

3740)1 

55507 
6741~ 

3845.' 
4544'1 
72)1.\·1 

9397} 
4364.1 
U!42.1 
18)1)10 
4727'1 

496'1)1 
374'\)1 
2957)1 
5455.' 
1920.' 

6699·1 
06455 
5049K 
193h.' 
731/11 

0840K 
49951 
692("1 
90)1.1" 
3(35)1 

6625.' 
931·11, 
551W 
40.14·1 
70X)I I 

2h71,'1 
474·1'1 
915."1 
90)10.' 
441-1-1 
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095 
096 
097 
098 
099 

100 
101 
102 
103 
104 

105 
106 
107 
108 
109 

110 
III 
112 
113 
114 

115 
116 
117 
11K 
119 

120 
121 
122 
11.' 
114 

12~ 

12" 
127 
12K 
12'1 

110 
III 
112 
III 
114 

II~ 

II" 
11"1 
11K 
III) 

1·11/ 
loll 
10I! 

~ loll 

I' .... 

53853 
24637 
83080 
16444 
60790 

03991 
38555 
17546 
32643 
69572 

24122 
61196 
30532 
03788 
48228 

60365 
83799 
32960 
19322 
11220 

31751 
88492 
30934 
22888 
78212 

41849 
46352 
11087 
52701 
57275 

20857 
15633 
92694 
77613 
38688 

25163 
65251 
36815 
64397 
04515 

83761 
14387 
51321 
72472 
05466 

39528 
KI616 
07586 
90767 
40188 

41377 
38736 
12451 
24334 
18157 

10461 
95554 
73704 
52861 
68777 

66591 
30231 
21704 
97599 
63379 

94653 
42402 
07405 
53845 
94747 

57260 
99382 
47744 
48893 
16993 

84547 
33049 
96294 
08337 
36898 

73156 
84924 
48297 
19019 
32486 

01889 
07629 
43625 
11692 
25624 

60873 
06345 
92246 
00008 
55306 

72484 
18711 
16120 
04235 
28193 

36066 
74384 
38992 
36151 
57178 

93716 
32886 
92052 
95819 
39510 

27699 
92962 
10274 
75867 
85783 

35075 
56623 
36409 
57620 
07399 

68980 
14454 
07481 
27499 
35902 

46850 
69248 
14013 
56303 
81304 

70284 
90415 
39904 
88152 
45134 

70014 
37239 
18637 
05327 
95096 

43253 
80854 
80088 
80890 
93128 

82474 
53342 
82641 
13574 
29593 

94850 
89342 
22815 
99073 
65762 

16894 
59780 
46215 
06831 
35905 

06494 
61773 
12202 
20717 
47619 

33949 
34442 
83232 
52606 
37408 

05339 
04504 
83828 
98748 
91386 

52326 
93460 
31792 
87315 
48585 

24326 
93614 
02115 
00080 
63545 

15021 
33295 
37509 
82162 
67946 

84145 
09279 
77074 
18002 
18464 

25593 
44276 
22820 
17200 
88627 

58838 
52623 
07759 
27493 
11161 

66083 
08355 
55121 
00911 
14060 

14845 
41839 
39685 
74416 
53152 

42614 
34994 
99385 
66497 
48509 

15470 
20094 
73788 
60530 
44372 

34677 
45305 
59747 
16520 
68652 

79375 
33521 
59589 
20554 
59404 

41290 
05870 
82444 
20247 
48460 

60833 
43529 
88722 
94813 
74457 

48545 
75122 
92904 
69902 
94972 

73859 
07992 
51777 
70939 
78576 

24653 
60860 
29281 
98936 
40619 

46672 
55382 
23309 
53166 
67433 

29297 
41374 
41600 
68646 
23929 

48355 
98977 
06533 
45128 
15486 

58300 
07521 
67277 
69676 
27376 

95220 
26665 
49067 
91409 
72059 

67312 
01119 
99005 
81759 
85558 

25983 
06318 
56736 
31900 
90561 

35247 
11724 
13141 
63742 
11598 
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49364 
12369 
97377 
85130 
45819 

84609 
29735 
59076 
76355 
29549 

61958 
17267 
10061 
35208 
35663 

01918 
70071 
11133 
78138 
27482 

88651 
74843 
28597 
74022 
65741 

74910 
61318 
76503 
11654 
92852 

01159 
55823 
66821 
96277 
43947 

71857 
92784 
04921 
45197 
15191 

01291 
38384 
66164 
54155 
72848 

18619 
74627 
32392 
78464 
62095 

73331 
18601 
27585 
32552 
52979 

58232 
47762 
07936 
93779 
69616 

77100 
70943 
68829 
33374 
52972 

28316 
14736 
07586 
66559 
45476 

22596 
93413 
20405 
84617 
14014 

64345 
31855 
34513 
99893 
55866 

63267 
47641 
41575 
48257 
51680 

15957 
26340 
73701 
25332 
18782 

41349 
74761 
49431 
83436 
11834 

13674 
73707 
19763 
22501 
36787 

96240 
03742 
51972 
54846 
65130 

88618 
71299 
27954 
80863 
33564 

90899 
78038 
55986 
87539 
16818 

98953 
09958 
15917 
19640 
85244 

03152 
22109 
94205 
82037 
87481 

19325 
14413 
39663 
02181 
88448 

10622 
86225 
49767 
50816 
43852 

68971 
18477 
14707 
83745 
16930 

20368 
41196 
66919 
35352 
79982 

18611 
58319 
61199 
18627 
00441 

43642 
83873 
37867 
54759 
04860 

19161 
23853 
58909 
00514 
60780 

75754 
70267 
66485 
08823 
60311 

73231 
18065 
06253 
99413 
35159 

19121 
78508 
20380 
10268 
37220 

81549 
70951 
77544 
68161 
03584 

48391 
31704 
04037 
97616 
59693 

11403 
65622 
93997 
22567 
33361 

07126 
37480 
31678 
54131 
68416 

19241 
15997 
67940 
90872 
58997 



730 APPENDIXES 

TABLE B.9 (continued) 

145 34414 
146 63439 
147 67049 
148 79495 
149 91704 

150 94015 
151 74108 
152 62880 
153 11748 
154 17944 

155 66067 
156 54244 
157 30945 
158 69170 
159 08345 

160 27767 
161 13025 
162 80217 
163 10875 
164 54127 

165 60311 
166 49739 
167 78626 
168 66692 
169' 44071 

170 41468 
171 94559 
172 41615 
173 50273 
174 41396 

175 25807 
176 06170 
177 60808 
178 80940 
179 19516 

180 49386 
181 06312 
182 60942 
183 92329 
184 77936 

185 38101 
186 39641 
187 84054 
188 47468 
189 43321 

190 64281 
191 66847 
192 72461 
193 21032 
194 95362 

82157 
75363 
09070 
04146 
30552 

46874 
88222 
87873 
12102 
05600 

42792 
91030 
57589 
37403 
88975 

43584 
14338 
36292 
62004 
57326 

42824 
71484 
51594 
13986 
28091 

85149 
37559 
70360 
93113 
80504 

24260 
97965 
54444 
44893 
90120 

54480 
88940 
00307 
98932 
63574 

77756 
69457 
40455 
03577 
31370 

61826 
70495 
33230 
91050 
67011 

86887 
44989 
93399 
52162 
04737 

32444 
88570 
95160 
80580 
60478 

95043 
45547 
31732 
86995 
35841 

85301 
54066 
98525 
90391 
26629 

37301 
92003 
16453 
99837 
07362 

49554 
49678 
64114 
41794 
90670 

71529 
88302 
74412 
10408 
46759 

23604 
15995 
11897 
78284 
31384 

11657 
91339 
99396 
57649 
28977 

18555 
32350 
21529 
13058 
06651 

55087 
16822 
45547 
90286 
21031 

48277 
74015 
59221 
41867 
03343 

52680 
70818 
57260 
90307 
85771 

88977 
15243 
24335 
61105 
19087 

42678 
98086 
94614 
00582 
97703 

17994 
53119 
58660 
86861 
08289 

78920 
98041 
81105 
36222 
71643 

23554 
69321 
92674 
46347 
51924 

13897 
22502 
63680 
63266 
29896 

64937 
02985 
53424 
16218 
16136 

19152 
36024 
94458 
54158 
75051 

59820 
25704 
22304 
17710 
25852 

46780 
59849 
47670 
94304 
08105 

29490 
47724 
24432 
57411 
24472 

45990 
76668 
39014 
81232 
76447 

14924 
70312 
90850 
24781 
40902 

72682 
21443 
01176 
80582 
13177 

21785 
47458 
40405 
71209 
85561 

95889 
92613 
67667 
24700 
76479 

13173 
86716 
92581 
12470 
01016 

00023 
00867 
74284 
34243 
93029 

96163 
91035 
90314 
59621 
58905 

56487 
96169 
07654 
71803 
59987 

69714 
66733 
24896 
06368 
88779 

43242 
73209 
97066 
44987 
42537 

39650 
05682 
64618 
89683 
05069 

07385 
41808 
28838 
71944 
55292 

41101 
64809 
68032 
92061 
29671 

57067 
89719 
60631 
71594 
68562 

33365 
38746 
02262 
56500 
00857 

12302 
76378 
05041 
46978 
47665 

64654 
01755 
72877 
06554 
57216 

09971 
61459 
46376 
26825 
87112 

73035 
47431 
43277 
53856 
30540 

17374 
59202 
83012 
09504 
98524 

95294 
66986 
80620 
55411 
95083 

90726 
68984 
36421 
92638 
21036 

91178 
98189 
96717 
39448 
58137 

47648 
11947 
69181 
14004 
62342 

78851 
26313 
78438 
15292 
55018 

80783 
41605 
49807 
35482 
64382 

25843 
14750 
17334 
07850 
39618 

59481 
21647 
25366 
05511 
21476 

41207 
43905 
58874 
30743 
27886 

52003 
11973 
09832 
96412 
97831 

00566 
34099 
51790 
85667 
06783 

57166 
83620 
16489 
40333 
82808 

10174 
81851 
54244 
93136 
17820 

13885 
56203 
96845 
23153 
07589 

16499 
77463 
66276 
76139 
56374 

32624 
65961 
20288 
59362 
99782 

41145 
48968 
39283 
73950 
49856 

37006 
87417 
94746 
12459 
14713 

74699 
31048 
11466 
08670 
61732 

70707 
02902 
25571 
90193 
65704 

70481 
74474 
11436 
77535 
28102 

98884 
89747 
18059 
67054 
77501 

29420 
29651 
10701 
25722 
22751 

70669 
19324 
38525 
69249 
08899 

87064 
55387 
18396 
59526 
35824 

68691 
7348K 
34060 
9593K 
9347K 

42820 
38603 
04149 
79552 
99326 

221K6 
1719M 
495KO 
91314 
711KI 

09310 
56699 
160H2 
84741 
75454 

70214 
33250 
77628 
79568 
09514 

06905 
20740 
38072 
99H92 
57816 

085H.1 
988M2 
51061 
16067 
97427 

90438 
84215 
41393 
08564 
36518 

93406 
20504 
116lKl 
05747 
059M5 

13075 
126M I 
73S.1H 
52113 
7170M 
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195 49712 
196 58275 
197 89514 
198 15472 
199 12120 

200 19612 
201 39141 
202 64756 
203 92901 
204 03551 

205 98884 
206 27369 
207 59066 
208 91647 
209 83605 

210 24895 
211 35720 
212 14141 
213 27416 
214 85071 

215 21445 
216 72513 
217 71479 
21K 83210 
219 68749 

220 05184 
221 13651 
222 00566 
223 50958 
224 57621 

225 09282 
226 23394 
227 05280 
121! 95491 
229 78521 

l,IO 96345 
VI 77963 
H2 07520 
2.\.1 38423 
H4 02463 

!.I5 15880 
Bt. 71926 
1,\7 64425 
HI! 79782 
1\<1 35337 

NO 05249 
241 56463 
142 96296 
24.\ 98380 
144 52567 

97380 
61764 
11788 
50669 
86124 

78430 
77400 
80457 
51878 
90070 

66209 
86882 
75974 
93783 
92419 

88530 
26556 
53410 
75670 
07429 

82793 
76400 
45027 
51466 
95148 

75763 
62546 
21220 
17695 
64547 

25844 
94206 
37470 
97976 
00104 

44579 
31151 
11294 
02309 
65533 

92261 
00819 
28108 
23924 
74538 

29329 
99380 
33121 
36269 
64350 

10404 
97586 
68224 
48139 
51247 

11661 
28000 
08747 
56441 
09483 

06830 
53473 
63335 
64169 
39542 

70774 
95596 
38649 
92176 
81007 

24831 
52225 
76160 
09088 
94897 

47075 
96892 
00292 
58072 
46850 

79139 
93432 
93622 
38306 
18248 

85932 
32364 
23238 
70703 
21199 

17292 
59144 
16554 
49440 
44553 

19715 
38793 
54196 
60014 
16315 

55452 
54716 
23417 
36732 
44302 

94770 
64238 
12836 
22998 
94050 

53656 
07541 
20483 
49022 
07772 

35439 
20094 
06343 
72535 
47749 

93241 
92348 
57411 
50395 
78636 

88158 
25240 
24069 
68990 
37981 

78435 
37836 
04345 
32192 
75583 

44053 
91691 
01748 
85736 
60555 

88190 
00224 
16016 
30432 
64672 

!>4082 
85774 
34108 
07201 
53969 

34030 
50259 
73959 
46874 
60883 

77603 
73258 
03469 
29718 
45938 

14663 
53633 
43514 
98588 
71568 

46758 
73750 
57256 
93119 
40744 

14199 
62308 
13780 
26743 
96750 

05313 
47511 
25072 
60329 
38527 

35428 
94919 
15092 
82639 
90326 

75704 
47357 
41690 
46148 
33928 

61781 
30570 
00042 
81077 
90960 

14738 
19056 
75814 
62448 
80395 

60726 
46345 
76145 
37088 
52109 

65669 
71794 
50678 
38447 
18135 

56346 
70863 
37481 
09495 
75673 

70472 
85788 
61342 
56077 
54974 

76268 
98481 
13632 
05306 
09024 

53439 
58483 
29519 
95955 
09037 

43561 
26846 
19510 
54624 
50785 

20840 
40338 
67328 
14258 
01817 

48898 
90194 
83229 
31543 
41849 

86667 
13939 
85986 
46385 
81114 
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75211 
87195 
30342 
73465 
21437 

86868 
31340 
03274 
06453 
36908 

71430 
03748 
58278 
49829 
35185 

70207 
34264 
72709 
06886 
23336 

70883 
29744 
52308 
21706 
94538 

14908 
87342 
52548 
71586 
64756 

69799 
02555 
18094 
72434 
54034 

86583 
23435 
54814 
29236 
07396 

92525 
18329 
10333 
95216 
93865 

43708 
46062 
71171 
42175 
54358 

10271 
46092 
42077 
09819 
36786 

12665 
26256 
43423 
25311 
43321 

04909 
12822 
26967 
59068 
89759 

92675 
01703 
75318 
18244 
88821 

68002 
33165 
77762 
70001 
91143 

08830 
78818 
54091 
63417 
03324 

63314 
74410 
16613 
92606 
66251 

83944 
24065 
37777 
12152 
89215 

21283 
06999 
36168 
64865 
44608 

66354 
27647 
15102 
88350 
64578 

36633 
26787 
11049 
58869 
49226 

30012 
66453 
66677 
07565 
11073 

19818 
19360 
49325 
38831 
44901 

91623 
46833 
90379 
92344 
53841 

03829 
33141 
88874 
99439 
96693 

60096 
07855 
21282 
35947 
04986 

12991 
94915 
78234 
23191 
35774 

52456 
08458 
10057 
05088 
30722 

88581 
26857 
65617 
13658 
93176 

93692 
66146 
28992 
46182 
47269 

68424 
60939 
72049 
35220 
77837 

75989 
37016 
82556 
53771 
51803 

05707 
49088 
43951 
04838 
74291 

61245 
65248 
37562 
31374 
10536 

17443 
61020 
33697 
80767 
61886 

21551 
39269 
21296 
67807 
83666 

93516 
48199 
50001 
74693 
14692 

73766 
95366 
42332 
65825 
22102 

60098 
19238 
94834 
51081 
34851 

25527 
63210 
63165 
49126 
15747 
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TABLE B.9 (continued) 

245 78498 90830 25955 99236 43286 91064 
246 49553 24241 08150 89535 08703 91041 
247 32151 07075 83155 10252 73100 88618 
248 11314 50363 26860 27799 49416 83534 
249 12364 71210 87052 50241 90785 97889 

250 59467 58309 87834 57213 37510 33689 
251 73452 17619 56421 40725 23439 41701 
252 27635 56293 91700 04391 67317 89604 
253 86040 02596 01655 09918 45161 00222 
254 52403 94255 26351 46527 68224 91083 

255 49465 46581 61499 04844 94626 02963 
256 94365 92560 12363 30246 02086 75036 
257 34261 08769 91830 23313 18256 28850 
258 37110 66538 39318 15626 44324 82827 
259 83950 45424 72453 19444 68219 64733 

260 61630 97966 76537 46467 
261 01929 17165 12037 74558 
262 41659 39098 23982 29899 
263 32031 39608 75992 73445 
264 90043 93478 58044 06949 

265 79418 14322 91065 07841 
266 85447 61079 96910 72906 
267 86219 81115 49625 48799 
268 ~ 71712 88559 92476 32903 
269 29776 63075 13270 84758 

270 
271 
272 
273 
274 

275 
276 
277 
278 
279 

280 
281 
282 
283 
284 

285 
286 
287 
288 
289 

290 
291 
292 
293 
294 

81488 
51667 
99004 
68656 
38074 

01020 
86379 
48498 
41800 
63026 

88298 
07839 
73298 
12829 
76569 

41665 
58652 
13607 
55715 
04110 

31300 
26225 
07158 
71251 
29991 

17340 
37589 
70322 
66492 
74083 

80680 
74508 
09938 
95363 
96712 

15489 
62735 
51108 
70474 
61072 

41339 
49983 
00657 
26203 
66683 

08681 
97543 
82763 
25572 
96526 

74154 
87147 
60832 
35933 
09337 

59328 
33579 
44420 
54142 
79883 

16030 
99218 
48717 
00838 
48568 

62106 
01669 
76173 
65933 
99001 

58068 
37044 
25072 
79771 
02820 

42801 
24743 
76636 
52293 
07965 

08712 
77114 
13484 
17482 
39225 

42480 
25624 
92926 
50385 
36491 

44203 
27464 
43357 
51087 
09796 

44115 
07494 
38478 
93328 
91659 

30942 07479 
16250 71750 
71594 77979 
01317 50525 
31176 88370 

36130 86602 
07361 84338 
89485 24855 
68009 58417 
49560 10317 

27917 
48023 
56907 
47953 
65047 

48190 
92955 
52319 
32705 
52653 

15372 
02547 
75705 
91711 
22587 

06732 
79553 
77334 
98234 
47349 

40064 
85778 
57782 
66927 
12818 

89792 
06325 
56534 
95495 
36871 

45332 
23085 
58875 
60564 
69549 

38781 
27445 
89787 
80370 
44363 

76111 
52855 
24140 
40625 
65003 

77879 
35345 
75291 
54069 
96356 

99969 95144 64424 
77323 81079 45127 
23891 87418 45417 
19187 08059 76677 
81399 58130 64439 

01259 62486 56320 
93223 41682 45026 
73020 69853 61517 
54577 74821 47335 
85057 72310 34963 

41482 83879 44942 
88620 91088 67691 
37639 92748 57791 
08782 65960 58167 
94088 62006 89985 

77377 
936!!6 
2026M 
02110 
05614 

46265 
47505 
51207 
085!!2 
83462 

61915 
67762 
7132K 
01305 
36936 

67971 14558 22458 3514K 
55546 29693 94984 377M2 
54477 13764 17315 721l!).1 
87313 45191 30214 19769 
50274 83987 45316 38551 

10659 40859 00964 71577 
34114 52096 66715 51091 
13684 68433 70595 70 \02 
87962 11787 16644 72964 
28778 23006 31036 8490(, 

62604 
79794 
72615 
95304 
59015 

27284 
92824 
02012 
12505 
36693 

71995 
69187 
96114 
56504 
39592 

79840 
25988 
53860 
45545 
66524 

23965 
61115 
62155 
58752 
49499 

62234 
35889 
46288 
50009 
21769 

31287 
03054 
88591 
40954 
59822 

77438 
55749 
99902 
56857 
61546 

67999 
18087 
02906 
63563 
81970 

69019 
92498 
52056 
26624 
01507 

13124 
13255 
36788 
83464 
30398 

66011 
25242 
52500 
46174 
22684 

91161 
32322 
37749 
80906 
90181 

32231 
38052 
89863 
89148 
71262 

73985 
49737 
04786 
50463 
40223 

76471 
04925 
931% 
2860K 
44!!55 

093711 
16322 
95795 
64130 
31661 

10192 
15504 
96305 
090lK 
3734M 

76!!6'1 
1752'1 
44651 
825MI 
1447'1 

1945.1 
645')11 
115K~ 

77361 
09171 
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TABLE B.9 (continued) 

295 83642 21057 02677 09367 38097 16100 19355 06120 15378 56559 
296 69167 30235 06767 66323 78294 14916 19124 88044 16673 66102 
297 86018 29406 75415 22038 27056 26906 25867 14751 92380 30434 
298 44114 06026 97553 55091 95385 41212 37882 46864 54717 97038 
299 53805 64150 70915 63127 63695 41288 38192 72437 75075 18570 

Note: Reprinted from A Million Random Digits with 100,000 Normal Deviates, by the Rand Corporation, 1955, New York: 
Free Press, with the permission of the Rand Corporation and the publisher. 

TABLE B.10 

Significance levels of p, the Spearman Rank-Correlation 
Coefficient 

N .10 .05 .02 .01 .001 

4 1.000 

5 .900 1.000 1.000 

6 .829 .886 .943 1.000 

7 .714 .786 .893 .929 1.000 

K .643 .738 .833 .881 .976 

l) .600 .700 .783 .833 .933 

10 .564 .648 .745 .794 .903 

II .536 .618 .709 .755 .873 

12 .503 .587 .678 .727 .846 

n .484 .560 .648 .703 .824 

14 .464 .538 .626 .679 .802 

15 .446 .521 .604 .654 .779 

16 .429 .503 .582 .635 .762 

Not(,: All p values are two-tailed in this table. For N greater than 16 see Table B.6. 

I Rl'produced from Biostatistical Analysis (2d ed., p. 577), by J. H. Zar, 1984, Englewood 
('I ill's, NJ: Prentice-Hall, with the permission of the author and publisher.) 



APPENDIX B 
TABLE B.ll 

Significance levels of Fmax = S!nax/S!nin in a set of k independent variances, each based on n - 1 degrees of freedom 

~ n~ 2 3 4 6 
-J 

8 9 10 11 12 5 7 

2 39.0 87.5 142. 202. 266. 333. 403. 475. 550. 626. 704. 
199. 448. 729. 1036. 1362. 1705. 2063. 2432. 2813. 3204. 3605. 

3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104. 114. 124. 
47.5 85. 120. 151. 184. 216. 249. 281. 310. 337. 361. 

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4 
23.2 85. 49. 59. 69. 79. 89. 97. 106. 113. 120. 

5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9 
14.9 22. 28. 33. 38. 42. 46. 50. 54. 57. 60. 

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 
11.1 15.5 19.1 22. 25. 27. 30. 32. 34. 36. 37. 

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8 
8.89 12.1 14.5 16.5 18.4 20. 22. 23. 24. 26. 27. 

8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7 
7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21. 

9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 
6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6 

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34 
5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48 
4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6 

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93 
4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0 

20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59 
3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9 

30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39 
2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2 

60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36 
1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7 

x 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

'flirr~ ":""w ~ ~ ..... .a. ~.~ ..::.r.1 :m ftIr :.- ~, 'DIi" ... ~ ~, ..... IIIl ". 



TABLE B.1l 
Significance levels of Cochran's g = Sk/r.S2 in a set of k independent variances, each based on n - 1 degrees of freedom 

~ 2 3 4 5 6 7 8 9 10 15 20 

1 .9985 .9669 .9065 .8412 .7808 .7271 .6798 .6385 .6020 .4709 .3894 
.9999 .9933 .9676 .9279 .8828 .8376 .7945 .7544 .7175 .5747 .4799 

2 .9750 .8709 .7679 .6838 .6161 .5612 .5157 .4775 .4450 .3346 .2705 
.9950 .9423 .8643 .7885 .7218 .6644 .6152 .5727 .5358 .4069 .3297 

3 .9392 .7977 .6841 .5981 .5321 .4800 .4377 .4027 .3733 .2758 .2205 
.9794 .8831 .7814 .6957 .6258 .5685 .5209 .4810 .4469 .3317 .2654 

4 .9057 .7457 .6287 .5441 .4803 .4307 .3910 .3584 .3311 .2419 .1921 
.9586 .8335 .7212 .6329 .5635 .5080 .4627 .4251 .3934 .2882 .2288 

5 .8772 .7071 .5895 .5065 .4447 .3974 .3595 .3286 .3029 .2195 .1735 
.9373 .7933 .6761 .5875 .5195 .4659 .4226 .3870 .3572 .2593 .2048 

6 .8534 .6771 .5598 .4783 .4184 .3726 .3362 .3067 .2823 .2034 .1602 
.9172 .7606 .6410 .5531 .4866 .4347 .3932 .3592 .3308 .2386 .1877 

7 .8332 .6530 .5365 .4564 .3980 .3535 .3185 .2901 .2666 .1911 .1501 
.8988 .7335 .6129 .5259 .4608 .4105 .3704 .3378 .3106 .2228 .1748 

8 .8159 .6333 .5175 .4387 .3817 .3384 .3043 .2768 .2541 .1815 .1422 
.8823 .7107 .5897 .5037 .4401 .3911 .3522 .3207 .2945 .2104 .1646 

9 .8010 .6167 .5017 .4241 .3682 .3259 .2926 .2659 .2439 .1736 .1357 
.8674 .6912 .5702 .4854 .4229 .3751 .3373 .3067 .2813 .2002 .1567 

16 .7341 .5466 .4366 .3645 .3135 .2756 .2462 .2226 .2032 .1429 .1108 
.7949 .6059 .4884 .4094 .3529 .3105 .2779 .2514 .2297 .1612 .1248 

36 .6602 .4748 .3720 .3066 .2612 .2278 .2022 .1820 .1655 .1144 .0879 
.7067 .5153 .4057 .3351 .2858 .2494 .2217 .1992 .1811 .1251 .0960 

144 .5813 .4031 .3093 .2513 .2119 .1833 .1616 .1446 .1308 .0889 .0675 
.6062 .4230 .3251 .2644 .2229 .1929 .1700 .1521 .1376 .0934 .0709 

~ 
til 

Note: The upper value in each cell is the .05 level; the lower value is the .01 level. 

(Reproduced from Statistical Principles in Experimental Design (2d ed) (p. 876), by B. J. Winer, 1971, New York: McGraw-Hili, with the permission of the author and publisher.) 

g XION3ddV 
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TABLE B.13 

Arcsin transformation (a = 2 arcsin vX) 

X a X a X a X a X a 

.001 .0633 .041 .4078 .36 1.2870 .76 2.1177 .971 2.7993 

.002 .0895 .042 .4128 .37 1.3078 .77 2.1412 .972 2.8053 

.003 .1096 .043 .4178 .38 1.3284 .78 2.1652 .973 2.811 5 

.004 .1266 .044 .4227 .39 1.3490 .79 2.1895 .974 2.8177 

.005 .1415 .045 .4275 .40 1.3694 .80 2.2143 .975 2.8240 

.006 .1551 .046 .4323 .41 1.3898 .81 2.2395 .976 2.8305 

.007 .1675 .047 .4371 .42 1.4101 .82 2.2653 .977 2.8371 

.008 .1791 .048 .4418 .43 1.4303 .83 2.2916 .978 2.843X 

.009 .1900 .049 .4464 .44 1.4505 .84 2.3186 .979 2.8507 

.010 .2003 .050 .4510 .45 1.4706 .85 2.3462 .980 2.857X 

.011 .2101 .06 .4949 .46 1.4907 .86 2.3746 .981 2.8650 

.012 .2195 .07 .5355 .47 1.5108 .87 2.4039 .982 2.8725 

.013 .2285 .08 .5735 .48 1.5308 .88 2.4341 .983 2.8801 

.014 .2372 .09 .6094 .49 1.5508 .89 2.4655 .984 2.8879 

.015 .2456 .10 .6435 .50 1.5708 .90 2.4981 .985 2.8960 

.016 .2537 .11 .6761 .51 1.5908 .91 2.5322 .986 2.9044 

.017 .2615 .12 .7075 .52 1.6108 .92 2.5681 .987 2.9131 

.018 .2691 .13 .7377 .53 1.6308 .93 2.6062 .988 2.9221 

.019 .2766 .14 .7670 .54 1.6509 .94 2.6467 .989 2.9315 

.020 .2838 .15 .7954 .55 1.6710 .95 2.6906 .990 2.9413 
,!' 

.021 .2909 .16 .8230 .56 1.6911 .951 2.6952 .991 2.9516 

.022 .2978 .17 .8500 .57 1.7113 .952 2.6998 .992 2.9625 

.023 .3045 .18 .8763 .58 1.7315 .953 2.7045 .993 2.9741 

.024 .3111 .19 .9021 .59 1.7518 .954 2.7093 .994 2.9865 

.025 .3176 .20 .9273 .60 1.7722 .955 2.7141 .995 3.0001 

.026 .3239 .21 .9521 .61 1.7926 .956 2.7189 .996 3.0150 

.027 .3301 .22 .9764 .62 1.8132 .957 2.7238 .997 3.0320 

.028 .3363 .23 1.0004 .63 1.8338 .958 2.7288 .998 3.0521 

.029 .3423 .24 1.0239 .64 1.8546 .959 2.7338 .999 3.07X3 

.030 .3482 .25 1.0472 .65 1.8755 .960 2.7389 

.031 .3540 .26 1.0701 .66 1.8965 .961 2.7440 

.032 .3597 .27 1.0928 .67 1.9177 .962 2.7492 

.033 .3654 .28 1.1152 .68 1.9391 .963 2.7545 

.034 .3709 .29 1.1374 .69 1.9606 .964 2.7598 

.035 .3764 .30 1.1593 .70 1.9823 .965 2.7652 

.036 .3818 .31 1.1810 .71 2.0042 .966 2.7707 

.037 .3871 .32 1.2025 .72 2.0264 .967 2.7762 

.038 .3924 .33 1.2239 .73 2.0488 .968 2.7819 

.039 .3976 .34 1.2451 .74 2.0715 .969 2.7876 

.040 .4027 .35 1.2661 .75 2.0944 .970 2.7934 

Note: Reproduced from Statistical Principles in Experimental Design (2d ed.) (p. 872), by B. J. Winer, 1971, New Yurk: 
McGraw-Hill, with the permission of the author and publisher. 



GLOSSARY OF CONCEPTS AND TERMS 

A-B design Simplest single-case design, in which the dependent variable is measured throughout the 
pretreatment or baseline period (the A phase) and the treatment period (the B phase). 
A-B-A design Single-case design in which there are repeated measures before the treatment (the A 
phase), during the treatment (the B phase), and then with the treatment withdrawn (the final A phase). 
A-B-A-B design Single-case design in which two types of occasions (B to A and A to B) are used to 
demonstrate the effects of the treatment variable, where A is the no-treatment baseline and B is the 
Ireatment phase. 
A-B-A-B-A design Single-case design in which there are repeated measures before, during, and after 
Ireatment (the B phase). 
A-B-BC-B design Single-case design in which there are repeated measures before the introduction of 
Ihe treatments (the A phase), then during Treatment B, during the combination of Treatments Band C, 
und, finally, during Treatment B alone; the purpose of the design is to tease out the effect of B both in 
combination with C and apart from C. 
II priori method Reasoning from cause to effect, or from a general to a particular instance, independent 
of any scientific observation (one of Charles Sanders Peirce's "methods for the fixation of belief'). 
IIbscissa The horizontal axis of a distribution. 
IIbsolute values Values not taking their signs (+ or -) into account. 
IIccidentaI plagiarism Unwittingly falling into plagiarism. 
IIcquiescent response set The tendency of individuals to go along with any request or attitudinal 
slalement. 
IIction research Research with the objective of promoting social change. 
IIctlve deception (deception by commission) The active misleading of the research participants, such as 
lIiving them false information about the purpose of the study, or having them unwittingly interact with 
confederates. 
lid hoc hypotbesis A conjecture or speculation developed on the spot to explain a particular result. 
IIdditive model The components sum to the group means in ANOVA. 
IIl'llthetics A sense of the beautiful; just as art is grounded in beauty, scientists are conscious of the aes­
Ihelics of their theoretical and mathematical propositions. 
litter-only design A standard experimental design in which subjects' reactions are measured only after 
Ihe Ireatment has been administered. 
IIl1llregating sources of variance Combining terms that are sufficiently similar, with the similarity 
"elined as, for example, F < 2. 
IIlertlng correlation (TaierUng) The correlation between group means and contrast (A) weights. 
IIlllebraic values Values taking their signs (+ or -) into account. 
,Uas A source of variation completely confounded with another. 

737 
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alpha (a) Probability of a Type I error, this term is typically used when the p value is stated in advance 
in null hypothesis significance testing. 
alpha coefficient A measure of internal-consistency reliability, also termed Cronbach's alpha (after 
Lee J. Cronbach). 
alternate-form reliability The correlation between two forms of a test with different items that are 
measuring the same attribute; also termed equivalent-forms reliability. 
alternative hypothesis (HI) The working hypothesis or the experimental hypothesis (that is, as opposed 
to the null hypothesis). 
analogical rhetoric or thinking Yisualizing one thing in terms of another. 
analysis of covariance (ANCOYA) Analysis of variance with the dependent variable adjusted for one 
or more covariates or predictor variables. 
analysis of variance (ANOYA) Subdivision of the total variance of a set of scores into its components. 
ANOYA Analysis of variance. 
antirealism The doctrine that scientific theories do not give a literally true account of the world, a view 
associated with Pierre Duhem, Thomas Kuhn, and Imre Lakatos. See also realism. 
"anything-goes" view of science Paul Feyerabend's radical philosophical view that successful empiric<l1 
science relies on more than one "trick," and that these tricks cannot always be articulated by the 
researchers themselves. 
APA code A popular expression referring to the ethical guidelines codified by the American Psychological 
Association. 
APA publication manual Publication Manual of the American Psychological Association. 
archives Relatively permanent repositories of data or material, including running records, personal 
documents, and episodic records. 
arcsin transformation Transformation for proportions making equal differences equally detectable. 
area probability sampling A type of survey sampling in which the subclasses are geographic areas. 
ARIMA See Box-Jenkins procedure. 
arithmetic mean (M) Arithmetic average. 
Armor's theta David 1. Armor's index of test reliability based on the eigenvalue of the first (unrotateli) 
principal component. 
artifact A specific threat to validity, or a confounded aspect of the scientist's observations. 
asymmetrical distribution A distribution of scores in which there is not an exact correspondence in 
arrangement on the opposite sides of the middle line. 
attenuation Reduction. 
Aufforderungscharakter Demand value. See also demand characteristics. 
authority method See method of authority. 
autocorrelation The relation of observations or measures to one another. See also regular 
autocorrelation and seasonal autocorrelation. 
autoethnography The ethnographic investigation of one's own culture. 
autonomy The person's "independence," in the context of research ethics; also refers to a prospective 
participant's right as well as ability "to choose" whether to participate in the study or to continue in the 
study. 
average deviation The average distance from the mean of all scores. 
average error An index of the variability of a set of data around the most typical value. 
back-to-back box plots Box plots summarizing back-to-back stem-and-leaf displays. 
back-to-back stem-and-Ieaf chart The back-to-back plots of distributions in which the original data all' 

preserved with any desired precision. 
back-translation See translation and back-translation. 
bar chart A histogram; a graphic display of the distribution of data. 
baseline A comparison base, also called a behavioral baseline in single-case experimental research. 
Bayesian estimation A nonimputational procedure for dealing with missing data. 
before-after design A design in which the subjects' reactions are measured both before and after the 
experimental treatment, or both at the beginning and at the end of the experiment. 
behavior Comportment, or what someone does or how someone acts. 
behavior control The shaping of learned behavior based on a particular schedule of reinforcement 
designed to elicit the behavior in question. 
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behavioral baseline A comparison base, usually operationally defined as the continuous, and continuing, 
behavior or performance of a single unit in single-case experimental research. 
behavioral diaries Data collection method in which the research participant keeps an account of events 
at the time they occur. 
behavioral research The empirical investigation of motivation, cognition, emotion, and behavior. 
behavioral sampling Periodic observation of the behavior of interest. 
behavioral science A general term that encompasses scientific disciplines in which empirical inquiry is 
used to study motivation, cognition, emotion, and behavior (including social science, such as social and 
developmental psychology). 
behaviorism A movement in which the idea was that the behavioral sciences should focus on the study 
of the relations among observable stimuli and responses; also called methodological behaviorism and 
pure empiricism when cognitive functioning is disallowed as a legitimate area of scientific analysis. 
Belmont Report A report developed by a national commission in 1974 to protect the rights and welfare 
of participants in biomedical and behavioral research, named after the Smithsonian Institution's Belmont 
Conference Center in Washington, DC (where these discussions were held). 
beneficence The "doing of good," which is one of the guidelines of the APA code. 
BESD See binomial effect-size display. 
BESD-based OR The BESD standardized odds ratio. 
BESD-based RD The BESD standardized risk difference. 
BESD-based RR The BESD standardized risk ratio for relative risk. 
beta (13) Probability of a Type II error. 
between-subjects designs Design in which the sampling units are exposed to one treatment each. 
hias Net systematic error. 
bimodal A distribution showing two modes. 
hinomial effect-size display (BESD) A standardized procedure for the display of an effect size 
correlation of any magnitude, where row and column totals are set at 100. 
hinomial effect-size r Effect size index for interpreting contrasts. 
hiosocial experimenter effects Experimenter-related artifacts that are a function of biosocial attributes 
of the researcher. 
hipolar rating scales Rating scales in which the ends of the scales are extreme opposites. 
Ilirge's ratio A reliability coefficient that gives an estimate of the degree to which the measurement 
estimates differ from one another by more than random errors. 
hlind controls Control group participants who are not made aware of their status as members of the 
control condition. 
hlind experimenters Researchers who are kept unaware of which participants will be assigned to the 
l'xperimental and control conditions, 
hlocking Subdividing sampling units into meaningful classes. 
nonferroni procedure Redefining the alpha level of significance to protect against post hoc selection of 
the largest effects. 
hootstrap Computer-generated resampling procedure more versatile than the jackknife, but usually more 
I', IInputer -intensive. 
no x-Jenkins procedure Statistical method used to assess an underlying model of serial effects in an 
IIIterrupted time-series design; called ARIMA, for autoregressive integrated moving average. 
hox plots or box graph Graphic displays of five or more numbers summarizing characteristics of a 
,Ii,tribution. 
"hucket theory" of science Karl Popper's characterization of the verifiability principle of logical 
positivism, or the idea that the wine of knowledge is presumed to flow pure and simple from patiently 
II lid industriously gathered facts. 
huilt-in contrasts Contrasts that are obtained as a natural consequence of an experimental design, such 
,1\ any source of variance in a 2k factorial design (not including error terms), or any other effect with a 
'Ingle df 
\'llIulIlical correlation Correlation between two or more predictor variables and two or more dependent 
variables. 
"lltcgorical responses Judgments or ratings using categories of responses. 
,'ouslll inference The act or process of inferring that X causes Y. 
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causal relations A relation implied between a cause and an effect. 
causation The relation of cause to effect. 
causism Implying a causal relationship where none has been established on the basis of the available 
data. 
ceiling The maximum score attainable on a test or scale. 
ceiling effect The limitation of the amount of change that can be produced; this limit is dictated by the 
upper boundary of the measure. 
central tendency The location of the bulk of a distribution; measured by means, medians, modes, and 
trimmed means. 
central tendency bias A type of response set in which the respondent is reluctant to give extreme 
ratings and instead rates in the direction of the mean of the total group. 
certificate of confidentiality A formal agreement between the investigator and the government agency 
sponsoring the research that requires the investigator to keep the data confidential. 
characteristic root Sum of squared factor loadings. 
checklists Method of counting the frequency of occurrence. 
chi-square (X2) A statistic used to test the degree of agreement between the frequency data actually 
obtained and the frequencies expected under a particular hypothesis (e.g., the null hypothesis). 
chi-square corner-cells test Chi-square test performed on the four corners of a table of counts. 
closed items Questions with fixed options; also described as structured or fixed-response items. 
cluster analysis Formal procedure for grouping variables or sampling units. 
clusters See strata. 
coefficient of correlation Index of association, typically Pearson r or a related product-moment 
correlation. 
coefficient of determination (r) Proportion of variance shared by two variables. 
coefficient of equivalence The correlation between scores on different (alternate) forms of a measuring 
insn-ument that was administered to the same people at approximately the same time. 
coefficient of nondetermination Proportion of variance "not accounted for" (k2, or I - r). 
Cogito ergo sum "I think, therefore I am," the philosophical principle of Rene Descartes. 
Cohen's d An index of effect size in z-score-like terms, defined as a ratio of the difference between two 
means divided by the pooled population standard deviation. 
Cohen'sf Effect size index for use in Jacob Cohen's power tables for F tests of significance. 
Cohen's g The raw difference between an observed proportion and .50. 
Cohen's h The difference between two arcsin-transformed population proportions. 
Cohen's kappa (K) See kappa. 
Cohen's q The difference between two Fisher Zr transformed r values. 
Cohen's w Effect size index for use in Jacob Cohen's power tables for chi-square tests of significance. 
coherence The extent to which things (e.g., components of a theory or hypothesis) "stick together" 
logically. 
cohort A collection of individuals who were born in the same period. 
cohort-sequential design A design in which several cohorts are studied, with the initial measurements 
taken in successive years. 
cohort table The basic data of a cohort-sequential study. 
column effects Column means minus grand mean. 
combined category chi-square test Chi-square test performed on redefined tables of counts in which 
adjacent rows, columns, or both have been meaningfully combined. 
complex multiple partial correlation Canonical correlation performed on variables from which the 
effects of third-party variables have been removed. 
component loading See factor loadings. 
composite reliability The aggregate reliability of two or more items or judges' ratings. 
concealed measurement The use of hidden measurements, such as a hidden recording device that 
eavesdrops on conversations. 
conceptual definitions See theoretical definition. 
concurrent validity The extent to which test results are correlated with some criterion in the present. 
confidence The probability of not making a Type I error. 
confidence interval Region in which a population parameter is likely to be found. 
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confidentiality Protection of research participants' or survey respondents' disclosures against 
unwarranted access. 
confirmatory data analysis Analysis of data for the purpose of testing hypotheses. 
confounded Mixed or confused. 
confounded hypotheses (in panel designs) The inability to separate the effect attributed to one hypoth­
esis from the effect attributed to another hypothesis in cross-lagged panel designs. 
confounded variables Variables that are correlated with one another. 
consensus tests Checks for consensus among F tests formed from the largest and smallest relevant error 
terms. 
consequentialist view The argument that whether an action is right or wrong depends on its conse­
quences. Contrast with deontological view. 
constant conjunction The third in David Hume's list of "rules by which to judge of causes and 
effects," which is that "there must be a constant union betwixt the cause and effect. 'Tis chiefly this 
quality, that constitutes the relation." Also reflected in his fourth rule, that "the same cause always pro­
duces the same effect, and the same effect never arises but from the same cause." See also contiguity 
and priority. 
construct An abstract or conjectural variable that serves as an explanatory concept, or as a link to 
explain the observed relations between independent and dependent variables. 
construct validation The procedure by which a means for the measurement of a construct is devised 
and then related to subjects' performance in a variety of other spheres as the construct would predict or 
imply. 
construct validity A type of test or research validity that addresses the psychological qualities contribut­
ing to the relation between variables, or the degree to which a test or questionnaire is a measure of the 
psychological characteristic of interest. 
constructivism See social constructionism. 
content analysis A strategy for decomposing written messages and pictorial documents in which basic 
information is categorized and counted. 
content validity A type of test validity that addresses whether the test adequately samples the relevant 
material. 
context of discovery Hans Reichenbach's term for the origin, creation, or invention of ideas and 
hypotheses for scientific justification. 
context of justification Hans Reichenbach's term for the logical and empirical defense or adjudication 
of scientific hypotheses or theories. 
contextualism A worldview (given prominence in the writings of the philosopher Stephen C. Pepper) 
that human understanding occurs against an experiential and sociocultural background of beliefs. See 
also psychological contextualism. 
contiguity The first in David Hume's list of "rules of which to judge of causes and effects," which is 
that "the cause and effect must be contiguous in space and time." See also priority and constant 
conjunction. 
contingency table A table of frequencies (or counts) coded by row and column variables. 
continuons variable A variable for which we can imagine another value falling between any two 
adjacent scores. 
contrast correlation (rcontr ... ) The pure correlation between scores on the dependent variable and the 
lumbda coefficients after removal of any other patterns in the data. 
contrast weights See lambda coefficients. 
contrasts Statistical procedures that address specific questions or predictions in the data, such as testing 
for a particular trend in the results. 
contrived unobtrusive observation Observation in which one or more variables are manipulated, but 
the research observations are inconsl?icuous. 
control A term originally meaning a "check" on something, but also meaning a restraint of some kind; 
now used in several different ways, for example, to refer to the "constancy of conditions," the use of a 
"control series" in psychophysical research, "behavior control," or a "control group." 
control group A group or condition 'With which the effects of the experimental procedure or test 
condition are to be compared. 
ccmtrol series The presentation of stimuli in a particular sequence in psychophysical research. 
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conventionalism The philosophical view that scientific theories can never be logically refuted by any 
body of evidence but instead undergo a linguistic tinkering process and evolve on the basis of certain 
linguistic conventions (like "simplicity"); also referred to as the Duhem-Quine thesis, after W. V. 
Quine's development of insights anticipated to an extent in the earlier work of Pierre Duhem. 
convergent validity Validity supported by a substantial correlation of conceptually similar measures. 
corner-cells test See chi-square corner-cells test. 
corrected range Crude range plus one unit (also termed the extended range). 
correction for continuity A procedure for decreasing the absolute difference between obtained and 
expected frequencies to adjust for the difference between discrete and continuous distributions. 
correlated data Observations that are not independent of one another. 
correlated replicators The nonindependence of the researchers who replicate one another's results. 
correlated sample t See paired t. 
correlation An index of the closeness of a relationship between variables. 
correlation coefficient An index of the degree of association between two variables, typically Pearson r 
or a related product -moment correlation. 
correlation family of effect sizes A group of effect sizes that includes the Pearson product-moment 
correlation in any of its customary incarnations, as well as the Fisher z transformation of 1; and squared 
indices of rand r-like quantities; also called the r-type family of effect sizes. 
correlational designs A broad class of quasi-experimental designs. 
correlational research Another common name for relational research, that is, research in which two or 
more variables or conditions are measured and related to one another. 
correspondence with reality The extent to which a hypothesis agrees with accepted truths based on 
reliable empirical findings. 
counterbalancing Presenting treatment conditions in a sequence that controls for confounding. 
count(lrnull The non-null magnitude of the effect size that is supported by the same amount of evidence 
as the null value of the effect size. 
counts Frequencies. 
covariance Average of the products of deviations from the mean, or (X - Mx)(Y - My). 
covariation rule The principle in the rhetoric of causal inference that, in order to demonstrate causation, 
what is labeled as the "cause" must be positively correlated with what is labeled as the "effect." 
covary To have variations (in one variable) that are correlated with variations in another variable. 
criterion validity The extent to which a measurement, test, or scale correlates with one or more 
outcome criteria. 
criterion variable The outcome variable. 
critical incident technique Open-ended method that instructs the respondent to describe an observable 
action the purpose of which is fairly clear to the respondent and the consequences of which are 
sufficiently definite to leave little doubt about its effects. 
Cronbach's alpha A measure of internal consistency reliability, proposed by L. J. Cronbach. 
cross-lagged correlations Correlations of the degree of association between two sets of variables, of 
which one is treated as a lagged value of the outcome variable. 
cross-lagged panel designs Relational research designs using cross-lagged correlations, cross-sectional 
correlations repeated over time, and test-retest correlations. 
cross-sectional design Research that takes a slice of time and compares subjects on one or more 
variables simultaneously. 
cross-sequential design A design in which several different cohorts, all initially measured in the same 
period, are then observed over successive periods. 
crossed contrasts Contrasts formed from the crossing of contrasts in two or more main effects. 
crossed design Another name for the basic within-subjects design, because the subjects can be said to 
be "crossed" by treatment conditions. 
crossed-linear interaction Interaction residuals showing an ascending linear trend for one subgroup amI 
a descending linear trend for another subgroup. 
crude range The highest score minus the lowest score. 
cubic trend Curvilinear relation between two variables in which the line changes direction twice. 
curvilinear (quadratic) correlation The correlation between scores on one variable and extremeness "I 
scores on the other variable. 
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cue words Guiding labels that define particular points or categories of response. 
d See Cohen's d. 
D The difference between scores or ranks. 
15 The mean of a set of D values. 
debriefing Disclosing to participants the nature of the research in which they have participated, also 
referred to as "dehoaxing" when a deception was used in the research and the purpose of the debriefing 
is to remove any misconceptions the subjects may have about the true purpose of the research. 
deception by commission See active deception. 
deception by omission See passive deception. 
deception research Any method of research in which the subjects are misled (active deception) or not 
informed (passive deception) about the nature of the investigation. 
deductive-statistical explanation A form of syllogistic argument in which the conclusion is presumed 
to be unequivocally true if the premises are true, for example, the syllogism "All A is B; all B is C; 
therefore all A is c." 
degrees of freedom (d/) The number of observations minus the number of restrictions limiting the 
observations' freedom to vary. 
demand characteristics Martin Orne's term for the mixture of various hints and cues that govern the 
research participant's perception of his or her role and of the experimenter's hypothesis or expectations 
regarding the outcome of the study; derived from Kurt Lewin's concept of Aufforderungscharakter. 
deontological view The doctrine that some actions can be presumed to be categorically wrong no matter 
what their consequences. Contrast with consequentialist view. 
dependent variable A variable whose changes are viewed as dependent on changes in one or more 
uther (independent) variables. 
descriptive inquiry A method of research that seeks to map out what happens behaviorally, that is, to 
lell "how things are." 
descriptive measures Measures such as (j and (j2 that are used to calculate population values. 
descriptive research orientation An empirical approach in which the observational focus or objective is 
lu map out a situation or set of events. 
df See degrees of freedom. 
df between conditions Degrees of freedom for the means of conditions. 
df error Degrees of freedom for the denominator of the F ratio. 
df means Degrees of freedom for the numerator of the F ratio. 
df within conditions Degrees of freedom for observations within conditions. 
diachronic research Research in which an event or behavior is scientifically observed so as to reveal 
~hanges that occur over a period of time. 
diary method Having subjects keep diaries of their experiences (also called self-recorded diaries). 
dichotomous variable A variable that is divided into two classes. 
difference family of effect sizes A group of effect sizes that includes certain difference-type indices, 
such as Cohen's d, Hedges's g, Glass's A, and the risk difference (RD) and BESD-based RD. 
difference in success rates See binomial effect-size display. 
differencing Subtracting the first observation from the second, the second from the third, and so forth. 
diffuse tests of significance Significance tests addressing unfocused (diffuse) questions, as in chi-square 
wilh df> 1 or F with numerator df> I. 
dimensional analysis Set of redescriptions (termed redescriptors) of relations among objects in terms 
III' measures of similarity or dissimilarity. 
dimensional judgments Responses by judges on some form of more-or-less continuous rating scale. 
direct replication Murray Sidman's expression for the repetition of the same single-case study. See also 
'I'w<'matic replication. 
dl!H:Clvery See context of discovery. I 

dlllt'rete variable A variable taking on two or more distinct values. 
dlllCriminant function Special case of multiple correlation with a dichotomous dependent variable. 
dlllCriminant validity Validity supported by a lack of correlation between conceptually unrelated measures. 
cllllllilised measures Measuring tools used to study behavior indirectly (see, e.g., projective test) or 
ulluhlrusively (see nonreactive observation). 
dhperslon Spread or variability. 
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distance analysis Set of redescriptions (termed redescriptors) of relations among objects in terms of 
measures of similarity or dissimilarity. 
distribution The relative frequencies as we move over varying values of the independent variable. 
double-blind study Study in which neither the experimenter nor the participants know who has been 
assigned to the experimental and control groups. Contrast with single-blind study. 
double deception A deception embedded in what the research participant thinks is the official debriefing. 
drunkard's search A search for something in a place that is convenient but not where the thing is 
actually located. 
Duhem-Quine thesis See conventionalism. 
dummy-coding Giving arbitrary numerical values (often 0 and 1) to the two levels of a dichotomous 
variable. 
ecologically valid Egon Brunswik's description of representative research designs. 
Edgington method of adding probabilities Procedure for combining the p values of a set of studies. 
effect size The magnitude of the research findings, such as the size of the relationship between an 
independent variable and a dependent variable. 
effect size correlation (reffec. size) The magnitude of an experimental effect defined on the basis of the 
correlation between X and Y. 
effective cost The effective reliability cost of a single judge (Eq), or a single item (ECi) or a single 
clinician (ECciinician) of a particular type. 
effective power The actual power (i.e., 1 - B) of the statistical test used. 
effective reliability The composite, or aggregate, reliability of two or more judges' ratings as a group. 
effective sample size The net equivalent sample size that the researcher ends up with. 
effects See residuals. 
efficient cause The propelling or instigating condition (i.e., the X that sets in motion or alters Y). 

eigeJtvalue Sum of squared factor loadings. 
empirical Characterized by controlled observation and measurement. 
empirical method Any procedure using controlled experience, observation, or experiment to map out 
the nature of reality. 
empirical principles Empirically based generalizations. 
empirical reasoning A use of logic and evidence in empirical science (not to be confused with logical 
positivism's verifiability principle, however). 
epistemology Philosophy having to do with the origin, nature, methods, and limits of human knowledge 
or human understanding of the world. 
equal-appearing intervals method L. L. Thurstone's attitude-scale construction procedure in which values 
are obtained for statements or items on the assumption that the underlying intervals are psychologically 
equidistant (also called a Thurstone scale, although Thurstone developed other scaling procedures as well). 
equitable trimming Dropping the same number of scores from both ends of a distribution. 
equivalent-forms reliability The correlation between alternate forms of a test or some other measuring 
instrument (e.g., an attitude scale); also termed alternate-form reliability. 
error Fluctuation in measurements; also deviation of a score from the mean of the group or condition. 
error of central tendency See central tendency bias. 
error of estimate Closeness of estimate to actual value. 
error of leniency See leniency bias. 
error term The denominator of an F ratio in the analysis of variance. 
eta (lJ) Index of correlation not limited to linear relationships. 
eta-squared (lJ2) Proportion of variance accounted for. 
ethical guidelines A set of principles (such as those discussed in chapter 3) that helps researchers decide 
what aspects of a study might pose an ethical problem. 
ethics The system of moral values by which behavior is judged, derived from the Greek ethos, meaning 
"character" or "disposition." 
ethnographers Scientists who study cultural settings and the people who live in them. 
ethnography The study of cultural settings and the people who live in them. 
evaluation apprehension Milton Rosenberg's expression for the experience of feeling anxious about 
being negatively evaluated or not positively evaluated. 
evaluation, potency, and activity Three primary dimensions of connotative meaning, which are 
typically measured by a semantic differential. 
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events Relatively brief occurrences that are observed at their onset or at some single defining 
moment. 
evolutionary epistemology A philosophical view of the development of genuine knowledge in scientific 
psychology, emphasizing that theories evolve in a constant struggle for survival of the fittest. 
expectancy control design An experimental design in which the expectancy variable operates separately 
from the independent variable of interest. 
expectancy control groups Control conditions used to compare the effects of experimenter expectancies 
with the effects of some other behavioral variable. 
expected frequency (f.) Counts expected under specified row and column conditions if certain 
hypotheses (e.g., the null hypothesis) are true. 
expedited review The evaluation of proposed research without undue delay. 
experimental group A group or condition in which the subjects are assigned the experimental treatment 
(e.g., they undergo a manipulation or an intervention). 
experimental hypothesis The experimenter's working hypothesis; also an alternative to the null hypothesis. 
experimental inquiry Any method of research that seeks to describe what happens behaviorally when 
something of interest to the experimenter is introduced into the situation, that is, to tell "how things are 
and how they got to be that way." 
experimental realism Elliot Aronson and 1. Merrill Carlsmith's term describing the idea that the experi­
mental manipulation was engaging, or that participants were "drawn into" the experimental treatment. 
experimental research orientation An empirical approach in which the observational focus or objective 
is a causal explanation. 
experimenter expectancy bias Another name for the experimenter expectancy effect. 
experimenter expectancy effect An experimenter-related artifact that results when the hypothesis held 
by the experimenter leads unintentionally to behavior toward the subjects that, in tum, increases the 
likelihood that the hypothesis will be confirmed. 
Experimentum Crucis Isaac Newton's expression for his crucial empirical observations on the nature of 
white light, an expression he apparently borrowed from Robert Hooke, based on an earlier idea of 
Francis Bacon's (who referred to instantia crucis, or "crucial instances"). 
exploratory data analysis A detective-like searching in the data for clues, leads, and insights. 
extended range (corrected range) Crude range plus one unit. 
external validity The degree of generalizability. 
f See Cohen's f 
F The symbol for an F test in the analysis of variance or the analysis of covariance. 
" distributions Family of distributions centered at (df)/(d! - 2), where both d! refer to the denominator 
of the F ratio, and ranging from zero to positive infinity. 
F ratios Ratios of mean squares that are distributed as F when the null hypothesis is true, where F is a 
tcst of significance used to judge the tenability of the null hypothesis of no relation between two or 
more variables (or of no difference between two or more variabilities). 

" test See F ratios. 
fllce-to-face interview Direct interaction of the interviewer and the respondent. 
fllce validity The extent to which a test or other measuring instrument seems on its surface to be 
IIppraising what it purports to measure. 
fllcet analysis Uriel Foa's logical technique for creating a classification system (a typology) based on 
IIsslimed structural patterns, where the dimensions are called facets. 
fllctor analysis The rewriting of a set of variables into a new set of orthogonal factors. 
fudorial design Research design with more than one factor and two or more levels of each factor. 
fllctor loadings Correlations between variables and factors serving as their redescriptors. 
f.llr-mindedness Impartiality. : 
fllilacy of period centrism See period:centrism!allacy. 
fllise-negative conclnsions Conclusions in which real differences or real effects go undetected. 
fllise precision The outcome when something relatively vague is reported as if the measuring instrument 
wus sensitive to very slight differences., 
rlllslHable hypotheses Plausible suppositions that can be tested. 
'""dHability (refutability) The principle (advanced by Karl Popper) that a theoretical assertion is 
,,·Icluific only if it can be stated in a way that, if incorrect, can be refuted by some empirical means 
tdlilracterized as the "searchlight theory" by Popper). 
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falsificationism The name for Karl Popper's antipositivist movement; those who embraced it were 
called fallibilists. 
F contrast The symbol used in this book to denote an F test (witb numerator df = I) that is used to 
address a focused question or hypothesis, for example, comparing two groups or conditions. 
field experiments Experimental research that is done in a naturalistic setting. 
fieldwork journal The ethnographer's written diary of personal experiences, ideas, fears, mistakes, con­
fusions, and problems. 
file drawer problem The concern that a substantial number of studies with nonsignificant results are 
tucked away in file drawers, thus complicating the quantitative summary of research domains. 
final (teleological) cause The end goal toward which a person or thing naturally tends to strive or to be 
directed (Aristotle). 
finite A term that applies when all the units or events can, at least in theory, be completely counted. 
Fisher exact probability test Test of significance for a 2 X 2 table of counts based on exact probability 
rather than reference to a distribution. 
Fisher method of adding logs Procedure for combining p values of a set of studies. 
Fisher Zr The log transformation of r, that is, t 10g.[(1 + r)/(1 - r)). 
fixed-choice measures See structured items. 
fixed factors (effects) Levels of a factor chosen because of the researcher's specific interest ratber than 
their representativeness of a population of levels of a factor. 
fixed-response items Questions with fixed options; also described as structured items or closed items. 
floor effects The limitation of the amount of change tbat can be produced; this limit is dictated by tbe 
lower boundary of the measure. 
F noncontrast The result of dividing the mean square noncontrast by tbe mean square within, which can be 
used to compute an effect size r for Fcontrast. 

fflCuS group A group whose discussion is led by an interviewer who focuses tbe group on particular 
issues or a basic question or problem. 
focused chi-square X2 with I df 

focused statistical procedures Any t test, l-df X2, or F with numerator df = 1. 
focused tests of significance Another name for focused statistical procedures. 
forced-choice scales Measures requiring the respondent to select a single item (or a specified number 01 

items) from a presented set of choices, even when tbe respondent finds no choice or more tban one of 
the choices acceptable. 
formal cause The implicit form or meaning of something (Aristotle). 
fortuitous sampling The haphazard (as opposed to random or systematic) selection of sampling units. 
fractional factorial design A design in which only some combination of factor levels is used, and 
higher-order interactions are intentionally confounded with lower-order effects. 
free association method A metbod in which tbe subjects express whatever tboughts pass tbrough tbeir mind" 
frequency distribution A set of data scores arranged according to incidence of occurrence, or a chart 
that shows the number of times each score or otber unit of observation occurs in a set of scores. 
frequency polygon A line-graph distribution of frequencies of occurrence. 
fugitive literature Hard-to-find literature. 
full factorials Statistical designs in which all combinations of all factors' levels are available. 
funnel sequence of questions Items begin witb very general questions and then narrow down to more 
specific ones. 
g See Cohen's g and Hedges's g. 
g method A strategy for quantifying tbe degree of success in constructing clear composite variables, 
based on Hedges's g. 
generative Describing tbeories that allow us to generate new hypotbeses and observations. 
geometric mean The antilog of the mean of log-transformed values. 
Glass's 11 An index of effect size in z-score-like terms, defined as a ratio of the difference between twu 
means divided by tbe estimate of the standard deviation of tbe control group. 
good subject Research participant who seeks to provide responses tbat will validate tbe experimenter"­
hypotbesis. 
good subject effect A subject's cooperative behavior that complies witb demand characteristics. 
grand mean The mean of means, or tbe mean of all observations. 
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graphic scale A rating scale in the form of a straight line with cue words attached. 
h See Cohen s h. 
Ho Null hypothesis. 
HI Alternative hypothesis, that is, the experimental or working hypothesis. 
halo effect A response set in which the bias results from the judge's overextending a favorable 
impression of someone, based on some central trait, to the person's other characteristics. 
haphazard sampling The fortuitous (as opposed to random or systematic) selection of sampling units. 
harmonic mean The reciprocal of the arithmetic mean of values that have been transformed to their 
reciprocals. 
Hawthorne effect The general principle that scientific observations of behavior may influence the behavior 
itself; the concept takes its name from research performed at the Hawthorne plant of the Western Electric 
Company between 1924 and 1932. Although the claims resulting from that research have been disputed, the 
general principle of subject reactivity has received support in other research and is not in doubt. 
HCT Historical control trial. See also historical controls. 
Hedges's g An index of effect size in z-score-like terms, defined as a ratio of the difference between 
two means divided by the estimate of the standard deviation. 
heterogeneity Dissimilarity among the elements of a set. 
hidden nesting The concealed nonindependence of observations brought about by sampling without 
regard to sources of similarity in the persons sampled. 
hierarchical structure A system in which one thing is ranked above another. 
higher order interaction Residuals remaining after all main effects and all lower order interactions 
relevant to the higher order interaction have been subtracted. 
historical controls Recently treated patients all of whom suffered from the same disorder as those in 
the experimental treatment group. 
history Donald Campbell and Julian Stanley'S term for a plausible threat to internal validity when an 
cvent or incident that takes place between the premeasurement and the postmeasurement contaminates 
the results of research not using randomization. 
homogeneity Similarity among the elements of a set. 
homogeneity of covariances Degree of similarity of covariances found between any two levels of a 
rcpeated-measures factor. 
homogeneity of variance Equality of the population variance of the groups to be compared. 
hot deck imputation A single imputation procedure for dealing with missing data in which we find 
<"uses without the missing data that are similar to those with the missing data, and then one case is 
,'hosen at random as that whose corresponding value will be imputed for the missing observation. 
how-questions In philosophy of science, questions about "how" things work, that is, "what-is-happening" 
'Iucstions. 
hyperclaim A claim implying that the research is likely to achieve goals that it is, in fact, unlikely to 
1I,'hieve (also called hyperclaiming). 
hypotheses Research ideas that serve as a premise or supposition that organizes facts and guides 
IIhscrvations. 
Icll'lIl\sm A classical philosophical doctrine that human understanding of "reality" is a construct of 
n'lUlitive and perceptual minds or mental operations. See also social constructionism. 
1m normal Assumptions underlying the use of t and F tests, that error is "independently and identically 
,h~trihuted" in a normal distribution. 
""Imtation procedures Statistical procedures that yield estimates of parameters after the missing data 
dU' lilled in, including single imputation (e.g., mean substitution, regression substitution, stochastic 
11'1I1"l'ssion imputation, or hot deck imputation) and multiple imputation. 
Int'l.mplete factorial design A design in which the higher order interactions are intentionally confounded 
"ilh the lower order effects. 
htclt'pendent sample t The t test used to compare samples that are independent. 
Incll'pendent variable A variable on which the dependent variable depends; in experiments, a variable 
IllIIt the experimenter manipUlates to .deterrnine whether there are effects on another variable, the 
11r,.l'lldcnt variable. 

\ .... 1Ift'ct measures Observations or measurements of behavior in which subjects are aware of being 
, ,""'rrved or measured but are unaware of the particular implications of their responses. 
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inductive-statistical explanation A form of syllogistic argument in which the conclusion is "likely to 
be true" if the premises are true (i.e., a probabilistic assertion). 
inferential measure Measures such as Sand SZ that are used to estimate population values based on a 
sample of values. 
inferential validity Validity in which the implication is that causal inferences made in a laboratory 
setting are applicable to the real-life experiences they are meant to represent. 
infinite Boundless, or without limits. 
informants The indigenous members of a culture who provide ethnographic researchers with information. 
informed consent The procedure in which prospective subjects, who have been told what they will be 
getting into, give their formal consent to participate in the research. 
institutional review board (IRB) A group set up by research organizations to make risk-benefit analyses 
of proposed studies. 
instrumentation Donald Campbell and Julian Stanley's term for a plausible threat to internal validity 
that occurs when changes in the measuring instrument (e.g., deterioration of the instrument) bias the 
results of research not using randomization. 
intensive case study An analysis that is characterized by meticulous records and sharp discriminations 
rather than by the usual casual discriminations and inferences that are associated with our daily 
encounters with "cases." 
intentional experimenter effects Noninteractional experimenter-related artifacts that result in systematic 
errors owing to dishonesty in reporting data. 
interaction effects (residuals) In a factorial design, the condition means minus the grand mean, row 
effects, and column effects. 
interaction of independent variables The mutually moderating effects of two or more independent 
variables. 
interactional experimenter effects Artifacts resulting from the interaction between experimenters and 
their ;subjects. 
interactions See interaction of independent variables. 
intercoder reliability The extent to which raters or judges who code data are in agreement. 
interitem correlation (rll) The relation of responses to one item with the responses to another item. 
internal-consistency reliability Reliability based on the intercorrelation among the components of a 
test, such as subtests or all the individual test items; it tells us the degree of relatedness of the individual 
components when we want to use them to obtain a single score. 
internal validity The degree of validity of statements made about whether changes in one variable 
result in changes in another variable. 
interpreter biases Systematic errors that result when the researcher's interpretation of the observational 
record is slanted. 
interquartile range The difference between the 75th and 25th percentile. 
interrupted time-series designs Designs in which the effects of a treatment or intervention are inferred 
from a comparison of outcome measures obtained at different time intervals before and after the treat­
ment or intervention is introduced. 
interval estimates The extent to which point estimates are likely to be in error. 
intervention An experimental treatment. 
interview schedule A script that contains the questions the interviewer will ask. 
intraclass correlation The average intercorrelation among the repeated observations obtained from a slol 

of sampling units, for example, the average item-to-item (Tn) or judge-to-judge (rii) reliability. 
intrinsically repeated measures Measurements that must be repeated to address the question of interesi. 
item analysis A procedure used for selecting items (e.g., for a Likert attitude scale). 
item-to-item reliability (rn) The relation of responses to one item with those to another item. 
iterations Repetitions. 
jackknife Computer-generated resampling procedure designed for estimating such statistics as bias, 
standard errors, and confidence intervals. 
joint method of agreement and difference J. S. Mill's method that tells us that X is both necessary 
and sufficient for the occurrence of Y. 

judges Coders, raters, decoders, or others who assist in describing and categorizing ongoing events Of 

existing records of events. 
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judge-to-judge reliability (rn) The relation of one judge's responses to those of another judge. 
judgment studies Studies in which raters, coders, decoders, or others evaluate or categorize the variables 
of interest. 
justice A synonym for fairness, and one of the guidelines of the APA code. 
justification A term used by philosophers of science to refer to the evaluation, defense, truth, or 
confirmation of a hypothesis. 
k Coefficient of alienation or "noncorrelation"; also used to denote the number of conditions or 
classifications. 
k2 Coefficient of nondetermination. 
kappa (K) A statistic (proposed by Jacob Cohen) used to indicate the proportion of agreements between 
raters after chance agreement has been removed. 
KR20 A measure of internal-consistency reliability, developed by G. F. Kuder and M. W. Richardson, 
symbolized here as RKR20. 

Kuder-Richardson Formula 20 See KR20. 
kurtosis A term that describes the flatness or peakedness of a distribution. 
L scores Contrast scores that index for each sampling unit the degree to which it reflects the accuracy 
of the particular prediction. 
lambda coefficients (7\ weights) Values that sum to zero and are used to state a prediction. 
latent root Sum of squared factor loadings. 
Latin square A square of letters or numbers in which each letter or number appears once and only 
once in each row and in each column; used as a specific repeated-measures design with built-in 
counterbalancing. 
leading questions Questions that can constrain responses and produce biased answers. 
leaves The trailing digits of a stem-and-leaf display. 
leftover effects See residual effects. 
leniency bias A type of rating error in which the ratings are consistently more positive than they should 
he. See also severity error. 
leptokurtic distribution A term used to describe a very peaked curve. 
Lie (L) Scale A set of items in the MMPI that were designed to identify respondents who are deliberately 
trying to appear "better" than they believe they are. 
Likert scales Attitude scales constructed by Rensis Likert's method of summated ratings. 
line graph See frequency polygon. 
linear trend Straight-line relationship between two variables. 
linearity The mutual relation between two variables that resembles a straight line. 
IIstwise deletion Deletion of all subjects who have any missing data. 
literature controls Historical controls formulated on the basis of archival data. 
louding See factor loadings. 
locution measures Measurements of central tendency, such as the mean, median, and mode. 
10XIcal error in rating A type of response set in which the judge gives similar ratings for variables or 
trllits that are only intuitively related. 
loxlcal positivism A philosophical movement that dominated philosophy during the 1920s and 1930s, 
hllsed on the idea that, just as there is a sound, verifiable basis of ideas and propositions in natural 
.dence (i.e., the verifiability principle), there might be a similar objective foundation for problems in 
I'hilnsophy. 
lox-linear model An approach to the analysis of tables analogous to the analysis of variance. 
hlllit d' A measure of effect size defined as the difference between logit-transformed population 
I'Wl'ortions. 
hlftxltudinal study Research in which the same subjects are studied over a period of time. 
'" The mean of a set of scores. 
" .. IXliltude scale A scaling procedure, pioneered by S. S. Stevens, in which the number of total points 
" decided by the individual judge or rater rather than preset by the researcher. 
",.111 effect The effect of an independent variable apart from its interaction with other independent 
~nrillhlcs . 
.... nlpulation check A separate confirmation of the effectiveness of experimental treatments . 
.... 1'Il11i of error Interval within which an anticipated value is expected to occur. 



750 GLOSSARY OF CONCEPTS AND TERMS 

margins Rowand column marginal values. 
Marlowe-Crowne Social Desirability Scale (MCSD) A standardized scale, created by David Marlowe 
and Douglas P. Crowne, that measures social desirability responding and the need for social approval. 
matched pairs Pairs of observations made on the same sampling units. 
matched pair t See paired t. 
matching The pairing of sampling units on certain relevant variables. 
material cause The substance out of which something is made (Aristotle). 
maturation Donald Campbell and Julian Stanley'S term for a plausible threat to internal validity that 
occurs when the results of nonrandomized studies are confounded by the participants' having grown 
older, wiser, stronger, or more experienced between the pretest and the posttest. 
maximum likelihood estimation A nonimputation procedure for dealing with missing data. 
MCSD See Marlowe-Crowne Social Desirability Scale. 
mean (M) The arithmetic average of a set of scores. 
mean polishing Removing grand mean, row, and column effects to expose residuals defining the 
interaction. 
mean square (S2), or MS Variance. 
mean square for error Variance used as the denominator of F ratios. 
mean substitution procedure The replacement of all missing values for any given variable by the mean 
value of that variable; one of several single imputation procedures for dealing with missing data. 
median (Mdn) The midmost score of a distribution. 
mediator variables Conditions, states, or other factors that are presumed to intervene between the 
independent variable and the outcome variable. 
mental images Thinking in which perceptible ideas or visual images have a hand; presumed to be an 
aspect of the scientific method and explanatory reasoning. 
meta-analysis The use of quantitative and graphic methods to summarize a group of similar studies. 
metap~or A word or phrase applied to a concept or phenomenon that it does not literally denote. 
metaphorical themes Thematic analogies that represent a particular view of the world, or of a 
phenomenon or experience. 
metaphysics Assumptions or questions about universal truths, existence, and causality. 
method of adding logs Procedure for combining independent probabilities. 
method of adding probabilities Procedure for combining independent probabilities. 
method of adding ts Procedure for combining independent probabilities. 
method of adding weighted zs Procedure for combining independent probabilities. 
method of adding zs Procedure for combining independent probabilities. 
method of agreement If X, then Y-which implies that X is a sufficient condition of Y (J. S. Mill). 
method of authority The acceptance of an idea as valid because it is stated by someone in a position 
of power or authority (one of Charles Sanders Peirce's "methods for the fixation of belief'). 
method of concomitant variation Method relating changes in amount or degree between two variables; 
stated as Y = I(X), which means that variations in Y are functionally related to variations in X. 
method of difference If not-X, then not-Y-which implies that X is a necessary condition of Y 
(J. S. Mill). 
method of equal-appearing intervals See equal-appearing intervals method. 
method of meaningful diagonals Forming a concept to summarize the data found on the diagonals of n 
two-way table of means or of residuals. 
method of meaningful differences Method reducing a two-dimensional display of residuals or means 10 

a one-dimensional display. 
method of self-report The procedure of having the research participants describe their own behavior or 
state of mind (e.g., used in interviews, questionnaires, and behavioral diaries). 
method of successive intervals A scaling procedure developed by Allen L. Edwards, similar to the 
equal-appearing intervals method, but providing a check on the assumption of equal intervals. 
method of tenacity Clinging stubbornly to an idea or belief because it seems obvious or is "common 
sense" or brings peace of mind (one of Charles Sanders Peirce's "methods for the fixation of belief'). 
method of testing mean p Procedure for combining independent probabilities. 
method of testing mean z Procedure for combining independent probabilities. 
methodological behaviorism See behaviorism. 
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methodological pluralism The idea that more than one method and operation are needed to develop a 
holistic picture, because each method or operation is limited in some way. 
methodological triangulation The approach of "zeroing in" on a pattern by using mUltiple but imperfect 
methodological perspectives. 
microworld simulations The use of computer-generated environments to simulate real-world settings. 
Milgram experiments Stanley Milgram's program of research on the willingness of participants to give 
"electric shocks" to another subject, who was (unbeknownst to the participants) actually a confederate of 
the experimenter. 
Mill's methods Logical "methods" (or propositions) popularized by J. S. Mill, exemplified by the 
method of agreement and the method of difference. 
minimal risk (research) Studies in which the likelihood and extent of harm to subjects are no greater 
than those typically experienced in everyday life. 
Minnesota Multiphasic Personality Inventory (MMPI) A structured personality test containing 
hundreds of statements that reflect general health, sexual attitude, religious attitude, emotional state, and 
so on. 
missing data Information missing because one or more responses that were to be collected by the 
investigator are unavailable, including data "missing completely at random" (MCAR), "missing at random" 
(MAR), or "missing not at random" (MNAR). See also imputation procedures and nonimputation 
procedures. 
mixed factorial designs Statistical designs consisting of both between- and within-subjects factors. 
mixed longitudinal designs Designs in which several cohorts are followed, and age effects, time 
effects, and cohort effects are examined periodically. 
MMPI See Minnesota Multiphasic Personality Inventory. 
mode The score occurring with the greatest frequency. 
modeling effects Experimenter-related artifacts that are a function of the example set by the experimenter 
ur interviewer. 
moderator variables Conditions that alter the relationship between X and Y. 
moments The distances from the mean. 
MS (mean square) Variance. 
MSbetween Mean square between conditions. 
MScontrast The contrast mean square, which is equivalent to the contrast sum of squares. 
MS.rror Mean square used as denominator of F ratios. 
MSwlthin Mean square within conditions. 
multidimensional scaling (unfolding) Set of redescriptors of relations among objects in terms of 
measures of similarity or dissimilarity. 
multilevel analysis of variance Analysis of variance with two or more independent variables and one 
tic pendent variable. 
multiple correlation Correlation between two or more predictor variables and a single dependent variable. 
multiple discriminant fnnction Special case of canonical correlation with dichotomous dependent 
variables. 
multiple imputation Process in which each missing observation is replaced by a set of m reasonable 
,'slimates that will yield m pseudocomplete data sets; one of several imputation procedures for dealing 
wilh missing data. 
multiple operationalism Donald Campbell and Donald Fiske's term for the idea that different methodo­
,,,,deal operations are needed to "triangulate" on phenomena of interest. 
multiple partial correlation Multiple correlation performed on variables from which the effects of 
Ihi,·d·party variables have been removed. 
multiple path analysis Canonical correlation with time-ordered predictor variables. 
nlllitiple R2 Proportion of variance in the dependent variable predictable from two or more predictor 
III .. illhlcs. 
multistage cluster sampling Sampling in which, by stages, the popUlation is divided and subdivided 

multitrait-multimethod matrix A table of intercorrelations, the purpose of which is to triangulate on the 
1II11vcrgcnt and discriminant validity of a construct. ~ 
IlIlu segments in which the units selected have the same probability of being chosen as the unselected 
Imlls in the popUlation. 
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multivariate analysis of covariance Analysis of covariance for the case of multiple dependent variables. 
multivariate multilevel analysis of variance Analysis of variance with two or more independent and 
two or more dependent variables. 
multivariate procedures Statistical procedures involving two or more independent (predictor) variables, 
two or more dependent (criterion) variables, or both. 
mundane realism Elliot Aronson and 1. Merrill Carlsmith's term for a condition in which the various 
dimensions of an experiment appear similar to those in the real world. 
mutually exclusive A term describing the condition "If A is true, then not-A is false." 
n The number of scores in one condition or one subgroup of a study. 
N The total number of scores in a study. 
N-of-l experimental research Another name for single-case experimental studies. 
naturalistic observation The observation of behavior in its usual natural environment. 
necessary condition A requisite or essential condition. 
need for social approval The desire to be positively evaluated or approved of. 
negative synergistic effects Synergistic effects that lower scores. 
negatively skewed distribution An asymmetrical distribution in which the pointed end is toward the 
left (i.e., toward the negative tail). 
negativistic subject The research participant who approaches the investigation with an uncooperative attitude. 
nested design Another name for the basic between-subjects design, because the subjects are "nested" 
within their own treatment conditions. 
nested sampling units Sampling units observed under only one condition of a study. 
nh The harmonic-mean n. 
NHST See null hypothesis significance testing. 
no-shows People who fail to show up for their scheduled research appointments. 
noise The variability within the samples. 
nonequivalent-groups designs Nonrandomized research in which the responses of a treatment group and a 
control group are compared (usually on measures collected at the beginning and end of the research). 
m:inimputation procedures Statistical procedures that yield estimates of parameters without "filling in" 
the missing data (such as listwise deletion, pairwise deletion, maximum likelihood estimation, and 
Bayesian estimation). 
noninteractional artifacts (e.g., interpreter and observer biases) Experimenter-related artifacts that 
occur without affecting the actual responses of the subjects. 
noninteractional experimenter effects Experimenter-related artifacts that occur without affecting the 
actual responses of the subjects. 
nonintrinsically repeated measures Repeated-measures research in which it is not actually essential to 
use repeated measures, but their use increases the efficiency, precision, and power of the study. 
nonlinearity A relation between two variables that does not resemble a straight line. 
nonmaleficence Not doing harm, which is one of the guidelines of the APA code. 
nonorthogonal contrasts Correlated contrasts. 
nonparametric statistical tests Statistical procedures that are less dependent on the shape of the populatioll 
distribution from which the observations are drawn. 
nonreactive observation (measure) Any observation or measurement that does not affect what is bein~ 
observed. 
nonresponse bias Systematic error due to nonresponse or nonparticipation. 
nonskewed distribution A symmetrical distribution. 
normal distribution Bell-shaped curve that is completely described by its mean and standard deviation. 
norm-referenced Term applied to a standardized test that has norms (i.e., typical values), so that a 
person's score can be compared with the scores of a reference group. 
norms Tables of values representing the typical performance of a given group. 
null-counternull interval An interval estimate anchored at one end by the null value of the observed 
effect size and at the other end by its counternull value. 
null hypothesis (Ho) The hypothesis to be nullified; usually states that there is no relation between two 
or more variables. 
null hypothesis significance testing (NHST) The use of statistics and probabilities to evaluate the null 
hypothesis. 
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numerical scales Rating scales in which the respondent works with a sequence of defined numbers. 
oblique rotations Factor-analytic rotations that are nonorthogonal. 
observation of disproportionate influence (OODI) Observation that radically changes a correlation's 
magnitude. 
observed frequency if.) Counts obtained in specific rows and columns. 
observer effects Experimenter-related artifacts that result in overstatements or understatements of some 
criterion value during the observation and recording phase of the research process. 
Occam's razor The principle that explanations should be as parsimonious as possible (William of 
Occam, or Ockham). 
odds ratio (OR) The ratio of the not-surviving control subjects to the surviving control subjects divided 
by the ratio of the not-surviving treated subjects to the surviving treated subjects. 
omnibus chi-square X2 with df > I. 
omnibus statistical procedures Statistical procedures with df> I, such as F with numerator df> I or 
X2 with df > 1. 
omnibus tests Another name for omnibus statistical procedures. 
one-group pre-post design (O-X-O) A preexperimental design in which the reactions of only one group 
of subjects are measured before and after exposure to the treatment. 
one-sample t See paired t 
one-shot case study (X-O) A preexperimentaI design in which the reactions of only one group of subjects 
are measured after the event or treatment has occurred. 
one-tailed p value The p value associated with a result supporting a prediction of a specific direction of 
a research result, for example, MA > MB or the sign of r is positive. 
one-tailed test Test of significance in which the null hypothesis is rejected only if the results are 
significant in one of the two possible directions. 
one-way design A statistical design in which two or more groups comprise a single dimension. 
ontological realism The idea that reality is a "given" or a priori assumption. 
open-ended measures Items that offer the respondent an opportunity to express feelings, motives, or 
hehaviors spontaneously. 
operational definition An empirically based definition, that is, the meaning of a variable in terms of the 
operations that are used to measure it or the experimental method involved in its determination. 
operationalism Percy W. Bridgman's term for the assumption that scientific concepts can be defined on 
empirical grounds by specifiable observational procedures. 
operationally Term describing the measurement of a variable in an empirical way. 
opportunistic sampling The selection of units merely because they are conveniently available. 
opportunity samples See opportunistic sampling. 
optimal design A design that optimizes the statistical power of a study by allocating more sampling 
units to some conditions than to others. 
OR See odds ratio. 
ordinal data Information on objects or events that can be ranked from high to low on some characteristic. 
ordinate The vertical axis of a distribution. 
organismic interactions Results showing that different treatments have different effects for different 
.uhgroups. 
orthogonal contrasts Uncorrelated contrasts. 
orthogonal polynomial contrasts Sets of orthogonal contrasts in which linear, quadratic, and higher 
unler trends can be evaluated. 
orthogonal relationship Relationship in which correlation equals zero. 
orthogonal rotatious Factor-analytic rotations in which the axes are kept at right angles to one another. 
outliers Extreme scores, that is, those lying far outside the normal range. 
overall F test An F test with df > l.in the numerator; serves as appropriate protection for subsequent 
ullplanned contrasts. 
#' value Probability value or level obtained in a test of statistical significance. 
pili red t (correlated sample t or matched pair t) The t test computed on nonindependent samples. 
pairwise deletion A nonirnputational procedure for dealing with missing data in which the parameters 
ul' interest are computed on all the data that are available for that computation. 
IlIlIIel study A longitudinal study. 
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paradigm shifts Thomas Kuhn's idea that the history of science is punctuated by revolutionary insights 
that forever change the way we perceive the world. 
paradox of sampling A term meaning that the appropriateness of a sample is validated by the method 
used to arrive at its appropriateness. 
paradoxical incident An occurrence characterized by seemingly self-contradictory aspects. 
parameters Population values. 
parsimony The degree to which the propositions of a theory are "sparing" or "fruga\"; see also 
Occam's razor. 
partial aggregation Aggregation of only a subset of all relevant sources of variance. 
partial concealment A researcher's concealment of only who or what is being observed. 
partial correlation The correlation between two variables when the influence of other variables on their 
relationship has been eliminated statistically. 
participant observation The study of a group or a community from within by a researcher who records 
behavior as its occurs. For example, ethnographers usually interact with members of a culture even as 
they observe those members. 
partitioning of tables Subdivision of larger chi-square tables into smaller tables (e.g., into 2 X 2 tables). 
passive deception (deception by omission) The withholding of certain information from the subjects, 
such as not informing them of the meaning of their responses when they are given a projective test or 
not fully disclosing the purpose of an experiment. 
patb analysis Multiple regression with time-ordered predictor variables. 
payoff potential Subjective assessment of the likelihood that an idea will be corroborated. 
Pearson r Standard index of linear relationship. 
percentile A point in a distribution of scores below and above which a specified percentage of scores falls. 
perceptibility The ability to apprehend a particular idea in the mind's eye as a perceptible image. See 
also visualizations. 
Ikriod centrism fallacy The mistake of assuming that the results of an analysis of one particular period 
are generalizable to other periods. 
permutation tests Procedure for determining statistical significance based on counts of rearrangements 
of the data. 
perspectivism See contextualism. 
phi coefficient (cl» Pearson r where both variables are scored dichotomously. 
physical traces Material evidence of behavior. 
Pi The effect size n, or proportion of correct guesses if there were only two choices from which to select. 
pilot test A way of selecting judges or raters by comparing all recruits in the pool of potential judges 
for their accuracy of judgments on some relevant criterion. 
pilot testing The evaluation of some aspect of the research before the study is implemented. 
placebo A substance without any pharmacological benefit given as a pseudomedicine to a control group, 
placebo control group A control group that receives a placebo. 
placebo effects The "healing" effects of inert substances or nonspecific treatments. 
plagiarism Representing someone else's work as one's own; from the Latin word meaning "kidnapper," 
planned contrasts Contrasts intended before the data were examined. 
platykurtic distribution Charateristic of a relatively flattened curve. 
plausible rival hypotheses Propositions, or sets of propositions, that provide a reasonable alternative '0 
the working hypothesis. 
point-biserial correlation (rpb) Pearson r where one of the variables is scored dichotomously and the 
other variable is continuous. 
point estimates Estimates of particular characteristics of the population (e.g., the number of times an 
event occurs). 
PONS Profile of Nonverbal Sensitivity; a test for measuring sensitivity to nonverbal cues. 
pooling sources of variance Combining terms that are not markedly different. 
population The aggregate of elements from which sampling units are drawn, or the aggregate of element­
to which we want to generalize. 
positive synergistic effects Synergistic effects serving to raise scores. 
positively skewed distribution An asymmetrical distribution in which the pointed end is toward the 
right (i.e., the positive tail). 
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positivism After Auguste Comte's term positivisme, the idea that sociology (another term coined by 
Comte) could, by embracing a "positive observational" approach, develop into an empirical natural 
science like chemistry and physics (i.e., a kind of "social physics"). See also logical positivism. 
post hoc contrasts Contrasts computed only after the data have been examined. 
postdictive validity The extent to which the results of a test correlate with some criterion in the past. 
posttest-only control-group design An after-only experimental design containing an experimental and a 
control group. 
power (1 - 13) In significance testing, the probability of not making a Type II error. 
power analysis Estimation of the effective power of a statistical test, or of the sample size needed to 
detect an obtained effect given a specified level of power. 
power of a test The probability, when a particular test statistic (e.g., t, F, X2) is used, of not making a 
Type II error (i.e., the sensitivity of the significance test in providing an adequate opportunity to reject 
Ho when it warrants rejection). 
practical validity The real-life importance of the magnitude of a particular effect-size estimate. 
pragmatism The idea that the meaning of conceptions is to be found in their applications (associated 
with Charles S. Peirce, William James, John Dewey, and George Herbert Mead). 
pre-post control-group design Before-after experimental design. 
preanalysis of an experiment The statistical analysis of the data predicted by a theory to clarify how 
the predictions will be tested in the data-analytic model. 
precision Sharpness or exactness of observations or measures. 
predictive validity The extent to which scores on a test, scale, or other instrument can predict future 
outcomes. 
predictor variable The variable that is used to predict a particular outcome, as measured by the 
criterion variable. 
preexperimental designs Research designs in which there is such a total absence of control that they 
ure of minimal value in establishing causality. 
pretest The measurement made before an experimental manipulation or intervention. 
pretest sensitization The confounding of pretesting and X, the independent variable of interest. 
I)rincipal components analysis The rewriting of a set of variables into a new set of orthogonal 
wmponents. 
principle of the drunkard's search The search for data in a convenient place but not a truly relevant one. 
I)rlority The second in David Hume's list of "rules by which to judge of causes and effects," which is 
Ihut "the cause must be prior to the effect." See also contiguity and constant conjunction. 
I,robabilistic assertion Our term for an empirically based statement, claim, or inference that is presumed 
In be "likely to be true," that is, given particular assumptions or a specific context of explanation. 
Sl'e also inductive-statistical explanation. 
I,n,bability The mathematical chance of an event's occurring. 
pn,bability sampling The random selection of sampling units so that the laws of mathematical 
prnhability apply. 
I,n,blt d' A measure of effect size defined as the difference between standard-normal-deviate-transformed 
IlI"nportions of two popUlations. 
product-moment correlation coefficient Standard index of linear relationship, or Pearson r. 
pnHluct The number resulting from the multiplication of one value by another. 
pn'Jective test A psychological measure that operates on the principle that the subject will project some 
IIl1l·nllscious aspect of his or her life experience and emotions onto ambiguous stimuli in the spontaneous 
.t'pnllses that come to mind (e.g, the Rorschach test and the Thematic Apperception Test). 
pn'pensity scores Donald B. Rubin's term for composite scores that effectively summarize all the 
dlllt'r~nces on all the variables (the covariates) on which "treated" and "untreated" subjects differ. 
pn'JM,rtlon of variation explained- See coefficient of determination. 
pnlllilloctivism See contextualism. .l 

""tfl'led t test The t test computed under the umbrella of an overall F to minimize capitalizing on the 
1""1 hnc selection of the largest effects. 
".,,,Imlly analysis Set of redescriptors of relations among objects in terms of measures of similarity or 
dl .. llllilurity. 
,..udllllClence Bogus claims masquerading as scientific facts. 
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pseudosubject A confederate of the experimenter who plays the role of a research subject. 
psychological contextualism A philosophical view in modern behavioral and social science, in which 
the emphasis is on the process-like nature of behavior (i.e., it is constantly changing), the dynamical 
contexts of all human knowledge, and the doctrine of methodological pluralism and theoretical 
ecumenism. 
psychophysics The study of the relationship between physical stimuli and our experience of them. 
PsycINFO The American Psychological Association's abstract database. 
psychosocial experimenter effects Experimenter-related artifacts that are a function of psychosocial 
attributes of the researcher (e.g., the experimenter's personality). 
pulse function An abrupt change lasting only a short time. 
pure empiricism See behaviorism. 
pure longitudinal designs Research in which a cohort is followed over time. 
q See Cohen's q. 
Q-sort A rating procedure in which the subjects sort stimuli into piles to resemble a bell-shaped 
distribution; developed by William Stephenson. 
quadratic trend Curvilinear relation between two variables in which the line changes direction once. 
qualitative data Information in a nonnumeric form, such as recorded conversations, narrative responses 
in interviews, or observable behavior in ethnographic research. 
quantitative data The raw data existing in a numerical form, such as ratings of behavior, scores on a 
test, or instrument readings. 
quartile range The range of scores found between the 75th and 25th percentiles. 
quasi control strategy Martin Orne's expression for the procedure in which some subjects are invited 
to step out of their "subject roles" and to act as "coinvestigators" in the identification of demand 
characteristics. 
quilsi control subjects Research participants who are asked to reflect on the context in which an 
experiment is conducted and to speculate on how the context may influence their own and other 
subjects' behaviors. 
quasi-experimental A term describing study designs that are "something like" an experimental design 
(in that there are treatments, outcome measures, and experimental units), but random assignment is not 
used to create the comparisons from which treatment-caused changes are inferred in randomized designs. 
quota sampling An antiquated data collection procedure in opinion polling that assigned a quota of 
people to be interviewed and let the questioner build up a sample that was roughly representative of the 
population. 
r Pearson's product-moment correlation. 
r method A strategy for quantifying the degree of success in constructing clear composite variables; 
based on the point-biserial correlation. 
,.z See coefficient of determination. 
r-type family of effect sizes See correlation family of effect sizes. 
ralerting The Pearson product-moment correlation between group (or condition) means (M) and contrast 
weights (As )-also symbolized as !"MI.. 

random assignment A synonym for randomization, that is, the assignment to conditions at random. 
random-digit dialing A process in which the researcher selects the first three digits of telephone 
numbers and then uses a computer program to select the last digits at random. 
random effects Levels of a factor chosen as representative of a population of levels of a factor. 
random errors Chance fluctuations that are self-canceling, in that the average of the errors is presume,l 
to equal zero over a large number of random observations. See also systematic error. 
random factors Levels of a factor viewed as having been randomly sampled. 
random response set Responses that are made without regard to item content. 
random sample A sample chosen by chance procedures and with known probabilities of selection so 
that every unit in a set or population has the same likelihood of being chosen at each draw. 
random sampling with replacement A process in which the randomly selected units are placed in IIII' 

sampling pool again and may be reselected on subsequent draws. 
random sampling without replacement A process in which the randomly selected units cannot be 
reselected and must be disregarded on any later draw. 
random selection Another name for random sampling. 
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randomization (random assignment) Random allocation of sampling units to conditions. 
randomized experiments Experimental designs that use randomization. 
randomized response technique Method for eliminating evasive answers by using a randomizing 
instrument to select how the subject will respond concerning sensitive questions while still providing the 
investigator usable data for the entire sample. 
randomized trials A popular term for controlled medical or pharmaceutical experiments that use 
randomized experimental designs. 
range Distance between the highest and lowest score. 
range-to-midrange-ratio method A strategy for quantifying the degree of success in constructing clear 
composite variables. 
rater biases Systematic errors that can be attributed to particular judges' ratings. 
rating errors (response biases) Systematic errors in responses on rating scales. 
rating scales The common name for a variety of measuring instruments on which the observer or subject 
gives a numerical v~e (either explicitly or implicitly) to certain judgments or assessments. 
ratio family of effect sizes Includes relative risk (RR) and the odds ratio (OR), as well as the BESD-based 
1~~_BES6-based OR. 
'contrast The partial correlation between individual sampling unit scores on the dependent variable (Y) 

and the predicted mean score (represented by A, the contrast weight) of the group to which they belong, 
with other between-group variation (i.e., noncontrast variation, NC) removed-also symbolized as 

rYA·NC. 

'countemull The counternull value of the obtained r. 
RCronbach Cronbach's alpha coefficient for internal-consistency reliability. 
RCT Randomized control trial. See randomized trials. 
RD See risk difference. 
reactive measures Measurements that affect the behavior that is being measured; also known as 
reactive observation (i.e., an observation that affects what is being observed). 
realism Position that things and events are literally real and knowable; also the philosophical doctrine 
Ihat established ("mature") scientific theories describe literal reality (called scientific realism). See also 
tllltirealism. 
rectangular arrays Generalizations of Latin squares to tXt! dimensions, where t = number of 
Ireatments. 
redescriptors Multivariate procedures serving to redescribe a set of variables, often in a smaller set of 
variables. 
'.n.d ,Ize The simple (unpartialed) correlation between the contrast weights (As) associated with membership 
III a group or condition and scores on the dependent variable (Y); also symbolized as ry),. 

regression Changes in level of the outcome variable predicted from changes in a predictor variable. 
regression analysis Loosely equivalent to correlational analysis; more technically refers to relations of 
dUlI1ges in level of Y to changes in level of X. 
n'gression substitution procedure The replacement of all missing values by the predicted value of that 
nll"iahle from a regression analysis using only cases with no missing data; one of several single imputation 
I"."et!ures for dealing with missing data. 
regres.~ion toward the mean A mathematical concept that refers to the relation between two paired 
\ •• rillhles, X and Y, for which cases at one extreme on X (the independent variable) will, on the average 
til',',' lime, be less extreme on the other variable . 
..... lIlur autocorrelation The dependence of adjacent observations on one another in time series analysis. 
"' .. 'lIonal inquiry Any method of research that seeks to tell "how things are in relation to other 
Ihllllls." 
",llIlIonal research orientation An empirical approach to investigation in which the observational focus 
'" "hjcclive is to identify relations or:associations among variables. 
"llIlIve risk (RR) The ratio of the p~oportion of control subjects at risk to the proportion of treated 
... I""l·IS at risk. 
"1 .... ,le A synonym for consistent or dependable. 
,," ... lIIty The degree to which observations or measures are consistent or stable. 
"" ... lIIty coefficient A quantitative measure of consistency or stability, for example, test-retest, 
,,''''11111,· fnrm, and internal-consistency reliability. 
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reliability of components Another name for internal-consistency reliability. 
repeated-measures design Statistical design in which the sampling units generate two or more 
measurements. 
replicate To repeat or duplicate a scientific observation. 
replication The duplication or repetition of a scientific observation or research study, usually an 
experimental result or experimental study. 
representative Typical, such as when a segment is representative (or typical) of the largt.r aggregate. 
representative researcb design Egon Brunswik's term for any design that involves the sampling of 
both subjects and stimuli. 
requivalenl The effect size correlation that is equivalent to the sample point-biserial correlation (rpb) 
between the condition indicator and an exactly normally distributed outcome in a two-condition experiment 
with NI2 units in each group and the obtained p value. 
resampling procedures Procedures for creating replications of a data set by repeatedly setting aside a 
fraction of the data to compute various statistics, replacing the set-aside data, and then drawing another 
sample. 
residual effects Effects left over when appropriate components are subtracted from scores or means. 
residuals See interaction effects, row effects, and column effects. 
response The consequence of, or reaction to, a stimulus. 
response biases See rating errors. 
response set An attitudinal disposition determining a person's answers to questions or other responses. 
response variable The dependent variable. 
retest reliability Another name for test-retest reliability. 
reversal design Single-case design in which the conditions end on a positive note, such as an A-B-A-B 
design. 
rhetoric The persuasive language of a given field, which in science encompasses the proper use of 
technical terms and arguments to warrant, defend, or excuse certain beliefs (called the rhetoric of 
justffication in this book). 
rho (p) Spearman rank correlation. 
RHoyt Hoyt internal-consistency reliability. 
risk-benefit analysis An evaluation of the ethical risks and benefits of proposed studies. 
risk difference (RD) The difference between the proportion of the control subjects at risk and the 
proportion of the treated subjects at risk. 
rival hypotheses Competing hypotheses. 
rival interpretations Plausible explanations that provide reasonable alternatives to working hypotheses. 
RKR20 Kuder-Richardson internal-consistency reliability. 
role play A type of simulation in which subjects act out a given scenario; also known as emotional roit' 
play when the researcher achieves a high degree of experimental realism by increasing the subjects' 
involvement. 
root mean square See standard deviation. 
Rorschach test A projective test that consists of a set of inkblots on pieces of cardboard. 
rotation of factors or components Rotation of the axes on which the variables have been located, with 
the aim of making the factors or components more interpretable. 
row effects Row means minus grand mean. 
rpb See point-biserial correlation. 
RR See relative risk. 
RSB Spearman-Brown internal-consistency reliability. 
running records A subcategory of archival material that includes actuarial data, political and judicial 
data, mass media information, and other continuing information. 
Rushton study A field experiment, conducted in a mining company, that raised the ethical issue of 
fair-mindedness. 
S Square root of the unbiased estimator of the population value of <12. 

S2 Unbiased estimator of the population value of <12. 

S2 means The variance of means around the grand mean. 
S2 pooled Variance collected from two or more samples. 
sample A subset of the population. 
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sample selection bias Systematic error resulting from the nature of the sampling units. 
sampling plan A design, scheme of action, or procedure that specifies how the participants are to be 
selected in a survey study. 
sampling stability The concept that all samples produced by the same sampling plan will yield 
essentially the same results. 
sampling units The elements that make up the sample (e.g., people, schools, or cities). 
sampling with replacement A type of random sampling in which the selected names are placed in the 
selection pool again and may be reselected in subsequent draws. 
sampling without replacement A type of random sampling in which a previously selected name cannot 
be chosen again and must be disregarded in any later draw. 
SAT Scholastic Assessment Test. 
scatter diagram See scatter plot. 
scatter plot (scatter diagram) A visual display of the correlation between two variables that looks like 
a cloud of scattered dots. 
Scheffe test Significance test appropriate for use when the contrast has been formulated after examination 
of the data. 
scientific method A general approach or outlook (rather than a single method) emphasizing the use of 
empirical reasoning; also one of Charles Sanders Peirce's "methods for the fixation of belief." 
scientific notation A compact way of reporting numbers with many decimal places. 
scientific realism See realism. 
SE See standard error. 
"searchlight theory" Karl Popper's characterization of falsifiability as an essential criterion of scientific 
conjectures. 
seasonal autocorrelation The dependence of observations separated by one period or cycle in time 
series analysis. 
secondary analysis The reanalysis of an existing database. 
secondary observation An observation that is twice removed from the source. 
secular trend Systematic increase or systematic decrease. 
segmented graphic scale A rating scale in the form of a line that is broken into segments. 
selection Donald Campbell and Julian Stanley's term for a plausible threat to the internal validity of 
research not using randomization when the kinds of research subjects selected for one treatment group 
are different from those selected for another group. 
self-fulfilling prophecy Robert Merton's term for a prediction that leads to its own fulfillment. 
self-recorded diaries See diary method. 
self-report data Information reported by the subjects themselves, usually self-descriptions of feelings, 
uttitudes, thinking, or behavior. 
self-report measures See method of self-report. 
self-selection The subject's choosing for himself or herself whether to enter a treatment condition. 
semantic differential method A type of rating procedure in which connotative (or subjective) meaning 
is judged in terms of several dimensions, usually evaluation, potency, and activity; developed by 
Charles E. Osgood and his coworkers. 
Hense-making In ethnographic research, the objective of imposing meaning on the observed or recorded 
hchaviors, that is, of making sense of them. 
sensitive Term pertaining to the degree to which an instrument is able to detect changes in behavior. 
sentence completion test A type of projective test in which the subject responds by completing an 
incomplete sentence. 
serendipity A lucky or accidental finding, insight, or discovery. 
Nl'verity error A type of rating error in which the ratings are consistently more negative than they 
.houid be. See also leniency bias. 
(I The standard deviation of a set of stores. 
(II The variance of a set of scores. 
l: Symbol telling us to sum a set of scores. 
MIlln test Test of significance of the preponderance of positive versus negative difference scores for 
mUlched-pair data. 
,Itenlll Information. 
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signal-to-noise ratio A ratio of information to lack of information, for example, the ratio of the 
variability between samples (the signal) to the variability within the samples (the noise). 
significance level The probability of a Type I error. 
significance testing The use of statistical procedures (e.g., t, F, chi-square) to estimate the p value, or 
statistical probability of a Type I error. 
simple cross-sectional design A design in which subjects at different ages are observed at the same time. 
simple effects Differences between group or condition means. 
simple longitudinal design A design in which several cohorts are studied, the initial measurements 
being taken in successive years. 
simple observation Unobtrusive observation of events without any attempt to affect them. 
simple random sampling A sampling plan in which the participants are selected individually on the 
basis of a randomized procedure (e.g, a table of random digits). 
simple unobtrusive observation A procedure in which no variables are manipulated, and the research 
observations are inconspicuous. See also contrived unobtrusive observation. 
Simpson's paradox The paradox that bivariate statistical relationships may be reversed by the inclusion 
of other factors in the analysis. 
simulation experiment An experiment based on a model in order to reveal what will happen under 
conditions that mimic the environment in a definite way. 
single-blind study Study in which the participants do not know the group or condition to which they 
have been randomly assigned. Contrast with double-blind study. 
single-case experimental studies Within-subjects designs on a single unit or a few units. 
single-imputation procedures The general term for any imputation procedure that deals with missing 
data in which each missing value is replaced by a reasonable estimate of what that value might have 
been had it been observed (e.g., mean substitution, regression substitution, stochastic regression 
imputation, or hot deck imputation). 
sit'¥ltional experimenter effects Experimenter-related artifacts that are a function of situationally 
determined experimenter attributes. 
size of the study The number of sampling units. 
skewness A characteristic of distributions in which extreme scores are concentrated on one side of the 
mean. 
small-N experimental research Studies using repeated-measures designs in which the treatment effect 
is evaluated within the same subject or a small number of subjects. 
smallest space analysis The use of a set of redescriptors of relations among objects in terms of 
measures of similarity or dissimilarity. 
social constructionism A social-philosophical view in psychology (primarily associated with the 
writings of Kenneth Gergen), with roots in classical philosophical idealism and the modern philosophicul 
view in sociology known as constructivism, in which the primary emphasis is on narrative analysis ami 
an interpretive model of social understanding. 
social experimentation The application of experimental or quasi-experimental methods to the analysis 
of community problems and to the development, testing, and assessment of workable interventions meanl 
to reduce the problems. 
social psychology of the experiment The ways in which subject-related and experimenter-related 
artifacts operate. 
social research See behavioral research. 
social science See behavioral science. 
socially desirable responding The tendency to respond in ways that seem to elicit a favorable evaluation. 
Solomon design An extended control-group experimental design proposed by R. L. Solomon as a 
means of assessing pretest sensitization effects. 
Spearman-Brown equation The Spearman-Brown prophecy formula. 
Spearman-Brown prophecy formula A traditional equation for measuring the overall internal-consistency 
reliability of a test from a knowledge of the reliability of its components. 
Spearman rho (r,) Pearson r computed on scores in ranked form. 
split-half reliability Realiability obtained by splitting a test in half and correlating the scores on the 
halves with one another (e.g., correlating the odd- and even-numbered items). 
spread Dispersion or variability. 



SS Sum of squares. 
SSbetween Sum of squares between conditions. 
SStotal Total sum of squares. 
SSwithin Sum of squares within conditions. 
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stability The extent to which a set of measurements does not vary. 
stability coefficients Correlations between scores on the same instrument administered to the same peo­
ple at different times. 
standard deviation (root mean square) An index of the variability of a set of data around the mean 
value in a distribution. 
standard error (SE) The degree of imprecision with which we have estimated, for example, the mean 
or median of a population. 
standard normal curve (distribution) Normal curve (distribution) with Mean = 0 and (J = I. 
standard normal deviate z-score location on a standard normal curve. 
standard score (z score) Score converted to a standard deviation unit. 
standardized measure A measurement (e.g., of ability, personality, judgment, or attitude) that requires that 
certain rules be followed in the development, administration, and scoring of the measuring instrument. 
standardizing the margins Setting all row totals equal to each other and all column totals equal to 
each other. 
states Occurrences or characteristics of relatively appreciable duration. 
stationary Reflecting an absence of secular trend in time series data. 
statistical conclusion validity The relative accuracy of drawing statistical conclusions. 
statistical power See power of a test. 
stem The leading digits of a stem-and-Ieaf chart. 
stem-and-leaf chart The plot of a distribution in which the original data are preserved with any desired 
precision. 
stochastic regression imputation The addition of a random residual term to the estimates based on 
regression substitution; one of several single-imputation procedures for dealing with missing data. 
Stouffer method of adding zs Procedure for combining the p values of a set of studies. 
strata (clusters) Subpopulations (or layers) in survey sampling. 
stratified random sampling Probability sampling plan in which a separate sample is randomly selected 
within each homogeneous stratum (or layer) of the population. 
strong inference A type of research approach or design in which one hypothesis or fact vies with 
~mother. 

structured items Questions with fixed options; also described as fixed-response items or closed items. 
Student's t The pen name used by the inventor of the t test, William Sealy Gosset, was "Student." 
study size An indicator of the number of observations or sampling units in a study, as in the expression 
"Significance test = Effect size X Study size." 
subject and experimenter artifacts Systematic errors that are attributed to uncontrolled subject- and 
experimenter-related variables. 
sufficient condition A condition that is adequate to bring about some effect or result. 
sum of squares (SS) The sum of the squared deviations from the mean in a set of scores. 
summated ratings method A method of attitude scaling, developed by Rensis Likert, that uses item 
analysis to select the best items. 
symmetrical distribution A distribution of scores in which there is an exact correspondence in 
nrrangement on the opposite sides of the middle line. 
synchronic research Any study in which an event is observed as it occurs at one period in time, not 
using information about the event's development or long-term consequences or changes. 
synchronous correlatious In panel designs, correlations representing the degree of relationship of 
vnriables at a moment in time. 
synergistic effects Nonadditive effect~ of several treatments. 
systematic error Fluctuations that push measurements in the same direction and thus cause the mean 
vulue to be either too big or too small; systematic errors are not self-canceling in the way that random 
<'rmrs are presumed to be. 
systematic observation Observation that is guided or influenced by preexisting questions or 
hypotheses. 



762 GLOSSARY OF CONCEPTS AND TERMS 

systematic replication Murray Sidman's term for the repetition of a single-case experiment with a slight 
variation from the original study (an example of what we more generally refer to as varied replication). 
Contrast with direct replication. 
systematic sampling The methodical selection of the sampling units in sequence separated on lists by 
the interval of selection. 
systematic selection plans Method of selection of sampling units in which particular intervals determine 
the units to be selected after a random start. 
t distributions Family of distributions centered at zero and ranging from negative to positive infinity. 
t test A test of significance used to judge the tenability of the null hypothesis of no relation between 
two variables. 
table analysis Statistical analysis of frequency counts cast into tabular form. 
tacit knowledge Michael Polanyi's term for unvoiceable wisdom, or the idea that humans know more 
than they can precisely communicate in everyday language. 
tally sheets Recording materials for counting frequencies. 
Taylor-Russell tables H. C. Taylor and 1. T. Russell's tables demonstrating that the practical utility of 
tests used in personnel selection increases as the validity coefficient increases and as the selection ratio 
decreases (i.e., as selectivity increases). 
tcon!ras! The symbol used in this book to denote a t test that is used to address a focused question or 
hypothesis in a comparison of more than two groups or conditions. 
teleological cause See final cause. 
telephone interview An interview that is conducted by phone. 
temporal erosion Decay in the strength of a relationship over lapses of time. 
temporal precedence The principle that what is labeled as the "cause" must be shown to have occurred 
before the "effect." 
tenacity method See method of tenacity. 
test of significance Statistical test giving information on the tenability of the null hypothesis of, for 
example, no relation between two or more variables. 
test-retest correlations Correlations that represent the stability of a variable over time. 
test-retest reliability The degree of consistency of a test or measurement, or of the characteristic it is 
designed to measure, from one administration to another. 
testing error Error whereby familiarity with a test or scale artificially enhances performance. 
testing the grand mean Evaluating whether the grand mean differs from zero or some other value of 
theoretical interest. 
tests of simple effects Statistical tests of differences between group or condition means. 
Thematic Apperception Test (TAT) A projective test consisting of a set of pictures, usually of people 
in various life contexts. 
theoretical (conceptual) definition The meaning of a variable in abstract or conceptual terms. 
theoretical ecumenism The need for more than one relevant perspective to foster a holistic picture, 
because each theory focuses on a particular level of understanding. 
theory A set of proposed explanatory statements connected by logical arguments and by explicit and 
implicit assumptions. 
theta David Armor's index of internal-consistency reliability. 
third-variable problem A condition in which a variable correlated with X and Y is the cause of both. 
three Rs of humane animal experimentation The argument that scientists should (a) reduce the numbel' 
of animals used in research, (b) refine the experiments so that there is less suffering, and (c) replace 
animals with other procedures whenever possible. 
Thurstone scale See equal-appearing intervals method. 
time sampling The sampling of specified periods and the recording of everything of interest during 
each period. 
time-sequential design A design in which subjects of different ages are observed at different times. 
time series designs Studies in which the effects of an intervention are inferred from a comparison of 
the outcome measures obtained at different time intervals before and after the intervention. 
tolerance for future null results Number of "filed" (unavailable) studies with mean effect size of zen> 
required to bring the combined probability of the available and unavailable studies to a nonsignificant 
level (or to any particular p level of interest). 
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total aggregation Aggregation of all relevant sources of variance. 
transformation Conversion of data to another mathematical form. 
translation and back-translation Method used in cross-cultural research, in which the researcher has 
one bilingual person translate the questionnaire items from the source to the target language and then 
has another bilingual person independently translate the items back into the source language (called 
back-translation). The researcher then compares the original with the twice-translated version to see 
whether anything important was lost in the translation. 
treatments The procedures or conditions of an experiment. 
trials See randomized trials. 
trimmed mean The mean of a distribution from which a specified highest and lowest percentage of 
scores has been dropped. 
trimmed range Range of a distribution remaining after a specified highest and lowest percentage of 
scores has been dropped. 
true experimental designs Donald Campbell and Julian Stanley's term for randomized experimental 
designs. 
true population value The actual population value, that is, the point value we would obtain by analyzing 
all the scores in the population. 
two-by-two factorial design A two-way statistical design with two rows and two columns. 
two-tailed p value The p value associated with a result supporting a prediction of a nonspecific direction 
of a research result (e.g., either MA > MB or MB > MA, or the sign of r is either positive or negative). 
two-tailed test Test of significance in which the null hypothesis is rejected if the results are significant 
in either of the two possible directions. 
two-way design (two-way factorial) A statistical design in which each entry in the table is associated 
with a row variable and a column variable. 
two-way factorial See two-way design. 
Type I error The error of rejecting the null hypothesis when it is true. 
Type II error The error of failing to reject the null hypothesis when it is false. 
unbiased A term describing a case in which the values produced by the sample coincide with the true 
values of the population. 
unbiased estimator of the population value of (12 A specific statistic usually written as S2. 
unbiased sampling plan Survey design in which the average of the values produced by the samples 
CIlincides in the long run with the true value in the population. 
unipolar rating scales Scales that run from a low amount to a high amount on a particular dimension. 
unobtrusive measures Measurements or observations used to study behavior when the subjects are 
unaware of being measured or observed. 
unplanned contrasts Contrasts computed only after the data have been examined. 
unstructured measures See open-ended measures. 
unweighted means analysis Analysis weighting all means equally even if sample sizes differ. 
vnUdity The degree to which the measures or observations are appropriate or meaningful in the way 
Ihey claim to be. 
vnrlability See spread. 
vnrlables Attributes of sampling units that can take on two or more values. 
vnrlance (mean square) The mean of the squared deviations of scores from their means in a population 
IIf Ihe unbiased estimate of that mean. 
ttlrled replication The repetition of a study with a slight variation from the original design. See also 
,,",III'matic replication. 
~lIrlmax rotation Common method of orthogonal factor rotation that tries to make loadings within each 
Infinf <IS close to 0 or to 1.0 as possible. 
~fflllability principle The logical positivist notion that "truth" can be revealed by the amassing of 
1,,(IUlII observations (called the "bucket 9Ieory of the mind" by Popper). 
_t.unUzations Mental imagery, or the ideas that reverberate in the mind's eye. 
_clhlllicer bias Systematic error resulting when participants who volunteer respond differently from how 
Individuals in the general population WOllid respond. 
.. SrI.' Cohen s w. 
"'..\IS See Wechsler Adult Intelligence Scale. 
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wait-list control group A control group in which the subjects wait to receive the experimental treatment 
until after it has been administered to and found effective in the experimental group. 
Wechsler Adult Intelligence Scale (WAIS) The most widely used of the individual intelligence tests; 
divided into verbal and performance scores. 
why-questions An expression, in philosophy of science, for questions about "why" things work the way 
they do. 
wild scores Extreme scores that result from computational or recording mistakes. 
Winer method of adding ts Procedure for combining the p values of a set of studies. 
within-subjects designs Statistical designs in which the sampling units (e.g., the research participants) 
generate two or more measurements. 
word association test A type of projective test in which the participant, who is read a list of words, 
responds with the first word that comes to mind immediately after hearing each stimulus word. 
working hypothesis An empirically testable conjecture or supposition. 
x axis (abscissa) The horizontal axis of a distribution. 
X Any score; also a symbol for the cause or independent variable in the expression Y = I(X), read as 
"Y is a function of X. " 
X The mean of a set of scores. 
X Grand mean. 
y axis (ordinate) The vertical axis of a distribution. 
Yates correction for continuity Specific correction for continuity in which the absolute difference 
between the obtained and the expected frequencies is decreased by .5. 
yea-sayers Respondents who answer questions consistently in the affirmative. 
z score See standard score. 
Zeitgeist The general temper or ambience characteristic of a particular period of history. 
zero control group A group that receives no treatment of any kind. 
z. See Fisher Z,. 
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317-318, 325-326, 598-599, 639, 
655-662, 743 

Depression (in examples), 590-591 
Descriptive research, 6-7, 21-25, 33, 743 
Designs, experimental, (See also ANOVA), 

A-B-A (and variant), 241 
ANOVA, 464-466 
between fixed, within fixed, 532 
between fixed, within random, 532 
between groups, 203-204 
between random, within fixed, 533 
between random within random, 533-534 
between subjects (nested), 190-191 
cohort-sequential, 254-255 
combinations, four basic, 531-543 
correlational, 235, 242-245 
cross-lagged correlation, 242-245 
cross-lagged panel, 243 
cross-sectional, 253 
cross-sequential, 255-256 
expectancy control, 229-230 
factorial (fractional, full, mixed) 193, 464-467, 

484-189 
four-group, 206-209 
hierarchically nested, 574-576 
historical control, 234, 236-237 
interrupted time-series, 234, 238-240 
Latin square, 192-193,535-541 
longitudinal and pure longitudinal, 250-253 
nonequivalent groups, 234 
nonrandorrtized, 234-235 
one-group pre-post, (O-X-O), 210 
one-shot case (X-O), 210 
panel,243 
pre-experimental, 210-212 
randomized, 190-195 
repeated measures, 396 
representative research, 213 
reversal, 241 
simple cross-sectional, 254-255 
simple longitudinal, 254-255 
single-case (small N, N-of-I), 234-235, 239-242 
Solomon design, 206-209 
subjects-within-sequences, 543-544 
t X tl, 541-543 
three group, 206-207 
3 X 4 factorial, 510 
three-way factorial, 513-515 
time-sequential, 255-256 
time-series, 238-240 
2 X 2 factorial, 462-463, 512 
two-way factorial, 467-468, 470, 476-477, 

528-531 
within-subjects (repeated measures, or crossed), 

192-193 

df (degrees of freedom), 106-107, 109,307-308, 
337-338, 361-362, 375-376, 389-390, 
414-415, 743 

reporting, 415 
dfbetween and within conditions, 414-419, 743 
Diachronic research, 235, 743 
Diagonal of indecision, 80-82 
Diaries, self-recorded, 185-186, 743 
Dichotomous data, 402 
Difference family of effect sizes, 56 
Differencing, 239, 743 
Diffuse tests of significance, 586, 743 
Diffusion of responsibility studies (as examples), 41 
Dimensional analysis, 590-591, 650-655, 743 
Dimensional judgments, 145-146, 148-149,743 
Direct replication, 242, 743 
Discovery, 37, 39-40, 743 
Discriminant validity, 115-117,743 
Distance analysis, 744 
Distributions, 304-305, 389-390, 403-405, 

417-418,592-593,744 
Double-blind study, 228-229, 744 
Dr. Watson (in example), 123 
Drinking and driving (in example), 235 
Dropping outliers, 310-311 
Drug research (in examples), 204-205 
Duhem-Quine thesis (as example), 51-52, 743 
Dummy coding, 336, 399, 588-590, 620-621, 744 

E 
Ecologically valid, 213, 744 
Effect size, 

contrast r, 445-453 
estimates, 629, 635, 637, 675-676 
eta (11) and eta-squared (112), 416 
index, 361-362, 393 
indices for contrasts, 445-453 
~ 322-328, 356-357, 360, 363, 368, 371-373, 

488,744 
tables, 325-327 

Effect sizes, 55-60, 153-154, 205, 319-320, 
338-339, 342, 355-358, 382-383, 409 

and counternull values, 328-330 
reporting, 415 
and unequal sample sizes, 385-388 

Effective cost of items (EC), 102-103, 744 
Effective cost of judges (Eel), 100-102, 744 
Effective power, 360, 744 
Effective reliability, 98-100, 744 
Effects, 465-466 

column, 467-471, 500-501, 504-509 
experimenter expectancy, 224-230 
interaction, 500-501 
residual, 462, 466-471, 495, 511-512, 522-525 
row, 467-471, 500-501, 504-509 
small,668 
table of, 468-469, 514 

Efficient cause, 196, 744 
Eigenvalue, 645, 744 
Electric company (in example), 218-219 



Empirical principles, 32, 744 
Empirical reasoning, 4-5, 744 
Ensemble-adjusted p values, 434 
Epistemology, 12-13,744 
Equal-appearing intervals method, 177, 182-185,744 
Equitable trimming, 300, 310, 744 
Equivalent-forms reliability, 90-91, 744 
Error, 87-88, 476-478, 744 

independent, 401 
logical, in rating, 150-151 
normally distributed, 401-403 
random, 89 
recording, 129 
severity of, 150 
systematic, 89, 124, 128-129 

Error of central tendency, 150, 744 
Error of estimate, 743 
Error of leniency, 150, 743 
Error term, 400, 476-478, 531-534, 544, 553, 

561-562, 565, 576-577, 744 
eta (11) and eta-squared (11 2), 416, 744 
Ethical research guidelines (principles), 69-79, 743 
Ethics (in research), 61-62, 744 

and animal research, 82-83 
and APA guidelines, 65--67 
beneficence and nonmaleficence, 71-73 
codes, 62--67 
and confidentiality, 76-77 
and debriefing, 72-74 
and deception, 64 
and informed consent, 69-70 
and Institutional Review Board (IRB), 63, 68-70, 

79-82 
Ethnographers, 124, 126-127,744 
Ethnographic research, 124-128 
Evaluation (as dimension of meaning), 148, 

178,744 
Evaluation apprehension, 223, 651, 744 
Events, observed, 126, 745 
Evolutionary epistemology (organic evolution) 

6-7, 12-13, 745 
Exact probability test, 602--607 
Expectancy control design, 229-230, 745 
Expectancy control groups, 229-230, 745 
Expectancy (experimenter) effects, 225-230 
Expectancy studies (as examples), 554-561 
Expected frequency (E), 136, 343, 594-595, 

600--601, 608, 611--614, 619, 745 
Experimental control, 200-201 
Experimental designs, See Designs 
Experimental realism, 212, 745 
Experimental research, 22-23, 29-32, 33, 745 
Experimental (treatment) group, 23, 745 
Experimentation, 189-193 
Experimenter artifacts, 217-226 ' 
Experimenter bias (and controlling), 225~230 
Experimenter expectancy effects, 224-230, 745 

(in examples), 524-526 
Experimentum Crucis, 4, 45, 745 
Extended (corrected) range, (ER), 301, 745 
External validity, 212-216 

f (Cohen's), 375-376, 745 
F test, 375-376, 745 

and Anova, 410-414 
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F 

and comparing variabilities, 429-430, 433 
and comparing two independent variables, 

425-426 
and contrasts, 436-441 
and df, 414-415 
distributions, 410, 412, 417-418, 744 
and grand mean, 474-475 
and Latin squares, 537 
omnibus, 412, 422 
and p values, 404-405, 424 
and t test, 409-410, 421-425 
tables, 426, 714-722, 734 
and transformations, 426-429 
and unequal sample sizes, 478-480 
values, 419 

F scale, 176 
Facet analysis, 48, 745 
Factor analysis, 648--649, 745 
Factor loading, 642--647, 745 
Factorial designs, 193, 464-467, 

484-489, 745 
Fallacy of period centrism, 253, 745 
False-negative conclusions, 169, 236, 745 
Falsifiable hypotheses, 4, 745 
Falsificationism, 48, 50-51, 746 
Feon""," 438-439, 746 
Fieldwork journal, 127, 746 
File drawer problem, 226-227, 666, 

686--689, 746 
Final (teleological) cause, 196, 746 
Fisher exact probability test, 602--607, 746 
Fisher z, (transformation), 323, 328, 369-371, 

672--673, 675--676, 679--680, 746 
Fisher z, (transformation) tables, 725-726 
Five Easy Pieces (in example), 500-501 
Five-way interaction, 524-526 
Fixation of belief, 13 
Fixed factors (effects), 530-531, 564-566, 

577, 746 
Fixed response items, 163-165,746 
Flashbulb memories, 185-186 
Fnoncon""," 619--620, 746 
Focus group, 167, 746 
Focused statistical procedures, 106, 746 
Focused tests of significance, 586, 746 
Food coloring (in example), 240 
Food poisoning study (as example), 202-203 
Fortuitous sampling, 272, 746 
Fractional factorial design, 193, 746 
Framingham Heart Study (as example), 251-252 
Frankfurt school of philosophy, 10 
Frequencies, 136, 343, 594-595 
Frequency diagrams, 294-296 
Freudian psychoanalysis, 50-51 
Full factorial design, 193, 745 
Funnel sequence of questions, 173, 746 
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G 
g (Hedges's), 56, 58, 157-158, 328, 746 
g method, 156--159,746 
Ganzfeld experiments, 634-635 
Gender differences (in examples), 213-214, 336--337 
Geometric mean, 300, 746 
Glass's 6., 56, 58, 359, 746 
Good researchers (characteristics of), 34--35 
Good subject effect, 221-223, 746 

in example, 651-655 
Gossip (in example), 143 
Grand mean, 467-471, 500--501, 508, 688, 746 

and F, 474-475 
removing, 510 
and t, 472-474 

Graphic scales, 145, 147-148,747 
GPA (Grade Point Average) (in example), 349-351 
GRE (Graduate Record Examination) (in example), 115 
Greek philosophers (and causality), 196--197,201 
Group mean, 467-471, 500--504, 508 
Gullibility (as reason for Type I error), 54 

H 
h (Cohen's), 373-374, 747 
Ho (null hypothesis), 53-54, 747 
HI (alternative hypothesis), 53-54, 747 
Halo effect, 143, 150 747 
Haphazard sampling, '272, 747 
Harmonic mean, 300, 363, 384, 411, 747 
Hartley's Fma<, 431-433 
Hawthorne effect, 218-219, 747 
HCT (historical control trial), 234, 236--237, 747 
Heart attacks study (as example), 57-58 
Heart study (as example), 251-252 
Hedges's g, 56, 58, 157-158,328, 359, 383, 

385-388, 393-395, 747 
Helping behavior study (as example), 134 
Hempel-Oppenheim model, 32-33 
Heterogeneity, 479, 667, 681, 689-690, 747 
Hierarchical effects, 144--145 
Hierarchically nested designs, 574--576 
Higher-order interaction, 503-504, 747 
Historical control trials (HCT), 234, 236--237, 747 
History (as threat to internal validity), 210--212, 747 
Homogeneity of variance, 401, 570, 747 
Hot deck imputation, 290, 747 
Hotelling's test, 683-684 
How-questions, 6, 747 
Hull theory of learning, 215 
Humphrey, Hubert (in example), 148 
Hyperclaim(ing), 77, 747 
Hypnotism (in example), 220--221 
Hypotheses, 38-39, 747 

I 
liD normal, 401, 747 
Implicit association test 178 
Imputation procedures, 289, 747 

Independence (in meta-analysis), 667 
Independent errors, 40 I 
Independent sample t, 382, 391-392, 747 
Independent variable (X), 205-206, 294--295, 

325-326, 425-426, 598-599, 639, 
655-662, 747 

Indian settlement study (as example) 125 
Inductive-statistical explanation, 34, 748 
Infants (in examples), 144, 161 
Informants, 124, 748 
Informed consent, 69-70, 748 
Instability (in surveys), 262-264 
Institutional Review Board (IRB), 63, 68-70, 

79-82, 748 
Instrumentation (as threat to internal validity), 

210-212,748 
Integrity (in research ethics), 77-79 
Interaction effects (residuals), 462-463, 467-471, 

495-498, 500-501, 507-508, 748 
Interactional experimenter effects, 130, 223-226 
Interactions, 748 

crossed line (crossed-linear), 500, 519-521 
crossed-quadratic, 521-522 
five-way, 524--526 
and group means, 500--504, 508 
and mean polishing, 504-506 
organismic, 517-518 
synergistic, 518-519 
tables of, 522-524 
and tables of predicted means, 506--509 
in three-way designs, 513-517, 523-524, 560 
and 2 x 2 x 2 table of effects, 517 
and two-way tables, 510--513 

Intercorrelations, 640-641 
Internal-consistency reliability, 92-95, 98, 

103,748 
Internal validity, 89, 209-212, 216, 748 
Interpersonal acumen (in example), 143-145 
Interpreter biases, 128-129, 748 
Interquartile range, 302, 748 
Interrater agreement (and reliability), 103-105 
Interrupted time-series designs, 234, 238-240, 748 
Interval estimates, 262, 748 
Interview item analysis, 177-185 
Interview items, 163-165 
Interview protocols, 167-171 
Interview schedule, 167-169 
Intra/inter matrix, 156--157 
Intraclass correlation, 99, 493 
Intrinsically repeated measures, 534--536, 748 
IQ (in examples), 128, 364--365 
IRB (Institutional Review Board), 63, 68-70, 

79-82, 748 
IRT (item response theory), 177 
Item (interview) analysis, 177-185 
Item-to-item reliability (r), 100, 122, 748 
Items, test, 

and accuracy, 140--141 
effective cost of, 102-103 
number of, 137-140 

Intraclass r, 99, 493, 567-569 



J 
Jackknife, 405-406, 748 
Joint method of agreement and difference, 

203-204, 748 
Judge selection, 134--136 
Judges, effective cost of, 100-102 
Judge-to-judge reliability (r~), 100, 122, 749 
Judgment studies, 134--138, 145-150, 749 
Justice (in research ethics), 74--76 
Justification, 37, 749 

K 
k (number of conditions), 635-637, 749 
J<2 (coefficient of nondetermination), 316-317, 749 
kappa (K), 108-111,749 
Kinsey interviews (as example), 272 
KRZO (Kuder-Richardson formula 20), 92, 

94--97, 749 
Kurtosis, 305, 749 

L scores, 571-574, 749 
L 

Lambda coefficients (A. weights), 436-439, 749 
Landon, Alf (in example), 263-264 
Latent root, 645, 749 
Latin square design, 192-193, 535-541, 749 

and counterbalancing, 534--536 
Leaning Tower of Pisa experiment (as example), 190 
Leaves, 295-296, 749 
Leptokurtic distribution, 305, 749 
Levene's test, 431, 433 
Lie (L) scale, 175, 749 
Light study (as example), 9 
Likert method (of item analysis), 177, 181-182 
Likert Scale, 181-183, 749 
Line length study (as example), 20 
Linear contrast, 450, 453 
Linear trend, 442-444, 749 
Listwise deletion, 289, 749 
Literature controls, 236, 749 
Loading, factor, 642-647, 749 
Location measures, 296, 749 
Logical error in rating, 150-151, 749 
Log transformation, 428, 496-497 
Longitudinal research, 250-252 

M 
AI(~ean), 300, 407, 749 
~acro units of analysis, 19-20 
~agnitude scale, 145, 149-150, 749 
~ain effects, 463, 485-486, 500-501, 749 
~ann-Whituey U test, 359-360, 404 ' 
~AR (missing at random), 288-289 
~argin of error, 262, 749 
~arlowe Crowne Social Desirability (~CSD) scale 

(in examples), 26-29, 161, 174, 750 
~arxist theory (in quotations), 50-51 
~atched pair t, 382, 528, 750 
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~aterial cause, 196, 750 
~aturation (as threat to internal validity), 

210-212, 750 
~aximum likelihood estimation, 289, 749 
~CAR (missing completely at random), 288-290 
~ean (AI), 300, 407, 750 
~ean Z (2), 688-689 
~ean differences (AID), 397-398 
~ean polishing, 502, 504--506, 573, 750 
~ean square WS), 302-303, 413-415, 436, 

531-532, 750 
~ean square error (~SE), 268, 415, 492-493,750 
~ean substitution procedure, 290, 750 
~eaningful diagonals, method of, 523-526 
~eaningful differences, method of, 522-526 
~eans, table of, 514 
~easurements (in example), 88-89 
~edian Wdn), 296, 299-300, 309, 407, 750 
~edian polishing, 503 
~ediator variables, 205, 750 
~edication research (in examples), 412, 418-421, 

464-471, 485-488, 511-513, 514--517, 
534--536 

~edieval science (and causality), 197-198 
~ental hospitals study (as example), 125 
~eta-analysis, 226, 27~, 319-320, 663-665, 750 

and chi-square (X2) test, 677-678 
combining three or more effect size 
correlations, 682-683 
combining three or more p levels, 680-682 
combining two effect size correlations, 675-677 
combining two significance levels, 673-675 
comparing three of more studies, 677-678 
comparing two effect size correlations, 671-673 
comparing two significance levels, 670-671 
criticisms of, 665-668 
and file drawer problem, 686-689 
and focused comparisons of three or more 
studies, 678-680 
and Hotteling's test, 683-684 
and interpreting two or more studies, 668-669 
and nonindependent results, 683-686 
procedures, 669 
and Stouffer method of adding Zs, 673-674 
and variability, 689-690 

~ethod of adding Zs, 673-674, 750 
~ethod of agreement, 201-202, 750 
~ethod of authority, 14, 750 
~ethod of difference, 202-203, 750 
~ethod of equal-appearing intervals, 182-185, 750 
~ethod of meaningful diagonals, 523-526, 750 
~ethod of meaningful differences, 522-526, 750 
~ethod of successive intervals, 185, 750 
~ethod of summated ratings, 181-182 
~ethod of tenacity, 13-14, 749 
~ethodological pluralism, 11, 234, 751 
Micro units of analysis, 19-20 
Mill's ~ethods, 201-204, 751 
~inimal risk research, 68, 751 
~ining company study (in example), 75 
~issing data, 288-290, 751 
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Mixed factorial designs, 193, 751 
MMPI (Minnesota Multiphasic Personality Inventory) 

(in examples) 90, 92, 116-117, 175,751 
MNAR (missing not at random), 288-289 
Mode, 299, 750 
Modeling effect, 225, 751 
Moderator variables, 205, 214, 751 
Moments, 315, 751 
Money-pooling (as example), 10 
Monkey studies (in examples), 29-32, 43, 190 
Moral dilemma (in example) 242 
Motion mechanics (in example), 198 
MS (mean square), 302-303, 413-415, 436 
MScon,,,,,, 436, 438-439, 751 
Multidimensional scaling (unfolding) (MDS), 

650--655,751 
Multilevel analysis of variance, 661, 751 
Multiple-choice data, 634-637 
Multiple correlation, 347-348, 751 
Multiple discriminant correlation, 656-659 
Multiple imputation, 290, 751 
Multiple partial correlation, 661, 751 
Multiple path analysis, 659-660, 751 
Multiple R2, 318, 751 
Multiple squares, 541 
Multistage cluster sampling, 271, 751 
Multitrait-mJ.lltimethod matrix, 116, 751 
Multivariate'analysis of covariance, 661-662, 752 
Multivariate multilevel analysis of variance, 661, 752 
Multivariate procedures, 638-639, 752 

analysis of covariance, 661-662 
multiple canonical correlation, 656-658 
multiple discriminant correlation, 656-659 
multilevel analysis of variance, 661 
multiple partial correlation, 661 
multiple path analysis, 659-660 

Mundane realism, 212, 752 
Murder (in example), 41 

N 
N (sample size), 308-309, 752 
N-of-I experimental design, 234-235, 

239-242, 752 
N rays (in example), 129 
National Bureau of Standards (NBS) 

(in example), 88 
National Commission for the Protection of Human 

Subjects of Biomedical and Behavioral 
Research, 68 

Necessary condition, 202, 752 
Need for social approval studies (as examples), 26-29 
Negatively skewed distribution, 304, 752 
Nested designs, 190--191, 752 
Net effects, 237 
NHST (null hypothesis significance testing), 38, 

53-54, 752 
Nixon, Richard M. (in example), 148 
Noise study (as example), .70 
Noise (random error), 88, 391, 752 
Nonequivalent-groups designs, 234-238, 752 

Nonimputation procedures, 289, 752 
Nonindependent samples, 395-400 
Noninteractional artifacts (interpreter and observer 

biases), 128-129,752 
Nonintrinsically repeated measures, 

534-536, 752 
Nonmaleficence (in research ethics), 71-73, 752 
Nonorthogonal contrasts, 444-445, 752 
Nonparametric procedures, 403-405, 752 
Nonparametric statistical tests, 403, 752 
Nonrandomized designs, 234-235 
Nonreactive measures, 130, 752 
Nonresponse bias, 273-276, 752 
Nonverbal communication research, (as examples), 

151, 347, 644-648 
Normal distribution, 284, 304-305, 752 
Normality (of error distribution), 403 
Nose-prints (as example), 132 
No-shows, 295 
Novelty (in research ideas), 43-44 
Null-counternull interval, 58-59, 328-330, 752 
Null hypothesis (H ), 53-54, 354-355, 752 
Null hypothesis sig~ificance testing (NHST), 38, 

53-54,752 
Numerical scales, 145-147, 753 
Nurenberg Military Tribunal (in example), 71 

o 
Obedience studies (in examples), 33, 72-73, 651 
Observation of disproportionate influence (OODl), 

335-336, 753 
Observations, 

participant, 124-125 
repeated, 527-528 
unobtrusive, 130--134 

Observed frequency (a), 136, 343, 590, 594-595, 
600--601,611-614,619,626,753 

Observer biases, 128-129 
Occam's razor, 48, 310, 753 
Odds ratio (OR), 586, 627-628, 630--631, 753 
Office of Strategic Services (OSS) studies 

(as examples), 23-25 
Omnibus chi-square test, 594-596, 753 
Omnibus statistical procedures, 106, 109, 753 
Omnibus tests, 374, 422, 753 
One sample research, 635-637 
One sample t, 382 
One-group pre-post design (O-X-O), 210--211, 753 
One-shot case study (X-O), 210, 753 
One-tailed p value, 329, 368-369, 602, 753 
One-way ANOYA, 464-466, 470, 476-477 
Ontological (realism) metaphors, 17, 753 
OODl (observation of disproportionate influence), 

335-336 
Open-ended interview items, 163-165,753 
Operational definition, 45-46, 753 
Operationalism, 28, 46, 753 
Optimal design, 194-195,456-458,753 
Ordered samples (in stem-and-leaf display), 295-296 
Ordinate (Y axis), 294-295, 753 



Organismic interactions, 517-518, 753 
Orthogonal contrasts, 442-444, 753 
Orthogonal polynomial contrasts, 437, 753 
Outcome variable, 25, 120 
Outliers, 300, 309-311, 753 

p 
p value (level), 53, 55, 60, 354-355, 361-362, 

390-391, 404-405, 593, 608, 613, 670-671, 
680-682, 753 

ensemble-adjusted, 424 
P (proportion), 361-363, 373-374 
Paired sample t test, 382, 386, 396, 753 
Pairwise deletion, 289, 753 
Panel design (study), 243, 753 
Paradox of sampling, 261-262, 754 
Paradoxical situation (incident), 41, 754 
Parsimony (in hypothesis), 48, 754 
Partial correlation, 348, 754 
Participant observation, 124-125, 754 
Passive deception (deception by omission), 64, 754 
Path analysis, 245-250, 659-660, 754 
Payoff potential, 44, 754 
Pearson r, 55-58, 108, 110, 156-157,227, 

314-316, 322, 340, 345, 347, 366-369, 754 
Peirce's four ways of knowing, 13-15 
Percentage agreement, 103-105 
Percentiles, 296-297, 754 
Perceptibility, 16-17,754 
Period centrism fallacy, 253-254, 754 
Permutation tests, 408, 754 
Permutation traits (in example), 141-143 
phi coefficient ($), 340-344, 347, 613, 627-628, 754 
$2 (phi-square), 587 
Philadelphia Phillies (in example), 266-269 
Philosophers (and causality), 196-199 
Philosophy, moral, 62-63 
Photos (in example), 135-136 
Physical traces, 132-133, 754 
Picture book study (as example), 131-132 
Piggy bank (in example), 33-34 
Pilot testing, 169-170, 172-173,754 
Placebo, 74, 190-191 
Placebo effect, 218-219, 754 
Plagiarism, 79 
Platykuric distribution, 305, 754 
Point-biserial correlation (rpb), 57, 329, 336-339, 347, 

388, 398, 754 
Point estimates, 262, 754 
Poisson distributions, 304-305 
Political candidates (in examples), 263-264, 588-590 
Political parties (in example), 340-344 ; 
Polls, opinion, 272-273 
PONS (Profile of Nonverbal Sensitivity) (in examples), 

644-648, 754 
Pooled effects, 237 
Population (in sampling), 260, 266-270 
Positively skewed distribution, 304, 754 
Positivism, 48-50, 755 
Potency (as dimension of meaning), 148, 178 

Power analysis, 360, 755 
Power, improving, 376-377 
Power tables, 360-363 
Power of a test, 53, 755 
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Practical validity, 117-119,321,755 
Precision (in surveys), 262-263, 755 
Predictive validity, 114, 755 
Predictor variable, 25, 119-120,317-318, 

348-349, 639, 655-662, 755 
Preinquiry, 222 
prep, 60 
Pretest sensitization, 206-207, 755 
Principal components analysis, 639, 

641-642, 755 
and cluster analysis, 649-650 
and construct validation, 644 
and factor analysis, 648-649 
and psychometric applications, 644-648 
and reliability analysis, 647-648 
and subtest construction, 645-647 

Priority (in cause and effect), 199-200, 754 
Prism experiment (as example), 198 
Probabilistic assertions, 32 
Probability sampling, 260, 262, 755 
Product-moment correlation, 55-58, 108, 110, 

156-157, 227, 314-316, 322, 340, 345, 347, 
366-369, 755 

Products, 315, 755 
Pronoun use study (in example), 70-71 
Propensity scores, 235, 256-259, 755 
Proportion index, 634-637 
Proximity analysis, 650-655, 755 
Pseudosubject, 28, 756 
Psychopathology (in examples), 480-485 
Psychosocial experimenter effects, 224, 756 
Psychotic depression patients (in example), 511-513 
Psychotherapy effectiveness (in example), 319-320 
Psychotherapy/drug treatment studies (in examples), 

412, 418-421, 464-471, 485-488, 
514-517 

Public Health Service (in example), 65 
Publication Manual of the American Psychological 

Association, 393, 415 
Pulse function, 239, 756 
Pure longitudinal designs, 253, 756 

Q 
q (Cohen's), 369-371, 739, 756 
Q-sort, 177, 179-182, 756 
Quadratic trend, 442-444, 756 
Qualitative data, 127-128, 596-598, 756 
Qualitative research, 123-124 
Quantitative research, 123-124 
Quartic curve, 521 
Quasi control strategy, 222, 756 
Quasi-experimental designs, 233-235, 756, 

(See also Designs) 
Queens, NY, murder (in example), 44 
Questionnaires, 172-174, 176-177,274-275 
Quota sampling, 273, 756 
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R 
r (Pearson correlation coefficient), 55-58, 108, II 0, 

156-157, 227, 314--316, 322, 340, 345, 347, 
366-369, 756 

significance levels of, 724 
r method, 156-159,756 
y2 (coefficient of determination), 57, 316-317, 

739, 756 
Racetrack data (in example), 633--{j34 
r"lorting, 445-447, 451-453, 736, 756 
Random digits table, 264--266, 271-272, 727-733 
Random error, 89, 756 
Random factors, 530-531, 564--566, 577, 756 
Random numbers, 194--195 
Random response set, 175, 756 
Random sampling, 266-270 
Random sampling with (or without) replacement, 

265-266,406,756 
Randomization (random assignment), 

193-196,757 
Randomization tests, 408 
Randomized control trial (RCT), 236-237, 

324--327 
Randomized experimental designs, 190-193 
Randomized response technique, 174--175, 757 
Randomness, 195 
Range, 300-302, 757 
Range-to-mid~ilnge-ratio method, 156, 

158-15§, 757 
Ranked scores, 330-333 
Rashomon (as example), 10 
Rat studies (in examples), 215, 226, 229-231 
Rating biases, 150-151,757 
Rating scales, 145-146, 178-179,757 
rBESD, 445, 448-452 
r,on"", (contrast r), 360,445,447,451-454,484, 

621, 634, 757 
Remn""h, 97, 99, 100 
RCT (Randomized control trial), 236-237, 

324--327, 757 
Reactive measures, 130 
Reading improvement scores (in example), 312-313 
Rectangular arrays, 541-543, 757 
Reeling in outliers, 310-311 
r,ff,,, ,ire (effect size correlation), 322-328, 

356-357, 360, 368, 371-373, 744 
and contrasts, 445-453 

Refutability (of research idea), 45 
Regression, 318, 756 
Regression substitution procedure, 290, 757 
Regression toward the mean, 209, 757 
Regular autocorrelation, 239, 757 
Relational research orientation, 25-29 
Relational research, 22-23, 33 
Relative risk (RR), 627-630, 757 
Reliable testing, 26 
Reliability, 26, 87, 119-122,757 

alternate-form, 90 
effective, 98-100 
equivalent forms, 90-91 

internal consistency, 92-95, 98, 103 
interrater, 103-105 
item-to-item (ril), 100, 122 
judge-to-judge (rjj), 100, 122 
split-half, 94 
test-retest, 90-91 

Reliability analysis, 647--{j48 
Reliability coefficient, 89-90, 757 
Religion in Netherlands study (as example), 252-254 
Repeated-measures design, 396, 758 
Repeated-measures analysis of variance, 97, 99, 

527-528 
and aggregating error terms, 561-562 
and composite variables, 569-570 
computing, 528-530 
and contrasts, 570-574 
and error terms, 531-534 
and F test, 570 
and fixed or random factors, 564--566 
and intrac1ass r, 567-569 
and Latin squares, 535-541 

Replication, 26, 111-113,242,758 
Representative research design, 210, 758 
r,quivol,n' statistic, 359-360, 758 
Research findings, interpretation of, 284--285 
Research ideas, 43-48 
Research participants (subjects), 217-226, 260-262 
Researchers, good, 34--35 
Residuals (residual effects), 462, 466-471, 495, 

511-512, 522-525, 758 
Response (rater) bias, 124, 758 
Responsibilities (of researchers), 82-83 
Retest reliability, 90-91, 758 
Reversal design, 241, 758 
Rhetoric (of justification), 15-16, 758 
rho (p), 330-332, 339, 758 
RHoy', 99, 758 

ron""I .. " 99, 493, 567-569 
roi (item-to-item reliability), 100, 122 
Risk difference (RD), 627--{j28, 631-632, 758 
rjj Gudge-to-judge reliability), 100, 122 
RKR20, 94, 96, 758 
Robustness, 2 I 2 
Role playing (in example), 20 
Roosevelt, F. D., (in example), 263-264 
Root, 645 
Root mean square (RMS) (0'), 303, 758 
Rorschach test (in examples), 90, 116-117,758 
Rotation of factors or components, 642--{i43, 758 
Row effects, 467-471, 500-501, 504--509, 758 

removing, 510 
RSB , 92-95, 98-100, 103 
Rumor (in examples), 133-134, 166 
Rushton mining company study (in example), 75, 758 

s 
S'- (unbiased estimator of the population value 

of 0'2), 302-303, 758 
Salk vaccine trials (in examples), 327-328, 628--{i33 
Sample size (N), 308-309, 368-369, 371 



analysis for smaller, 617-618 
and contrasts, 480-482 
estimates, 361-363 
in optimal design, 456-457 
unequal,383-388,478-480 
and unweighted means analysis, 476-477 

Sampling, 126, 260--262, 264-273 
Sampling bias, 666 
Sampling plans, 262, 759 
Sampling units, 293-294, 759 
Sampling with (or without) replacement, 265-266, 

406,759 
SAT (Scholastic Assessment Test) (in example), 

90,759 
Satterthwaite's approximate method, 401-402 
Scatter plot (diagram), 311-313, 335,759 
School studies (as examples), 22-23, 78, 330--331 
School systems (in examples), 574--581 
Schumann, Robert, study (in example), 130--131 
Scientific method, 3-5, 13-15, 759 
SE (standard error), 262, 759 
"Searchlight" theory, 4, 49, 759 
Seasonal autocorrelation, 239, 759 
Secular trend, 239, 759 
Segmented graphic scale, 178-179, 759 
Selection (as threat to internal validity), 

210--212, 759 
Selection ratio, 117-118 
Self-fulfilling prophecy, 40, 225, 759 
Self-recorded diaries, 185-186, 759 
Self-report data, 160--163, 759 
Semantic differential method, 148, 177-179,759 
Sense-making, 123, 759 
Sensitive (testing instrument), 92, 759 
September 11 (in example), 185-186 
Serendipity, 42-43, 125-126, 759 
Severity error, 150, 759 
Sherlock Holmes (in example), 123 
Shocks, electric, studies (as examples), 72-73 
a, 303, 759 
a2, 302-303, 759 
Signal, 391, 759 
Signal-to-noise ratio, 391, 760 
Significance levels, 53, 358, 668, 760 
Significance levels tables, 724, 733-735 
Significance test, 338-339, 342, 355-356, 382, 409, 

587,760 
Significance testing, 59-60, 355, 760 
Similarity analysis, 650-655 
Simple cross-sectional design, 254--255, 760 
Simple longitudinal design, 254--255, 760 
Simple random sampling, 264--266, 760 
Simple unobtrusive observation, 133, 760 
Simpson's paradox, 237, 760 
Single-blind study, 228-229, 760 
Single-case (small-N, N-of 1) experimental research, 

234--235, 239-242, 760 
Single imputation procedures, 290, 760 
Situational experimenter effects, 224--225, 760 
Size of effect, 55-60, 205, 153-154, 319-320, 338-

339,342,382-383,409,487 
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Size of study, 55-59, 338-339, 342, 382-385, 409, 
487,760 

Skewness, 304--305, 332, 760 
Smallest-space analysis, 650-655, 760 
Smoking (in examples), 234, 256-259 
Sociability (in examples), 395-400 
Social constructionism, 6-9, 760 
Social Desirability Scale (in examples), 26-29, 

161, 174 
Socialized medicine scale (as example), 183 
Solomon design, 206-209, 760 
Spearman rank correlation rho (p), 330--332, 339, 

347, 733, 760 
Spearman-Brown equation, 92-94, 760 
Spearman-Brown formula (R'lB), 92-95, 98-100, 102 
Speech behavior studies (as examples), 33 
Split-half reliability, 94, 760 
Spread, measures of, 300--303, 760 
Square root transformation, 427, 497-498 
Squared loadings, 645-647 
SS (sum of squares), 400, 414-415, 436, 761 
SSbe,woen, 441, 761 
SSeon',"," 436, 761 
Stability (in surveys), 262-263, 761 
Stability coefficients, 91, 761 
Standard deviation (root mean square) (a), 303, 

307, 761 
Standard error (SE), 262, 761 
Standard error of the mean (SEM) 307 
Standard normal distribution (curve), 304, 761 
Standard normal deviate (2), 344, 709, 761 
Standard score (Z score), 210, 305-307, 152, 761 
Standardizing row and column totals, 621-627 
States (observed), 126, 761 
Stationary (observation), 239, 761 
Statistical conclusion validity, 209, 215-216, 761 
Statistical generalizability, 212 
Statistical inferences, 269 
Statistical power, 354--359, 761 
Statistical significance, 55-59 
Stems, 295-296, 761 
Stem-and-leaf charts, 293-296, 298-299, 761 
Stochastic regression imputation, 290, 761 
Stouffer method of adding zs, 673-674, 761 
Stratified random sampling, 268-269, 761 
Structured interview items, 163-165,761 
Student's distribution, 381 
Study size, 55-59, 338-339, 342, 382-385, 409, 761 
Subclassification (on propensity scores), 256-259 
Subgroup analysis, 352-353 
Subject (participant) artifacts, 217-223, 

224--230, 761 
Subjects-within-sequences design, 543-544 
Subtables, 485-488, 549, 611-614 
Subtest construction, 645-647 
Success rate (of treatments), 318-320 
Successive intervals, method of, 185 
Sufficient condition, 201, 761 
Suicidal prophecy (in example), 40 
Sum of squares (SS), 400, 414-415, 436, 761 
Summated ratings method, 181-182,761 
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Surveys (as examples) 272-276 
Synchronic research, 235, 761 
Synchronous correlations, 244, 761 
Synergistic effects, 518-519, 761 
Syphilis study (as example), 65 
Systematic error, 89, 124, 128-129, 761 
Systematic replication, 242, 762 
Systematic sampling, 271, 762 

T 
I X I! designs, 541-54:3 
I distributions, 389-390, 762 
t test, 55, 337-338, 361, 366-368, 381-385, 

401-403,424-425,762 
and comparing two means, 363-366 
components of, 382-383 
correlated, 382 
and F, 409-410, 421-423 
and grand mean, 472-474 
independent sample, 382, 388-392 
matched pair, 382 
maximizing, 383-385 
and non-independent samples, 395-400 
one-sample, 382 
and p values, 390-391 
paired sample, 382 
reporting, 392-39 

I values tables, 710-713 
Table of X2 (chi-square), 723 
Table of F, 714-722 
Table of means, 514 
Tables of predicted means, 506-509 
Table of random digits, 727-733 
Tables of counts, 107, 109, 340 

and chi-square (X2), 585-588 
and contrasts, 615-617 
and dimensional analysis, 590-591 
and dummy-coding, 588-590 
and Fisher exact probability test, 602-607 
4 X 4,626 
larger, 588-598 
one-sample, 633-634 
partitioning, 609-614 
standardizing row and column totals, 621-627 
subdividing, 598-602 
3 X 3,593-594 
2 X 3,589 
2 X 2,588,629 

Tables of effects, 468-469, 514 
Tables of residuals, 522-524 
Tables of I, 710-713 
Tables, 3 X 4, 500-513 
Tables, two-way, 510-513 
Tables of variance, 470-472, 488-489, 529-530 
Tarzan (in example), 377 
Taylor-Russell tables, 117-119,762 
Icon""''' 440, 454, 457-458, 480, 482-483, 

597-598, 620-621, 762 
Teachers' expectation studies (as examples), 554-561 
Teaching method (in example), 501-503, 505-506 

Teleological explanation, 196 
Telephone interviews, 171-172, 273, 275 
Temporal erosion, 245, 762 
Tenacity method, 13-14, 762 
Test of significance, 338-339, 342, 355-356, 382, 

409,762 
Test-retest correlations, 244, 762 
Test-retest reliability, 90-91, 762 
Test validity, 117-119 
Testability (of research idea), 45 
Theoretical definitions, 46, 762 
Theoretical ecumenism, 11,762 
Theories, 38-39 
Theta, 647-648, 737, 762 
Third variable, 245-246, 347-348, 372, 762 
Thread-packing (in example), 27 
3 X 4 tables, 508-513 
Three Rs principle (in animal research), 83, 761 
Three-way ANOVA, 485-486 
Three-way interaction, 515-517, 523-524, 560 
Thurstone Scale (equal-appearing intervals method), 

177, 182-185,762 
Time of measurement effect, 254-255 
Time sampling, 126,762 
Time-sequential design, 255-256, 762 
Time-series designs, 238-240, 762 
Tinkertoy test (as example), 25 
Tolerance for future null results, 686, 762 
Tolerance table, 687-689 
Tolman theory of learning, 215 
Transformation data, 310-311 
Transformations, 332-333, 335-336, 426-429, 

495-498, 763 
Translation (and back-translation), 176-177,763 
Treatment condition, 577-581 
Trimmed mean, 300, 763 
Trimmed range, 301-302, 763 
True population value, 262, 763 
Trust (in research ethics), 76-77 
Tuskegee study (as example), 65 
Tutoring (in examples), 572-573 
TV violence study (as example), 247-250 
2 X 3 tables, 589 
2 X 2 design, 462-463, 512, 763 
2 X 2 tables, 506-508, 586, 588 
Two-tailed p value, 329, 361, 368-369 
Two-way ANOVA, 467-468, 470, 476-477, 

528-531, 763 
Two-way tables, 510-513 
Type I error, 53-54, 59, 355, 357-358, 

422-423, 608, 763 
Type II error, 53-54, 59, 355, 357-358, 763 
Typology, 47-48 

u 
U. S. Public Health Service (in example), 65 
Ulcer project (ULCEP) (in example), 42-43 
Unbiased estimator of the population value of (12 (,s2), 

302-303, 763 
Unequal sample sizes, 383-388 



Unipolar scales, 149, 151, 763 
Unobtrusive observations (measures), 130--134, 763 
Unweighted means analysis, 475-478, 488, 763 
Utility (in research ideas), 43--44 

V 
Validity, 87-89, 113-122, 763 

concurrent, 114 
construct, 209, 216 
content, 113-114 
convergent, 115-117 
criterion, 114 
disciminant, 115-117 
external, 212-216 
internal, 89, 209-212, 216 
practical, 117-119, 321 
predictive, 114 
statistical conclusion, 209, 215-216 
test, 117-119 
threats to, 210--212 
utility, 117-119 

Validity coefficient, 117-118, 121-122 
Variability (spread), 349-352, 763 
Variable(s) (See also Criterion variable, Dependent 

variable, Independent variable, Predictor 
variable), 25, 106, 120, 151-156,204-206, 
243-246,347-348,400,403-405,410-414, 
639, 656--662, 763 

Variances, 302-303, 470-472, 488-489, 529-530, 538 
Varied replication, 26, 763 
Varimax rotation, 643, 763 
Verbal conditioning (in example), 27-28 
Vienna Circle, 49-50 
Vietnam War veterans study (as example), 321-322 
Violence (TV) study (as example), 247-250 
Visualizations, 16-17, 763 
Volunteer bias, 222-223, 284-288, 763 
Volunteer characteristics (as example), 295-296 
Volunteer subjects research, 276-285 
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w 
w (Cohen's), 374-375 
Wait-list control group, 74, 191-192,236,764 
Wallace, George (in example), 148 
Wechsler Adult Intelligence Scale (WAIS) 

(in example), 278, 764 
Weighting studies, 682-683 
Why-questions, 6, 764 
Williams modification, 684 
Within-conditions, 413-419, 470-471 
Within-subjects designs, 192-193, 527-530, 

545-546, 551, 554-565, 764 
Working hypotheses, 22, 43-48, 764 
World Medical Association, 191 
World War II pilots and OSS (in examples), 23-25 

x 
X, (i~dependent variable), 205-206, 235, 237, 

294-295,314-318,763 
X axis (abscissa), 294-295, 311-312, 764 

y 
Y, (dependent variable), 205-206, 235, 237, 294-295, 

314-318, 332-334, 764 
Yaxis (ordinate), 294-295, 311-312, 764 
Yates correction for continuity, 587-588, 

608,764 

z 
Z (mean 2), 688-689 
Z score (standard score), 152, 210, 305-307, 309, 

315-316, 332-334, 399, 685, 764 
Z test, 685, 687-688 
Zeontras" 618-619 
z" Fisher transformation, 323, 328, 369-371 
z" Fisher transformation tables, 725-726 
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